
Three-neutrino oscillations in matter and topological phases 
V.A. Naumov 

ScientiJic Research Institute for Applied Physics aflliated with Zrkutsk State University 
(Submitted 29 May 199 1 ) 
Zh. Eksp. Teor. Fiz. 101,3-17 (January 1992) 

Explicit expressions for the topological phases y, for a system of three mixed Dirac neutrinos, 
propagating in a medium with arbitrary density and composition distribution, are obtained 
within the framework of Berry's adiabatic approach. These expressions do not depend on the 
parametrization of the vacuum mixing matrix V. It is proved that the Berry phases yB, which 
appear for a periodic variation of the parameters of the system vanish identically, whereas for a 
noncyclic evolution y, G O  (in a special gauge) if all matrix elements of the matrix V, the phase of 
CP-violation, and the differences of the squared neutrino masses mf - rn? ( iS ; j )  are nonzero. 
Exact expressions have been obtained for the mixing matrix of neutrinos in a medium and of the 
adiabatic evolution operator have been obtained. A recursion scheme for the computation of 
corrections to the adiabatic approximation is described. 

INTRODUCTION ious applications in neutrino astrophysics (neutrinos origi- 

A common trait of Schr6dinger evolutions of dynami- nating in the Sun, collapsing stars, cosmic rays, etc.), cos- 

cal systems with Hamiltonians depending on tirne a set of mology (neutrino oscillations in the early Universe), as well 

adiabatic parameters {A, ( t ) )  is the occurrence oftopologi- as for future "geophysical" experiments (imaging of the 
cal phases,~.2 which enter into the quantum transition am- Earth by means of neutrino beams from an accelerator or 

plitudes together with dynamical phases. Neutrino oscilla- reactor). 

tions in a medium with variable densityp(x) (depending on 2. THE EVOLUTION EQUATION 
the coordinate x ~ c t ) . ~ - ~  are a tv~ical  exam~le of such an - 7 ,  d 1 

evolution. The role of the parameters A, is played by the The evolution operator2' S ( t )  = IISaB ( t )  1 1  of a system 

refractive indices of the neutrinos (Y, ,vP ,Y,,... ) in the medi- of three mixing Dirac neutrinos with definite flavors 
um. It is legitimate to ask the question of whether topologi- ( ~ ~ ~ v ~ ~ v ~  propagating in a medium with arbitrary density 

cal phases arise in a neutrino system and what their influence and composition distribution satisfies the Wolfenstein equa- -- 
is on the probabilities of neutrino oscillations. 

If one neglects the absorption of neutrinos and the pos- 
sible contribution of off-diagonal neutral currents, then top- 
ological phases can manifest themselves only within a sys- 
tem of three or more mixing neutrinos, since the vacuum 
mixing matrix, and thus the Hamiltonian ofthe 2v-system, is 
real. In the present paper we study the evolution of a three- 
flavor system of Dirac neutrinos (v , ,~ ,  ,v, ) in a medium 
with an arbitrary (smooth) distribution of density and com- 
position, for arbitrary parameters of the vacuum mixing (in- 
cluding the parameter of CP-violation). The properties of 
the spectrum and of the eigenvectors of the Hamiltonian, the 
necessary and sufficient conditions for the appearance of 
Abelian topological phases, and their connection with the 
phase of CP-violation are investigated in detail. An exact 
mixing matrix for neutrinos in a medium, the adiabatic evo- 
lution operator, and a recursion scheme for computing cor- 
rections to the adiabatic approximation are constructed. 

Three-neutrino oscillations in matter have been dis- 
cussed over the last few years by many authors (see Refs. 6- 
18, and the review articles Refs. 3-5) " mainly in relation to 
applications of the Mikheev-Smirnov-Wolfenstein ef- 
f e ~ t . ~ ~ , ~ '  A number of important results relating to the ef- 
fects of T-violation on neutrino oscillations in a medium has 
been obtained in Refs. 22-24 by means of numerical and 
analytic methods. The question of the possible role of topo- 
logical phases in the solution of the solar neutrino problem, 
if the neutrinos have a magnetic moment, was discussed in 
the recent papers.25 

The analysis proposed below may be of interest for var- 

iS ( t )  = [VH"V++ W ( t )  ] S ( t )  (2.1) 

with the initial condition S (0 )  =I. Here V =  1 1  Vai 1 1  is the 
vacuum mixing matrix which, in general, depends on three 
mixing angles 6, and on the parameter 6 of CP-violation (the 
"Dirac phase"),3' V  + V = I; I denotes the unit matrix; 

where mi are the eigenvalues of the mass operator of the 3v- 
system,p, is the momentum of the neutrino (is assumed that 
pt  9 max (m'), c = 1 ); the W-matrix describing the interac- 
tions of neutrinos with matter. Assuming the absence of off- 
diagonal neutral currents2' we have 

where n, ( t )  is the refractive index for neutrinos of flavor a. 
In the case of a usual "cold" medium (Earth, Sun) 

where AT,,, is the amplitude for coherent scattering of a v, 
on a particle of type f Cf= e,p, n, ...), (x)  is the concen- 
tration of scatterers f at the point x = x( t )  -- x, + t, and x, is 
the coordinate of the source. The amplitude for forward CJ- 
scattering differs from AT,,,(p,,O) only in sign, so that the 
equation of evolution for a system of three antineutrinos is 
obtained from Eq. (2.1) by the substitutions V-V* and 
WH - W. In the present paper we shall neglect neutrino 
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absorption, by setting Im n, ( t )  = 0. Then the evolution op- 
erator is unitary S +S = I. In addition, we assume the exis- 
tence of continuous derivatives ~ k ' - ~ ( x )  at each point 
x = x ( t )  of the medium, though this restriction is not obliga- 
tory. 

The probabilities of the transitions va-vg during the 
time t, 

do not depend on the common phase of the evolution opera- 
tor. This can be used for the simplification of Eq. (2.1 ). We 
carry out the transformation 

Then Eq. (2.1 ) gets replaced by 

with the same initial condition S(0)  = I. Here we have in- 
troduced the effective Hamiltonian 

which depends on time only through the "adiabatic param- 
eters" qa : 

The constant quantities Wa and Ha in Eq. (2.4) are defined 
in terms of the vacuum mixing matrix and the neutrino 
masses: 

1 V A a i i i  (2.6) 

where q$' = 1 if a& is a cyclic permutation of epr and 
= 0 otherwi~e.~) Obviously 

It follows from the last equality that the evolution of a three- 
neutrino system in an arbitrary medium is defined by not 
more than two functions oft: the independent components of 
the vector q = (q,,q,,q, 1. 

If one restricts oneself to the approximation of an effec- 
tive four-fermion interaction for the amplitude daf (P,,O), 
then (in the case of a cold electrically neutral unpolarized 
medium), only one adiabatic parameter survives:20s27 

(here G ,  is the Fermi constant). Account of one-loop cor- 
rections to the amplitude to first order in a = 1/137 yields8 

where 8, is the Weinberg angle, ra = m i / m b ,  ma and m ,  
are the masses of the charged lepton and of the W-boson. In 
particular, for SS, = 4 = SS, (a  neutral isoscalar medi- 
um) q, - q, =: 5.1.10 - (qe - q, ) . A small difference be- 
tween g, and qp is potentially important for astrophysical 
and cosmological  application^.^'^^ In the case of a polarized 
medium or a hot plasma the expressions of the adiabatic 
parameters are modified s ~ b s t a n t i a l l ~ , ~ ~ ' ~ ~  but their explicit 
form will not be needed in the present paper. 

3. THE ENERGY SPECTRUM 

We consider the eigenvalue problem for the Hamilto- 
nian (2.4) for fixed q: 

The characteristic polynomial a, ( 8) of the matrix H has 
the form 

where 

and 

Thus, the characteristic equation a, ( 8 ) = 0 is a Cardano 
equation, and since w< Ivl (a  consequence of the Hermitean 
nature of H), its roots 8, can be written in trigonometric 
form (cf. Ref. 19) : 

EpN=2w cos arccos(v3/w3) --'I3n (2N+1,) 1 ,  N=-I .  0, + I .  

It is easy to see from Eqs. (3.5) and (3.2) that 

The two levels coincide for w2 = v2: 8, = 8 - = - v, 
8, =2v, i fv>Oandfor  go = 8, = -v, 8- =2vi f  
v < 0. It will be shown below that that with the exception of a 
single nontrivial case, degeneracy is possible in the 3v system 
only in the absence of mixing. 

For the sequel we shall need some properties of the ad- 
joint matrix 
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The functions la ( Zi' ) and ga ( Zi' ) which occur here (the 
algebraic complements of the transposed characteristic ma- 
trix) have the form 

It is easy to see that they obey the relations 

Introducing the notation 

b N a = ( a a  (8,) 1 =ha [ (8jy-61a)'+2 (8iy-0~) %a COS ( ~ + % a ~ ] ' ~ ,  

a = [ 8 I t P N  = h a ,  
a (3.10) 

and making use of Eqs. (3.9), we obtain the identities: 

ENabra=exp ( * $ N )  T l a 8 T b ~ ~ b ~ ~ I  bn-a2'rlaPTE~~E~v (3.11 ) 

It can be seen from Eq. (3.11) that, in particular, for fixed N 
all functions cNa = cNa [q] and b ,  = b ,  [q] can vanish 
only simultaneously. Since, as follows from Eqs. (3.6), 
(3.10), and (3.11), 

a 

the set of zeros Z, of the functions cNa [q] and b ,  [q] is 
determined by the equation Zi'f, = w2, which is equivalent to 
condition of degeneracy of the levels w2 = v2. Obviously, 
Zo =Z. andZT = 0 f o r w =  +v#O.Forqc$Zothephase 
$, can take on only values which are multiples of T, 
$, = K,T, and according to Eqs. (3.6) and (3.12) 

Since the geometric indices of the eigenvalues of the 
Hermitean matrix are equal to one, for w2 = v2 the minimal 
polynomial of the Hamiltonian is Y, ( g  ) 
= ( 8 - 2u) ( Zi' + v),  and consequently 

is a common divisor of of the elements of the adjoint matrix 
B ( g )  (see, e.g., Ref. 29), i.e., 

aa(8) =%',(&+v), Ea(a)= (a-ga) (8f  v ) .  

From here we derive the necessary conditions for degener- 
acy at the point q,€Z0: 

( V  [qo]  +a, \qoJ ) ha=e'"~aRThehr, (3.13) 
%!,=u [ q o ]  -a, [qo] , v [ q o l g a = h ~ 2 - ~ a P ' ~ e  [qoI or [qoI. 

(3.14) 

The condition (3.13) can be satisfied only if the following 
dynamical invariant vanishes: 

f = lrn 'n& = sin q n h , .  

Two qualitatively different cases are possible: 1 ) na ha #O, 
sin p = 0 and 2) IIah, = 0, h '# 0, with arbitrary phase p. 

In the first case we obtain with the help of Eqs. (3.13) 
and (3.14), we obtain 

0,  [ q o ]  =%a COS ~p-v [qol,  3v [qol =COs CP x%,, (3.16) 

where cos p y  * 1. It follows from Eq. (3.16) that 
v2[q,] = + (P2 + 2h2) and from Eqs. (3.16) and (3.13) 
that w2 [qo ] = $, ( g2 + 2h2), which contradicts the condi- 
tion w2[qo] = v2[qo] #O. Thus Zo = 0 for n,ha #0. 

In the second case, as can be seen from Eq. (3.13), at 
least two components of the vector h must vanish. Let 
ha = h, > 0, hp = 0, f l  + a .  One can show that this case re- 
duces to the two-neutrino problem with the effective mixing 
angle 

1 
2 

and the degeneracy is lifted (see Appendix 2). 
If nothing is stated to the contrary, we shall consider in 

the sequel that f #  1. Then the degeneracy of the levels is 
excluded and consequently all the assumptions of the adia- 
batic theorem3' are satisfied. This means, in particular, that 
in the system under consideration only the suppression of 
adiabatic topological phases is possible. '.* 
4. THE EiGENVECTORS 

In constructing the eigenvector system { /  9 ,  [ q ]  )) we 
note that the matrices PN = 6; 'B( g,) are idempotent 
Pf ,  = PN and satisfy the following relations 

Since 8, # 8, for N f M (and f#O),  it follows from Eq. 
(4.1 ) that 

N 

Thus PN is an elementary projection operator onto the sub- 
space spanned by the vector I % ,), 

pNl%M>=6NM1%N), PR=(%N)(%NI. (4.3) 

Denoting 

and making use of the identity (3.11 ), one can can represent 
the matrix PN in the form 

Let % 2., [q] denote the a-component of the vector 
14, [q]).  The Eqs. (4.3) and (4.5) yield 
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where K ,  are integers satisfying the condition 
Z, K,, = K, and x ,  = 2, x, are arbitrary functions of q. 
It is convenient to fix the gauge setting x, = ~ o n s t . ~ '  Ac- 
cording to Eqs. (4.2) and (4.3) the vectors 

form a complete orthonormal set. Consequently, 

5. THE MIXING MATRIX OFTHE NEUTRINOS IN A MEDIUM 

The mixing matrix in the medium, Vm [q( t )  1, which 
relates the eigenstates of the neutrinos lvm(p,;t)) and the 
states with definite flavor (d(p,;t) ), satisfies the condi- 
tions3~l4 

H [q] V "  [q] = V'" [q] HD [q],  V'" [O] = G'. 
(5.1) 

Hn[ql=diag (8,, [ q l ,  &,%,[ql. B ~ , [ q l ) .  

The labeling of the diagonal elements H is determined by 
the neutrino mass hierar~hy,~ '  which follows from Eq. (3.6) 
and the obvious equality HfJ[O] = Ai. It can be seen from 
Eq. (5.1 ) that the columns of the matrix Vm [q] coincide, up 
to a phase factor, with the eigenvectors of the Hamiltonian 
Hr q] , and consequently 

where 

and xi = xi [q] are arbitrary functions ("Majorana 
phases" ) . Imposing the conditions xi [O] = 0, we obtain the 
equations 

which fix the constant phases x,; according to Eqs. (4.5) 
and (5.5) 

x ,  , = E a r g  L.<t. 

We point out here some important properties of the 
quantity f and of the "rephasing invariants" J,, [q] (see 
Refs. 31, and 23, 24), which are constructed from the ele- 
ments of the matrix V m  according to the rule 
J r l l  [ q  1 =q,Lirlq,'A I'7r"' ( VRt,'" V~,"')'=qn"q~"'U,,UTa ( Ugk Uw I*. 

It follows from the unitarity of the matrix U that all the 
invariants Jai [q] have identical imaginary parts, namely 

J [q] = I m  J,, (qj =- Im ( ~ , ' " I ~ , ' ~ C ' ~ ~ U P , U T I ~  dthl (1 ) .  (5.6) 

Making use of Eqs. (3.15) and (5.1)-(5.4), we obtain the 
identitv 

n ,  

which explains the dynamical meaning of the quantity f .  
With the help of Eqs. (5.6) and (5.7) one can show that f 
and J [q ]  are related by 

I 

hence 

Thus the assertion made in Sec. 3, that the spectrum of H is 
nondegenerate for f # O  becomes obvious. 

6. THE TOPOLOGICAL PHASES 

Following Berry' we define the Abelian topological 
phases y, = y, [q( t )  1 by means of the differential equation 

Making use of Eq. (4.6) we obtain 

On the other hand, Eqs. (3.10) and (3.1 1 ) imply the equa- 
lity 

Introducing the gauge field d', [q]  with the components 
(the Berry connections) 

and taking account of Eqs. (6.2)-(6.4), one can rewrite the 
equation (6.1 ) in the form 

The integration in Eq. (6.6) is between the points q(0)  and 
q(t) ,  along a contour C in the plane Q = Cq:B,q, = 0). 
Since the field a!, is regular on the Q-plane [guaranteed by 
the presence of the factor f in the right-hand side of (6.4) 1, 
the integral (6.6) always exists and is finite. Of course 
d; cc f (and, in addition 2, d; = 0 )  only in the chosen 
gauge 2, a, = const (we call it the f gauge). Going 
over to the unitarily equivalent basis 

I @ , ) = exp{ixN [q] ) 1 Q ,) the connections and the topo- 
logical phases transform according to 

An obvious gauge-invariant consequence of the nonsin- 
gular character of the field d N  [q],  is the vanishing of the 
Berry phases 
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which appear if the parameters of the medium vary periodi- 
- - 

cally, or equivalently, the identical vanishing of the curva- 
ture tensors 

d d x V d N a  
= - - -- 

Jqa  dqp 

This means that y, [q] does not depend on the choice of 
integration path CEQ, i.e., the distribution of composition of 
matter between the points x (0)  and x ( t )  

In the four-fermion approximation the expression for 
the topological phases simplifies considerably: 

The equalities = 0 and F",B = 0 become obvious in this 
case. 

These results do not depend on the parameterization of 
the vacuum mixing matrix, but in order to clarify the phys- 
ical meaning of the /-gauge it is useful to list the explicit 
form of the invariant / in the Kobayashi-Maskawa repre- 
sentation. With the help of Eq. (5.9) and the formulas from 
Appendix 1 we find 

1 
f = sin 6 sin 0, '11 [ 9,'--(m,'-m.') sin 20, . 

~ P V  

] (6.7) 

As can be seen from Eq. (6.7), yN = 0 (in the /-gauge) if 
some mixing angles 6, vanishes, then either the Dirac phase 
6 = 0 or 6 = n- (There is no CP-violation), or the neutrino 
mass spectrum is degenerate. In particular, topological 
phases are absent in the two-neutrino system. 

7. THE EVOLUTION OPERATOR AND TRANSITION 
PROBABILITIES 

It follows from the unitarity of the evolution operator 
that the differences 

qa" ' 9 ~ 7  ( t )  - 9 7 ~  ( t )  I =-?no' ( I So7 ( t )  I '- ( S T 6  (t) 1') 
are equal to the same universal functions 9 ( t )  and 
9 ( t )  # O  which is not identically zero, if f # O .  Using this 
fact one can write the probabilities for off-diagonal transi- 
tions in the form: 

where a,P,y is any cyclic permutation of e,p,r. Let f a  ( t )  
denote the fraction of v, in the summary neutrino flux at a 
distance x( t )  from the source. With the help of (7.1) we 
obtain 

Thus, for the calculation of the experimentally measurable 
quantities f a  ( t )  one must find the four functions: 9,, ( t ) ,  
P,, ( t ) ,  Y..(t) and 9 ( t ) .  

We start out with the following representation of S ( t )  

s ( l ) = [ ~ [ q ( t )  ID(--Q(~)  )x(t)uf [ q ( ~ )  I .  (7.3) 

HereX(t) is an unknown unitary matrix, D ( a )  is a unitary 
diagonal matrix of the type (5.4): D(S1) = I(exp(i0,)6,, 11; 

12,(t) =ah, (t)-yn,, lq(t) I 

are the total phases, and @, ( t )  are the dynamical phases, 
defined by the equation 

As is easily seen, the representation (7.3) is a matrix rewrit- 
ing of the Born-Fock expansion for the amplitudes S,, in 
terms of the complete set of vectors: 

Satisfying the Born-Fock-Simon condition2 
( ~ ~ 1 9 , )  = 0. We also note that the evolution operator 
S "(t) of the state Ivm(p,;t) ) equals D[ - (X + 0) ]X and, 
consequently IST(t) I *  = IX,, ( t )  1'. 

Substituting (7.3) into the original equation (2.3) and 
taking account of the definition (5.3) we obtain the evolu- 
tion equation for the matrix X: 

with the initial condition X(0) =I. Here we have intro- 
duced a new "Hamiltonian" 

F ( t )  =D (SZ (t)  ) Y (t)  D (-Q ( t ) ) ,  (7.5) 

which represents a Hermitean matrix with vanishing ele- 
ments along the diagonal. The matrix Yin (7.5) is defined by 
the eigenvectors of the Hamiltonian (2.4) : 

The explicit form of the inner products are easy to find 
(9, I 4 ,) with M # N if one makes use of the equations 
(3.1) and (2.4), (4.6): 

Since g, # $,, forM # N  thefunctionsy, = yi ( t )  areregu- 
lar. 

It is clear that the equations (2.3) and (7.4) are fully 
equivalent, but the latter is more convenient for perturbative 
calculations for functions q, ( t )  which do not vary too fast. 
The standard computation scheme for X(t)  in the nth ap- 
proximation is given by the recursion relation 

t 
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On account of the continuity of q, ( t )  the sequence {X , , )  
converges absolutely and uniformly to the solution of Eq. 
(7.4) on any finite interval (O,t, ) .29 It is easy to show that 
the matrices X ,  are unitary up to terms of the order 
Xn -Xn-,=SX,,,i.e., 

We consider in greater detail the solution in the adiaba- 
tic approximation: 

which is important for many applications of the theory of 
neutrino oscillations in matter.' The criterion for applicabil- 
ity of this approximation is well known from quantum me- 
chanics: 

max 
1 (aM1kN) 1 '  < 

>r+x 8,-8, 
According to Eq. (7.6) the condition (7.8) is satisfied if for 
a l l M f N  

a 

Near the Mikheev-Smirnov  resonance^,^' i.e., near the 
points q, of maximal proximity of the levels go [q, ] and 
$, [q, ] (whereS = + or - ) the condition (7.8) can be 
written in the form 

The adiabatic evolution operator of the 3v system 

depends equally on the dynamical and topological phases, 
and since it is gauge in~ariant , ' .~  the topological effects can- 
not be removed by a redefinition of the basis { I  8,)). It is 
sufficiently obvious that an analogous assertion is valid also 
in the general case of a nonadiabatic evolution. 

From Eqs. (2.2) and (7.9) we determine the expres- 
sions for the probabilities of the adiabatic v, -.yo transi- 
tions: 

where, for the sake of brevity, we have introduced the nota- 
tions 

Uail=Uai [q ( t )  1 ,  S2jkt=Q, ( t )  -Qk(t). 

As we can see, the expression for 9, ( t )  contains three 
kinds of phases: local phases ( x , ) ,  dynamical phases 
(@, ), and topological phases y,. 

Of particular interest is the case of periodically varying 
parameters of the medium, q(t  + T) = q(t) .  This case is ap- 
proximately realized in the special case when a neutrino 
beam intersects the globe of the Earth, and is important for 
the analysis of underground neutrino experiments. On ac- 
count of the equality = 0 the topological effects do not 
affect the transition amplitudes for times which are integer 

multiples (K) of the periods T, and the expression of the 
evolution operator becomes very simple: 

s A ( ~ ~ ) = U [ q ( 0 ) l D ( - K @  (T) )  U+[q(O) 1 .  (7.1 1) 

From Eq. (7.11 ) follow formulas for the transition probabil- 
ities generalizing the results of Refs. 22-24, which were de- 
rived for media with constant density. Taking account of 
Eqs. (5.3) and (5.6) and the completeness of the set of vec- 
tors 18, [q]), Eq. (4.7b), we obtain 

1 (KT) =I-4 EqLMN [UMaouNa0 s in  ( - K @ M N T  ) I 2 .  
2 

P ( K T )  =U(q(O) ) qLMN s in  (KBMNT), 
L 

where 

It can be seen from (7.12), (7.1), and (5.6) that thediffer- 
ence in the probabilities for the transitions vD -v, and 
Y, + vP ((P # y )  is due to CP-violation in the leptonic sector 
in the presence of three-neutrino mixing. As can be seen 
from Eq. (7.2), the four quantities 9 ,, , P,, , 9 .. and 9 
cannot be simultaneously determined in a neutrino experi- 
ment with a beam of fixed flavor composition. Nevertheless, 
one could attempt to measure the effects of CP- (and T-) 
violation in underground detectors of the next generation 
(Super Kamiokande, MACRO, LVD, etc.) making use of 
neutrino beams from accelerators and atmospheric neu- 
trinos. This question requires separate consideration. 

I am grateful to A. N. Val1 and V. M. Leviant for useful 
discussions. 

APPENDIX 1 

The vacuum mixing matrix V in the Kobayashi- 
Maskawa repre~entat ion~~ has the form, 

From here, making use of the definition (2.6), we obtain the 
expressions for the parameters F, and Z,, occurring in 
the Hamiltonian (2.4) 

V = 

Here A,, = c: Ai + s: Aj,  c ,  = cos S, and the other notations 
are those introduced in the main text. The imaginary parts J 
of the rephasing invariants [see Eq. (5.6)] in the vacuum 
case are equal to 
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s,=sin O,, c,=cos O,, O<O,<n/2, -n<6<n. 

c1 sis3 
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/[o]='i, sin 8 sin 0, u s i n  20,. 

We list a few formulas which are independent of the 
parametrization of the matrix Vand are useful for the analy- 
sis of the vacuum oscillations. Making use of the definitions 
(2.6),  (3.4), and (3.8), and applying several times the iden- 
tities 

(det V )  V,i'=Tl~'~7li'~ (V@jV~k-v@~v~j).  

which follow from the unitarity of V, it is easy to derive the 
relations 

+ I V,, I 'hi2, hZ= ' /2(A2-r2) ,  

where 

From here follow, in particular, the identities (5.5). 

APPENDIX 2 

We consider the case hs = hoSaB, h, # 0, when a degen- 
eracy of the spectrum of the Hamiltonian (2.4) is possible, 
and consequently the condition of orthogonality and com- 
pleteness (4.7) of the system of eigenvectors of H can be 
violated. The transitions v,ttvB (a +P) are forbidden and 
the equation (2.3) becomes equivalent to the evolution 
equation of the two-neutrino system (vs ,vy ) of the form 

is, (t) =Ha (t)S, ( t )  , S, 00) = I .  

where 

The transformation 
r 

s,(t)-~(t)= exp w,(T)dT)~,s=(t).  

H ,  ( t )  - tR(t)  =D, (Ha ( t )  +'Izoa (t)I)Da' 

with the diagonal unitary matrix 

D,=diag (exp (icp,/2), ~ X P  (-icpaI2) ) 

leads to a real effective Hamiltonian 
-Dcos20+Q(t) Dsin20 

'(')= I D sin 20 Dc0~20-Q(t) ' 

Here we have introduced the following notations: 

The eigenvalues of k ( t )  are equal to + ~ ( t ) ,  where 

and consequently ( 0  # 0) degeneracy of the levels is impossi- 
ble. The corresponding eigenvectors 1 % ( t ) )  can be cho- 
sen to be real 

One can check directly that 

- - - - D sin 20 sin 20" 
('24, )%.>=-(a, I%->= Q = 

2E2 2& Q 7 

where 0 " is the mixing angle in the medium: 

In terms of the 0 " the eigenvectors and the mixing matrix in 
the medium 7" which diagonalizes the Hamiltonian 2: 

Vm+RVm=diag (-E, E),  

Eigenvectors could be written in standard form (see for ex- 
ample Ref. 3-5) : 

Isi ,- I sin0"' ( 
+ - 

cos 0" ' 

cos 0"' sin 0"' I vm= 1 
-sin 0" cos Om 

The equations for the evolution operators 3 ( t )  and the 
transition probabilities Ppy = ISyB I 2  = ISyo 1' are obtained 
(with the obvious modifications) in the same manner as in 
the general case of 3v-oscillations (Sec. 7), and we shall not 
list them here. 

" The general expressions for the probabilities of three-neutrino oscilla- 
tions in the casep = const were first obtained in Ref. 19. 

2' Everywhere in the sequel the Greek indices a$, ... are used for labeling 
flavors ( e , p , r ) ,  lower-case Latin indices ij, ... take on the values 1,2,3, 
and upper-case Latin letters N,M, ... take on the values + , - ,O (see the 
following section). 

31 The explicit form of V(8,,6) in the Kobayashi-Maskawa representa- 
tionZh is given in Appendix 1. The mixing matrix for three antineutrinos 
is V*(8,,0) = V(B,, - 0 ) .  

4' The symbols e'' and vy, to be used later, are defined analogously. 
" The constants x ,  are uniquely fixed by a transition to the vacuum limit. 

The arbitrariness in the choice of the numbers K ,  can be used to con- 
trol concrete computations. 

6' For example, in the case of the "direct hierarchy" (m: (mi gm; ) 
N 2 = 0 , N 3 =  + I .  

'I Without loss of generality one can set in Eq. (6.6) y,[q(O) ] = 0. 
- - 
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