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It is shown that the well-known result of L. D. Landau and E. M. Lifshitz (Electrodynamics of 
Continuous Media, Pergamon, Oxford, 1960) describing the scattering of light is altered when the 
distribution of the field in the medium is taken into account. Scattering with excitation of 
electron-hole pairs and plasmons is analyzed. 

1. INTRODUCTION 2. RELATION BETWEEN THE SCATTERING CROSS SECTION 

In the general theory of the scattering of light by a con- AND THE 

tinuous medium the electromagnetic field is found by super- We write Maxwell's equation 
posing the fields produced at a large distance by separate 
scattering centers.' In this case the amplitude of the scat- 

I aZD 4~ 
rotrotEf--=-- 

c2 d tZ  cz j (1)  
tered light can be obtained by calculating the response of the 
system to the corresponding external  force.'^^ The scattering for the Fourier components of the scattered field 
cross section is proportional to the imaginary part of the 
inverse dielectric function. do  d2k 

~ ( t , r ) = ] - - - -  E (o, k, z) exp(-iwt+ika) . 
Prior to leaving the conductor, however, the electro- ( 2 ~ )  

(2)  

magnetic radiation appearing as a result of scattering inter- 
acts with the charge carriers. Just like the excitation radi- 
ation, the scattered light penetrates into the conductor only 
to a distance of the order of the thickness of the skin layer, 
and the scattered radiation observed outside the conductor 
is the result of collective interaction with charge carriers 
inside the conductor. In essence, it is also necessary to solve 
the boundary-value problem of the propagation of the scat- 
tered radiation observed outside the conductor is the result 
of collective interaction with charge carriers inside the con- 
ductor. In essence, it is also necessary to solve the boundary- 
value problem of the propagation of the scattered radiation 
from the conductor into the vacuum, where the scattering is 
observed. 

The inelastic scattering of light in this formulation was 
first studied in Ref. 4, which is devoted to scattering in a 
superconductor, with the help of the principle of detailed 
balance, which makes it possible to relate scattering with 
absorption in a prescribed field. The result obtained in Ref. 4 
is qualitatively valid only for media in which the absorption 
coefficient is greater than the refraction coefficient and for 
the case when the transferred frequency is small. The same 
remark also pertains to Ref. 5, where electronic scattering in 
a normal metal was studied with the help of the kinetic equa- 
tion. 

Scattering of light in superconductors was also studied 
in Refs. 6 and 7 and their results agree qualitatively with Ref. 
4, but they are qualitatively incorrect because the fields were 
not accurately matched at the metal-vacuum boundary. 

The scattering of light in superconductors and normal 
metals has recently been arousing special interest as one of 
the most direct methods for determining the superconduct- 
ing gap as well as for checking the results of recent theo- 
ries.'~~ The experimental data are interpreted with the help 
of the results of Refs. 1-7, which are not entirely correct. The 
purpose of this paper is to fill this gap. 

The Fourier expansion is made with respect to the time and 
the two-dimensional coordinate a parallel to the surface, the 
z-axis is oriented normal to the metal-vacuum interface, and 
the metal occupies the half-space z > 0. 

We distinguish the incident field from the scattered 
field by assigning an index to the frequency (and the vector 
k): w, for incident light and w, for the scattered light. We 
call the transferred frequency w = o, - w,. We confine our 
attention to optical frequencies w, and w,, where the spatial 
dispersion of the permittivity E is insignificant. 

We transferred the part of the current j that is propor- 
tional to the scattered field to the left-hand side of Eq. ( 1 ), 
incorporating this part of the current into D. The part of the 
current remaining on the right-hand side is proportional to 
the incident field E(w, , k, ,  z).  An expression for this part 
can be obtained by introducing an effective Hamiltonian, 
describing the scattering in second-order perturbation theo- 
ry: 

where A is the vector potential of the electromagnetic field, 
we designate by ei and e, the polarization vectors of the 
incident and scattered fields, y = e~"'rnap'ejP', and m - ' is 
the generalized inverse effective mass tensor: 

(4)  
An expression like Eqs. (3)  and (4)  is encountered in the 
theory of scattering of light by atomic electrons." Such an 
expression for electrons in a solid is obtained in Ref. 1 1, if the 
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correction in second order in the electric field for a particle 
in a periodic potential is written in the Luttinger-Kohn rep- 
resentation, analogously to the manner in which this is done 
in the derivation of an expression for the effective mass. The 
index c refers to the band which the particle occupies before 
and after scattering and to which the $ operators in Eq. ( 3 )  
correspond; the summation index v enumerates all possible 
intermediate states which an electron can occupy after emit- 
ting or absorbing a photon. 

In contrast to the standard effective mass, characteriz- 
ing the electronic spectrum at the bottom of the band, the 
generalized mass Eq. (4)  describes the effect of resonance 
enhancement in the case when one of the frequencies wi or 
w, is close to an interband transition frequency. Strictly 
speaking, the value of E must be taken for p + k, where k is 
the wave vector of the absorbed or scattered photon. In all 
cases of practical interest, however, k is small compared 
with the Fermi momentump. 

With the help of Eq. (3)  we obtain an expression for the 
current on the right-hand side of Eq. ( 1 ): 

We note that since Eq. ( 1 ) was written for the Fourier com- 
ponents corresponding to the frequency of the scattered 
field, the current Eq. (5)  vanishes when the electronic oper- 
ators are averaged. 

For simplicity we shall confine our attention to the case 
when the scattered light, like the incident light, propagates 
along the normal to the surface of the sample and this direc- 
tion and the direction of polarization of the light, are orient- 
ed along the principal axes of the permittivity tensor. Then 
Eq. ( 1 ) assumes the form 

dLE(w,, Z )  o,' 4nio, - -- E,E(o,, z)=---- 
cL 

J (6)  
dz' C' 

where E, is the principal value of the permittivity tensor, 
corresponding to the polarization and frequency of the scat- 
tered light. Among the E(o, , z)  arguments, we.omit k = 0. 

In the region z > 0 Eq. (6) has the following solution, 
which decreases as z-. w : 

a 

~ ( o ~ ,  z ) = -  %j dz'j(o$, zl)exp[ikz(o,~) lz-2' 11 
CF" 

where the second term is the solution of the homogeneous 
equation k, (w, ) = o,/cE:/~ = W , ~ / C ( ~ ,  + ix ,  ), correspond- 
ing to Eq. ( 7 ) .  

In the vacuum (z < 0)  the scattered wave has the form 

The constants E, and i? are found from the conditions that 
the electric and magnetic fields are continuous at z = 0: 

where we have introduced the notation 

The conditions (9)  make it possible to find the ampli- 
tude of the field in the vacuum: 

The energy flux in the scattered wave is determined by 
the square of the field: 

where the brackets designate both quantum-mechanical 
averaging of the electronic operators and statistical averag- 
ing (for nonzero temperature). 

In Eq. ( 12) the integration over the half-space z > 0 can 
be extended to all space, if it is assumed that the electrons are 
mirror-reflected from the inner surface of the sample. In or- 
der to do this, we note that the average of the product of four 
$ operators reduces to two Green's functions: 

Under conditions of mirror reflection the Green's function 
vanishes when one of the coordinates z or z' lies on the sur- 
face. This condition can be satisfied by setting 

~ ( z ,  z') = G ,  (z-z') -G,  (z+z'), (13) 

where G, is the Green's function of an unbounded metal. 
For z, z' > 0 the function Eq. ( 13 ) satisfies the same equation 
as G, ( z  - z') and vanishes at the boundary, since Gm de- 
pends only on the magnitude of its argument (we assume 
that the surface of the sample is also a symmetry plane). 

The integral ( 12) also contains exponentials corre- 
sponding to the scattered field (with frequency w, ) and the 
incident field [see Eq. (5 ) I .  The incident field has the form 

where k,  (ai ) = W ~ / C ) E ~ / ~ ,  where ei is the corresponding 
principal value of the permittivity tensor at the frequency mi. 
We normalize the amplitude of the vector potential in a 
vacuum A p so that the field would be equal to unity: 
A 7 = C/O,. Thus, for example, in the integral over z' the 
exponential factor has the form 

It is convenient to continue it into the regionz' < 0 in an even 
manner: 

f(zf)=f(-z') .  (16) 

Using the formulas ( 13) and ( 16) we can see that if we 
neglect terms of the form G ,  (z' - z)  G ,  (z' + z) the two- 
particle electron correlation function of an unbounded metal 
can be integrated over infinite limits. The error made in so 
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doing is of order l/p,S, where 1/8 = Im ( k ,  ) is the inverse 
penetration depth of light in the metal andp, is the charac- 
teristic electronic momentum. The final result acquires only 
a factor of 1/2. 

Returning now from the Fourier components to the 
space-time variables and keeping in mind Eqs. ( 5 ) and ( 14) ,  
we write 

where the transferred frequency is w = mi - w,, and the de- 
pendence on the transferred wave vector q = ki - k ,  paral- 
lel to the surface is presented for an arbitrary direction of 
propagation of the light; we denote by x  the four-dimension- 
a1 coordinate ( t ,u , z ) .  The correlation function pd ( x  - x ' ) ,  
appearing in Eq. ( 17) ,  depends on the difference x  - x': 

pT2(x-x') =(y2++ ( x )  +(x) I$+ ( x ' ) ~  ( x ' )  ). ( 1 8 )  

For this reason, for example, one of the integrals over t or t ' 
gives the observation time Twhile the other integral reduces 
to the Fourier component with respect to the difference co- 
ordinate. The integral over the coordinate parallel to the 
surface is calculated in a like manner. The observation time 
and the surface area were assumed to be equal to unity when 
normalizing the incident radiation. The remaining integra- 
tion over the coordinates z  and z' leads to the Fourier compo- 
nent of the function f (z): 

The spectral density of the radiation, as is evident from 
the expansion Eq. ( 2 ) ,  is calculated for the interval 

d o ,  d 2 k ,  k ,o ,  do, do, 
-=-- 

( 2 x 1 ~  ( w 3  ' 

where do, is the solid angle near the direction of scattering. 
The final expression for the effective scattering cross 

section, i.e., for the relative number of photons reflected 
with a change of frequency w = wi - w, into the interval of 
angles do, and frequencies dm,, can be written in the form 

dw,do, dq, 
P T ' ( ~ ,  Q )  I f ( V 2 )  l 2  , x w J  2n 

wherep? (w,q)  is the Fourier component of the correlation 
function Eq. ( 18) .  

We present I f ( q ,  ) l 2  for the simplest case when the inci- 
dent and scattered light have the same polarization and their 
frequencies wi and w,  differ by a small amount ( n ,  = n i ,  
X ,  = X i ) :  

Hence it is obvious that if the frequency of the incident light 
lies below the threshold of transmission, when ni is small 
compared with x , ,  then the expression ( 2 2 )  can be put into 
the form 

where 6 = c/wix i .  At higher frequencies,where the real part 
of E becomes positive and n is large compared with x ,  
If ( q z  ) l 2  has a pole, which can be represented by a 6-func- 
tion: 

The meaning of this formula is quite transparent: when the 
light is scattered backward twice the wave vector of the light 
is transferred to the electronic system and the scattering 
cross section, under otherwise equal conditions, is propor- 
tional to the penetration depth S in the metal. 

3. SCATTERING BY SINGLE-PARTICLE EXCITATIONS AND 
PLASMONS 

The correlation function ( 18) ,  shown in Fig. 1 by the 
first diagram, differs from the standard density correlation 
function by the presence of the vertex factors y. It can be 
expressed in terms of the corresponding retarded Green's 
function K (w,q)  in the standard manner:I2 

For a noninteracting Fermi gas 

The Coulomb interaction of electrons leads to the series 
of diagrams shown in Fig. 1 .  The result of summing this 
series reduces to replacing one of the vertices in the loop 
y ( p )  - T ( p , q ) .  The following equation is obtained for the 
vertex function: 

where the potential V ( q )  = 4re2/~L?q,q, describes the 
Coulomb interaction taking into account the permittivity 
E:, of the ionic core. 

The solution of Eq. ( 2 7 )  has the form 

where the function K differs from K 7 (Ref. 26)  by the fact 
that the factors y  are not present in the integrand and K t  
contains only one factor y. 
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FIG. 1. 

We discuss two limiting cases. excitation of a plasmon. In this case the small values of the 
a The transferredfrequency is small compared with the transferred wave vector q are significant. Expanding the 

plasmafrequency of the carriers. As will be seen from what fraction in the integrand of Eq. (26) in powers of vq/w and 
follows, here light is scattered by electron-hole excitations noting that owing to the symmetry of the Fermi surface un- 
and it is necessary to know the asymptotic behavior of der the inversion v-  - v, the odd powers of this ratio vanish 
K R ( ~ , q )  in the region w <uq. For temperatures that are low on integration, we obtain 
compared with the Fermi energy the integration in Eq. ( 2 6 )  
over the energy is performed with the help of a relation of the +(!??)'I, ( 3 2 )  
form - d n / d ~  = S ( E  - E~ ) : 0 

where p is the cosine of the angle between the velocity v at 
the Fermi surface and the vector q. 

In the denominator of Eq. ( 2 8 )  a quantity of order 

where x i  = (4n-e2/&0 ) d n / d ~ ~  is the inverse Debye radius, is 
added to unity. Since q is of the order of the inverse depth of 
the skin layer and the Debye radius is usually on the order of 
the interatomic distance, in the case at hand we have 
(x,/q)'% 1.  For this reason unity in the denominator of the 
fraction in Eq. ( 2 8 )  should be neglected, and we obtain for 
the vertex function 

where the overbar denotes averaging over the Fermi surface: 

Substituting Eq. ( 3 0 )  into the expression for the elec- 
tron loop and keeping in mind Eq. ( 2 5 )  we find 

The integration in Eq. ( 3  1 ) extends over the strip on the 
Fermi surface p = 0 in which the projection of v on the vec- 
tor q vanishes. 

The final integration over q, in Eq. (21 ) is elementary. 
The integral actually extends from w/v up to a quantity of 
order Ini + ixi  lo,/c, since for large q, the field factor Eq. 
( 2 2 )  drops off rapidly. This results in the fact that the scat- 
tering cross section increases in the region of small trans- 
ferred frequencies up to values on the order of 
w - ( v / c ) w ,  In, + i x ,  1, and then drops off rapidly. The scat- 
tering fails to vanish in this region only due to the momen- 
tum dependence of y, i.e., the mass. The angle-independent 
part, as is evident from Eq. ( 3  1 ) , drops out of the result. This 
is a natural consequence of the Debye screening of the 
charge-density fluctuations at low frequencies. l 3  A specific 
example of a calculation performed with the help of the for- 
mulas (21 ) and ( 3  1 )  is presented in the brief paper Ref. 14. 

6 )  The transferred frequency is greater than the plasma 
frequency. Here the scattering of light is associated with the 

where an infinitesimal imaginary art must be added to the 
frequency w. 

The pole of the second term in Eq. ( 2 8 )  contributes an 
imaginary part to the electronic loop. Its denominator, after 
multiplying by w2, can be written in the form w2 - (q , ) ,  
where 

and 

- - 
We note that in the isotropic case u:/ U: = 3/51' and the 
formula ( 3 3 )  gives the well-known dispersion relation for 
plasmons for smdl values of q. 

Separating the imaginary part we obtain 

sign o 
P ~ ' ( w !  qi)=-- 

1-esp ( - W I T )  

The scattering cross section is obtained by integrating 
( 2  1 ) the correlation function ( 3 5 )  with the field factor ( 19). 
We note that the plasmon contribution ( 3 5 )  appears where 
the permittivity as a function of the transferred frequency is 
positive; in the notation employed here, it is equal to 
E:= [ 1 - ( q , ) / w 2 ] .  It is obvious that it must also be posi- 
tive when the frequency of the incident light wi = a, + w is 
large. The function xi  decays slightly here as a result of inter- 
band absorption. 

At the frequency of the scattered light w, and with high 
transferred frequency w the permittivity E, can be positive or 
negative. For this reason the real and imaginary parts of the 
quantity k ,  (mi ) + k,  (o,) gives in ( 19) can be comparable. 
The form of the plasmon peak in the scattering cross section 
depends on their ratio. The cross section starts to increase at 
w = w, ( O ) ,  and near this frequency the cross section is pro- 
portional to q, oc [w,  ( 0 )  ( w  - w, ( 0 )  ] 'I2. The cross section 
decreases as q; for q, >) ( k ,  (ai  ) + k z  (as ) 1, i.e., for 
w - w, ( 0 )  > u2wf (x: + x;)/c2wp ( 0 )  if x ,  & n, . If 
I m [ k , ( w , )  + k , ( w , ) ]  & R e [ k z ( w i )  + k , ( w , ) ]  the peak 
can be even narrower and it can be higher. 
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4. CONCLUSIONS 

Comparing the main result Eq. (21) with the well- 
known formula describing scattering of light in a solid (see, 
for example Ref. 22), we can see that here an integration 
with the factor [f (q, ) 1 2 ,  taking into account the distribu- 
tions of the incident and scattered fields in the metal, is per- 
formed over the normal component of the transferred wave 
vector. In the limiting case when the decay of the field is 
small compared with the index of refraction the integration 
is not performed and the transferred wave vector is merely 
the change in the wave vector of the light in the medium. 
Even in this limit, however, there appear additional factors 
which take into account the attenuation of the field in the 
metal as compared with the field in the vacuum. 

The quantity which is customarily called the structure 
factor differs from the Fourier component of the density cor- 
relation function by factors which depend on the electronic 
momentum and the frequency of the light. This dependence 
makes possible resonance enhancement of scattering and it 
also makes it possible to observe the scattering at a trans- 
ferred frequency less than the frequency of plasma oscilla- 
tions. 

I take this opportunity to thank A. A. Abrikosov, B. A. 
Volkov, G.  Kapellmann and V. L. Pokrovskii for a discus- 
sion of this work. 
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