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An effective method is developed for the calculation of the coefficients in the 1/N expansion of the 
discrete spectrum of the Klein-Gordon equation. The method, based on using the fi expansion and 
quantization conditions, gives rise to simple recursion relations from which coefficients of 
arbitrarily high order can be obtained both for the ground and the radially excited states. As an 
example we discuss the calculation of energy eigenvalues for the Coulomb interaction and the 
funnel-type potential in the l/n-expansion scheme. 

1. lNTRODUCTlON 

One of the most effective methods for studying the 
bound-state spectra in nonrelativistic quantum mechanics is 
the 1/N-expansion method.'s2 There exist several vari- 
a n t ~ , ~ - ~  differing only in the choice of the parameters A and 
B in the relation fi21(1 + 1) = AZ + M A  + fi2B and in the 
treatment of nodes of the wave function. In this semi-classi- 
cal approach the energy level is searched for in the form of 
the expansion E = E ( O )  + &(')/A + E ( ~ ) / A ~  + ... The zeroth 
approximation corresponds here to the energy of the classi- 
cal particle at the minimum of the effective potential. 

The successful application of the 1/N expansion to var- 
ious problems of nonrelativistic physics has stimulated in- 
terest in extending the method to the relativistic case. Such a 

dinger form. The method can be applied directly to any 1/N- 
expansion scheme. As an example we consider its 
application to the determination of the coefficients in the 
l/n e ~ ~ a n s i o n . ~ - ~  

2. +EXPANSION FOR THE KLEIN-GORDON EQUATION 

For a scalar particle in the field of a vector potential 
V(r) constituting the time component of a four-vector, and a 
scalar potential included, following the "dynamical mod- 
e1,"'2-'4 in the mass term m(r) ,  the radial part of the Klein- 
Gordon equation has the form 

generalization fo; the case of the Klein-Gordon equation Ensuring the possibility of applying the resultant for- 
was started with the study of the Coulomb interaction in the mulas to an arbitrary l/N-expansion scheme, we write in 
limit of large space dimensions ( N -  CXJ ) .6*7 The case of the view of ambiguities in the passage to dassical mechanics 
motion of a scalar particle in the field of a spherically sym- 
metric potential, transforming like the time component of a f i 2 1  ( 1 + 1 )  =A2+fiAA+fi2B. (2)  
four-vector, was considered soon afterwards.'-lo 

It should be noted that what was studied in Refs. 8-10 After substitution of the logarithmic derivative 
was in effect the equation obtained from the ~ l ~ i ~ - G o r d o n  C(r)  = fiU1(r)/U(r) Eq. (1)  goesoverthenintothenonlin- 

equation after discarding some of its terms, and similar in ear Riccati equation 

form to the Schrodinger equation, to which one of the stan- 1 
AC' ( r )  + C2(r )  = -(A2+ AAA+ti2B) +m2(r )  c" dard 1/N-expansion schemes was then directly applied.394 r ' 

In this process the calculations of excited states become 
quite unwieldy, which is characteristic of the manner in 1 

-- 
c2 1E-V(r) l2 ,  ( 3 )  

which the nodes of the wave function are treated in the stan- 
dard scheme. 

Recently a new effective technique for finding the coef- 
ficients in the 1/N expansion for bound states of the Schro- 
dinger equation was proposed.11 Based on making explicit 
use of the semiclassical nature of the l/Nmethod in the form 
of an expansion in the Planck constant, it permits the appli- 
cation of the quantization condition to take into account the 
nodes of the wave function. The resultant recursion relations 
then take on a simple form for both the ground and excited 
states and permit, in principle, the determination of the 1/N- 
expansion coefficients to arbitrarily high order. 

The purpose of the present article is the extension of the 
method developed in Ref. 11 to the relativistic case in the 
framework of the Klein-Gordon equation. In contrast to 
Refs. 8-10, the discussion is carried out for the most general 
spherically symmetric potential having both scalar and vec- 
tor parts, without reducing the initial equation to a Schro- 

We shall look for the eigenfunctions and eigenvalues of this 
equation in the form of asymptotic series in the Planck con- 
stant 

m 

Substituting the expansions (4)  and (5 )  in (3)  and 
equating coefficients of equal powers of fi we obtain 

2El V ( r )  2E,E, 
~ . , ( r )  +z , c . ( r )  ~ , ( r ) = r ,  (+) +-- - 

c2 cz ' 
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3. RECURRENCE RELATIONS 

Following Ref. 11 we change to the new variable 
x = ( r  - r0 )/rO and represent C, ( r )  in the form of the se- 

where y, = A A / d ,  y, = B / d ,  y, = y, = ... = 0. 
The resultant system of equations can be solved succes- 

sively in the case of ground states, provided Eo is known. 
In the i i + O  limit, which specifies the zeroth approxima- 

tion, E, is determined as the smallest possible value of the 
energy of a relativistic particle performing classical motion 
on a stable circular orbit, namely 

The radius r, of the orbit represents the position of the mini- 
mum of the effective potential and is calculated as the real 
positive root of the equation 

Now, knowing E,, we obtain C, ( r )  from the first equa- 
tion in the system (6). Substitution of E,, C& (r,), and 
C, (r, ) = 0 into the second equation permits the evaluation 
of E, , which, in turn, gives C, (r),  etc. 

For excited states, however, it is necessary to take into 
account the nodes of the wave function. The fi-expansion 
under discussion simplifies this problem, allowing the appli- 
cation of the quantization condition and the formalism of 
the theory of functions of a complex variable. 

In the case of excited states with radial quantum num- 
ber n, the wave function U(r) of Eq. ( 1 ) has precisely n, real 
zeros. Then, according to the theorem on the logarithmic 
derivative, the Z ~ a a n - D u n h a m ' ~ * ' ~  quantization conditions 
apply to the function C(r) 

In view of the ambiguities in the transition to classical me- 
chanics the quantization conditions (9)  must be supple- 
mented by a rule for the transition to the classical limit. 
Keeping in mind that the method under discussion is viewed 
as complementing the WKB approximation we demand that. 

Now, after the substitution of the expansion (4), the quanti- 
zation conditions are rewritten in the form 

Further application of the residue theorem to the ex- 
plicit form of the functions C, ( r )  solves the problem of the 
description of radially exciied states. 

ries: 
m 

The minus sign ensures here that the boundary conditions 
are satisfied, and we have introduced the notation 

where V, = 6 V'"'(r, )/a! and m, = Grn'")(r, )/a! are 
coefficients in the expansions 

and the coefficients C: are connected with w and a, by the 
relations 

It is evident from the expression (12) that the point 
x = 0 is a simple zero of the function C, ( x ) .  Consequently 
the function 

k 

has at that point poles of order (2k - 1 ) and can be expand- 
ed in its neighborhood in a Laurent series 

m 

C. (2) =~ '~~x  cakx5. (18) 
a = O  

Such an expansion, upon substitution into the quantization 
conditions ( 1 1 ), makes it possible to express, using the resi- 
due theorem, the coefficients 6; directly in terms of the radi- 
al quantum number n,: 

From the expression (17), using the expansion (IS), 
we obtain 

k a 
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where we have introduced the Heaviside function B(a) and 
the Kronecker symbol 

Substitution of the quantization conditions ( 19) splits 
the recursion relation (20) in accordance with the value of 
the index a. For a # 2k - 2 there remains only the part de- 
termining the coefficients CE in the expansion of the wave 
function: 

In the case a = 2k - 2 we arrive at the recursion rela- 
tion for the coefficients of the fi-expansion of the energy: 

Thus, formulas (21) and (22) determine completely 
the coefficients in the fi-expansion of the eigenfunctions and 
eigenvalues of the Klein-Gordon equation. Here the values 
of the initial coefficients, needed for the recursion relations 
to work, are determined by the potential parameters 
(Eo ,Cg ,C: ) and the quantization conditions (6; ,Ctk ;, _, 1. 

4.llnEXPANSlON FOR THE KLEIN-GORDON EQUATION 

Knowing the ti-expansion coefficients for the energy 
E = Eo + fzE, + fi2E2 + ..., one easily reproduces the terms 
in the standard l/N-expansion schemes: 
E = + &(')/A + d2)/A2 + ... Indeed, as is easily seen, 
the parameter A enters in the initial equation in the form of 
the combination fi/A. Consequently 

under the condition that do' = Eo. 
The concrete choice of the version of the 1/N expansion 

is specified, as was mentioned earlier, by the choice of the 
coefficients A and B [see Eq. (2)  ] that determine A and fix 
the zeroth approximation Eo in the f i  expansion. 

As an example we consider the application of formulas 
(21) and (22) to finding the energy in the l/n-expansion 

4.1. The Coulomb interaction 

The Coulomb potential V ( r )  = - f l  /r, where f l  = Ze2, 
is interesting because its exact solution is known. Setting 
m(r )  = m = 1 we obtain from Eqs. (7)  and (8)  

Then, substituting A = - 1 - 2n, and B = n, (n, + 1 ), 
which correspond to the value A = fi(n, + 1 + 1) accepted 
in the l/n expansion, we obtain from the recursion relation 
(22), after expansion in a series in l/c2, 

where x = 2n, + 1, which coincides with the expansion of 
the exact solution6 

in a series in powers of fi and l/c2. 
It follows from (25) that the characteristic peculiarity 

of the l/n expansion for the Klein-Gordon equation with the 
Coulomb potential is the absence of a nonrelativistic part in 
the coefficients Ek , k> 1. 

We remark that reduction of the Klein-Gordon equa- 
tion to a Schrodinger-like forms-'0 changes the coefficient of 
(fi2/c6) in (25) from 336 to 464. The coefficients in the 
terms of higher order in ti and l/c2 are also changed. 

4.2. Funnel-type potential 

The Klein-Gordon equation ( 1) for a funnel-type po- 
tential, widely used in the description of hadron spectra, 
takes the form 

where fi = c = 1. 
We shall demonstrate with this example the speed with 

which the l/n expansion converges in the relativistic case. 
The calculations were performed using formulas (2 1 ) 

and (22). The minimum of the effective potential was found 
as the real positive root of the equation 

The parameters of the potential were taken from Ref. 17 and 
had the following values: m = 1.37 GeV, k = 0.2086 GeV2, 
g = 0.39. 

In Table I are shown the results of the calculations of 
successive sums of terms of the l/n expansion for doubled 
energy eigenvalues, as used in hadronic spectro~copy.'~ It is 
seen from Table I that the accuracy of the description of the 
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TABLE I. Precision of the l/n expansion for the funnel potential. 

Note. The 6 if' are sums of successive terms in the l/n expansion: g if' = 2(d0' + 
n + ... + dk'/nk);  &yt is the numerical solution of the Klein-Gordon equation. The value of 
g',;""' for the 1S state was taken from Ref. 17. 

energy spectrum of the Klein-Gordon equation with the 
help of the sum of the first terms in the l / n  expansion in- 
creases, just as in the case of the Schrodinger equation, with 
increasing orbital quantum number and decreases with in- 
creasing radial quantum number. The least accurate descrip- 
tion is for the state with I = 0. 

CONCLUSION 

We developed here a method for the determination of 
the coefficients in the 1/N expansion for the Klein-Gordon 
equation with a potential having scalar and four-vector 
parts. Based on utilization of the f i  expansion and quantiza- 
tion conditions, it gives rise to simple recursion relations for 
both ground and radially excited states. Passage from one 
version of the 1/N expansion to another leaves the recursion 
relations unchanged and reduces only to a replacement of 
the initial coefficients. In contrast to existing methods,*-lo in 
the approach considered here no terms in the initial Klein- 
Gordon equation need be omitted for the purpose of reduc- 
ing the equation to a Schrodinger form. 

The authors are grateful to G. M. Zinov'ev for interest 
in the work and useful discussions. 
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