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The path-integration technique of classical mechanics is generalized to classical statistical 
physics. Gibbs averages are represented as transition amplitudes in a phase space 
supplemented with time and ghosts. The partition function is BRST-invariant. The harmonic 
oscillator is treated as an example. The classical solution is derived, and zero modes are 
distinguished. The quantum fluctuations have an equidistant spectrum which is not the same 
as the Matsubara spectrum. 

1. INTRODUCTION 

In research in quantum field theory in Euclidean space- 
time it has become customary to seek analogies in classical 
statistical physics. The latter field has developed into a sort 
of proving ground for testing new methods. The methods of 
quantum field theory are used to advantage in quantum sta- 
tistics. An important role here is played by the Matsubara 
approach, in which the temperature is replaced by an imagi- 
nary time. The wave functions of (Fermi-) Bose fields are 
(anti-) periodic along this coordinate, with a period equal to 
the reciprocal of the temperature, p = 1/T (Ref. 1 ) . 

Let us continue this chain of analogies and introduce a 
"time" in classical statistical physics. Here is our motivation 
for doing so. In the first place, it may prove useful to raise the 
dimensionality of the space, d-d + 1, in view of the effec- 
tiveness of the E expansion in the theory of phase transitions. 
Second, in perturbation theory it is convenient to introduce a 
temporal separation of interactions at spatially coincident 
points. This approach has been the reason for the success of 
field methods in quantum statistics. Finally, it is interesting 
to note that in quantum field theory (in particular, QCD), 
withp = l/gZ, the charge becomes a spatial variable. It char- 
acterizes the properties of the system at long range and can - - 
play the role of an ir cutoff. 

We work from the representation of the evolution oper- 
ator for classical mechanics constructed in Refs. 2, as a path 
integral. We introduce a Gibbs average in it. A specific fea- 
ture of our method is the use of Hamilton's equations of 
motion. This approach makes it possible to also find kinetic 
characteristics of systems in thermodynamic equilibrium. 
The use of a physical time distinguishes this approach from 
the method of stochastic q~ant izat ion.~ In that method, the 
statistical problem is solved by relaxing the system to ther- 
mal equilibrium as the system interacts with a reservoir. A 
Langevin equation is used in which the effect of the reservoir 
is taken into account as a Gaussian random force. This ap- 
proach is very convenient for numerical calculations. The 
Langevin equation includes a characteristic relaxation time 
of the system, r; the thermalization occurs over a time t% T. 
The time scale r itself is arbitrary. 

We intend here to look at the opposite limiting case, 
t g T ,  in which the dynamics is determined by Hamilton's 
equations. There is no difficulty in generalizing the path in- 
tegration to a kinetic equation or in solving nonequilibrium 
problems. It would be interesting to attempt to combine the 

two approaches and to entrust to Langevin forces the Gibbs 
averaging. 

In addition to a statistical quantization, a procedure of 
introducing a "fifth time," which leads to convergent formu- 
las, has been de~cribed.~ Instead of a relaxation equation one 
studies a Schrodinger equation which differs from the for- 
mer by the Wick rotation t - it. It has been asserted that in 
this manner one can determine a partition function for sys- 
tems having an action with a lower bound. This may be a sort 
of analytic-continuation method, but the physical meaning 
of the results is not obvious. 

Let us outline the present paper. We begin with a de- 
scription of the path-integration formalism in classical me- 
chanics and for a kinetic equation. We then show how to 
generalize this formalism to problems of statistical physics. 
Finally, we calculate the partition function of a harmonic 
oscillator as an example. Unfortunately, our method is more 
complicated than the usual methods in this simple case, and 
it requires field-theoretical approaches. Indeed, we would 
hardly expect that replacing an ordinary integral by a path 
integral would simplify a problem. However, when we are 
considering a complex multidimensional system we may 
find it beneficial to raise the dimensionality of the space. 

2. THE PATH INTEGRAL IN CLASSICAL MECHANICS 

Following Refs. 2, we will show how classical dynamics 
can be described with the help of a path integral. In the Ham- 
ilton formalism, a mechanical motion with 2n degrees of 
freedom (these results can easily be generalized to field sys- 
tems) is described by the 2n equations5 

whereH(p '...p 2n) is a Hamiltonian, p "are the coordinates 
in the 2n-dimensional phase space of the system, and 

- - - uba is a symplectic 2-form. We can find the ordi- 

nary Hamilton's equations by separating the coordinates 
and the momenta, {p '...p '"1 = { p ,  . . .pn ,qL...qn}, and by set- 

ting mq'pl = - mPp' = 6:. We assume that wab is independent 
of the coordinates. 

The solutions of Eqs. (2.1) completely determine the 
changes in the coordinates q, z, ( t )  over time as a function of 
the initial conditions: 
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It is convenient to use "quantum-mechanical notation." In 
classical statistical physics and in classical kinetics, systems 
are described by a distribution functionf, i.e., by the proba- 
bility density for the system to have given values of the co- 
o rd ina t e~ .~ .~  We call f(p) a "state vector" j f ) ,  and we intro- 
duce the scalar product 

ill&?)= j f(rp)g(lp)dq. (2.3) 

The state vectors corresponding to classical mechanics are 
I$) = SZn(p - $1, where $ = {TI are phase coordinates. 

We will show how to construct the evolution operator 
S( t,t ' ) for a mechanical system such that 

(T (t) IS(t, t i l ~  (ti) )=s2" (cpa(t)-cp,la(t, ) . (2.4) 

The time evolution of the distribution function is expressed 
by 

If ( t ) )=S( t ,  ti) If (ti)), (2.5) 

The function f must satisfy the kinetic equation7 

-- df - oaba.,fdbH= ( H ,  1). 
dt (2.6) 

where { , ) are the Poisson brackets.') Actually, S is the 
Green's function of the kinetic equation. 

The evolution operator (2.4) can be rewritten as a path 
integral of a Sc-function. This integral is defined by the limit 

The points t partition the interval t,, tf into equal parts: 
to = ti, t, = t,., p,, (to ) = pi.  By construction, the carrier of 
the 8'-function is the classical trajectory. 

However, it is more convenient to replace p,, ( t )  as the 
argument of the 8'-function in (2.7) by Hamilton's equa- 
tions (2. l ) ,  which this function satisfies. The resulting 
expression found differs from (2.7) by a functional determi- 
nant: 

Introducing Lagrange multipliers A,, we can represent the 
@-function on the right side of (2.8) by a path integral: 

Trajectories which connect points pi and p,. in phase space 
are considered in this integral. For brevity, we will omit the 
factors (211) ' in the measure [dpdA] . 

To evaluate the functional determinant (2.8) we need 
to introduce ghosts, i.e., anticommuting Grassmann fields 
- 
C, and ca: 

!t 
det ~(o"-oababN) 

[&a den] exp ijiL(b-oabdbde~(t) cc)dt. 
69' t< 

Combining (2.8) and (2.10), we find 
1. 

where the action A is given by 

a = dt = dt[h.(~--wababH)f i&(?'-oababacH~c) 1. 

(2.12) 

[Do not confuse the Lagrangian 9 (p,A,F,c) with the true 
Lagrangian. ] 

Equations of motion for the ghosts F and c are found by 
varying the action in (2.12) 

These are Jacobi equations, which are satisfied by the dis- 
tances Sp  " = p 7 - p f between two closely spaced classical 
trajectories. 

In choosing the ghost action as in (2. lo),  we are fixing 
p i ,  pf, and the ghosts ci and cf as boundary conditions. Im- 
posing boundary conditions on the fields and the conjugate 
ghosts (p "+PC"; A,-.?, ) is a natural and convenient ap- 
proach in a study of the properties of S. However, this ap- 
proach is not obligatory, and in the following section of this 
paper we will fix c,. and F, . 

The fields p ", A " and ca, F, satisfy canonical commuta- 
tion relations. From the standard definition of the one-time 
commutator, 

we find 

The latter equation shows that we are again dealing with 
classical mechanics and that the physical variables com- 
mute. 

A noteworthy property of action (2.12) is its BRST- 
invariance.*.' We introduce the auxiliary Grassmann vari- 
ables 8, 0, and we define them with the help of commuting 
supercoordinates ga and supermomenta j, , 

We can then write the action in terms of superfields: 

A = J dt d0 d ~ [ ~ , g " - ~  (T--o""jjb) 1. (2.18) 

The invariance of (2.18) under the shifts 0- 0 + E and 
0- 0 + E means that action (2.12) is invariant under super- 
symmetry transformations (BRST and anti-BRST transfor- 
mations) 

c p " + ( P " + i o n b E b ~ .  C"-+C'"EW''~~~, ha, ?.+ha. ?a. (2.19a) 

cpn-+cp"+Fcu. E.+E,+ ih8.  ha, cC'+h,. c" (2.19b) 

where E and E are Grassmann parameters. The boundary 
conditions on the fields c, and cf do not break the supersym- 
metry. Below we will meet another version: Homogeneous 
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boundary conditions on Ai and cf impart supersymmetry to 
the partitioned function. 

3. CLASSICAL STATISTICAL PHYSICS IN REAL TIME 

A fundamental problem in classical statistical physics 
and in Euclidean quantum field theory is to calculate the 
partition function 

Z(J.) = J [ d @ ' ] e x p { - f i H ( r p ) - i J . q ) .  (3.1) 

As usual, ,L? is the reciprocal of the temperature, and the q, 's 
are coordinates in phase space. For the time being, we will 
incorporate the sources J,  in the Hamiltonian. 

We can show that the Gibbs distribution function6 

can be thought of as the result of the evolution of the system 
in real time. Admittedly, in place of Planck's constant, 
which does not figure in classical mechanics, we are okliged 
to introduce another quantum of action-!he constant h-so 
that we can express fl in time units: fl+/3h. The final results 
will not depend on this quantity. 

The variables p in (3.1 ) and (3.1 ) can be thought of as 
coordinates on a hyperplane t in the phase space of the 
system supplemented with the time. The evolution deter- 
mined by Eqs. (2.1 ) determines a family of curves in the (p ,  
t) space which have a unique intersection with planes of 
t = const. Energy is conserved along the trajectories: 

We can thus construct an operator for the statistical evolu- 
tion of the system. Using (2.11 ) and (2.12), we write 

the Matsubara technique, the motion in (3.4) occurs along 
genuine classical trajectories in real time. 

A second distinction is the appearance of an arbitrary 
scale i. Strictly speaking, we can introduce an arbitrary 
function of the time f such that 

In this case we can write 

This flexibility can be realized with the help of the new vari- 
able f in the path integral and the Lagrange multiplier 17: z' 

In this paper we restrict the discussion to the choice 
[see (3.5)] 

The third distinction can be clarified by discussing the 
boundary conditions. In the quantum case the path integral 
specifies a density matrix, and we require that the fields be 
periodic (or antiperiodic) in the imaginary time. This re- 
quirement cannot be made in classical mechanics in real 
time. It turns out that instead of carrying out an integration 
over the initial conditions pi in (3.5) we need to set the 
corresponding Lagrange multiplier equal to zero. 

To explain this point, we break up the time interval [0, 
f lh)  into N subintervals, and we treat the path integral in 
(3.5) as the limit of a multiple integral as N-+ a,. We start 
with the definition of the Gibbs distribution, (3.2), and we 
specify the fields q, at the point t, =,L?h. We then introduce 
an integration over q, at the points t, = flik /N. The Lagran- 
gion fields A prune the extra degrees of freedom and fix 
p( t ,  ) = p ,  (t, ). The ghosts F, and c, correct the measure 
of integration in accordance with [dpdA] . This procedure is 
shown graphically in Fig. 2. The points are integration vari- 
ables. Since the variables p, A and Z, c do not commute, we 
have put F and A at interior points of the intervals (t, ,t, + , ), 
and we have specified q, and c at points t,. Note that the 

The Gibbs distribution functionp in (3.2) can easily be ex- 
pressed in terms of this operator: 

We will call the expression in the argument of the exponen- 
tial function s(&,o) the action 2 = ~ p d t ( L  + iH/h) .  

We see that a Gibbs distribution is established over a 
time fli in the course of the statistical evolution, with equi- 
probable initial conditions (Fig. 1).  In contrast with the 
quantum case, where an imaginary Euclidean time is used in 

FIG. 1 .  Instead of points in the phase space ( thepq plane) we consider the 
part of the trajectory over a time proportional to the reciprocal of the 
temperature, p. 

FIG. 2. Addition integrable (a) and fixed (0) variables in the distribu- 
tion function. X -Physical phase coordinates. 
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multiplicities of the integrals in the definition ofp(p)  are the 
same in terms of all the variables. 

Figure 2 also explains how to choose the boundary con- 
ditions. The variables p ", A, and ca, ?, are conjugates of each 
other, like ordinary coordinates and momenta. 

The transition from one set to the other is made by 
means of Fourier transforms. Integration over the boundary 
value gives rise to the zeroth Fourier harmonic. As the 
boundary conditions in (3.5) we should thus adopt A, = 0, - 
c = 0, and c, = 0 (the fixed variables are shown by the cir- 
cles in Fig. 2).  When this choice is made, the numbers of 
physical variables and auxiliary variables (including the 
fixed variables) are the same, so we can go over to the contin- 
uum limit. The conditions Zi = 0, cf = 0 eliminate the zero 
modes from the spectrum of ghosts, preventingp from van- 
ishing. We thus have 

p (cp) =(q, C = O I S ( B ~ ,  0 )  I h=O, F-0). (3.9) 

Expression (3.9) gives the Gibbs distribution in terms of the 
evolution in real time. The partition function Z(/?,J) is [see 
(3.111 

Admittedly, when we change the boundary conditions we 
should correct the action, replacing a term: 
i$A,Q, "dt+ - i$p "i,dt. Accordingly, Eq. (3.10) contains 

Interestingly, the partition function in (3.10) is also 
invariant under supersymmetry transformations. First, the 
action (3.1 11, which can be put in the form 

A - d t d e d g  

0 6 
[- qaj,  - H (4" - oabpb) exp (- i&)] 

with commuting variables [j,G] = 0, 

is supersymmetric. Second, one can verify that the boundary 
conditions Ai  = 0, cf = 0 do not break the supersymmetry. 

To conclude this section of the paper we note that the 
BRST invariance does not prevent us from introducing an 
arbitrary function of the time f ( t )  in the definition of the 
partition function [see (3.6)]. In this case the action be- 
comes 

(3.14) 
Condition (6)  obviously does not break the supersymmetry. 

4. FREE FIELD; PARTITION FUNCTION OF A HARMONIC 
OSCILLATOR 

We will demonstrate how this method works in the very 
simple problem calculating the partition function of a har- 

monic oscillator. This is a zeroth approximation, i.e., a start- 
ing point for constructing a perturbation theory for other 
problems. Admittedly, incorporating the time evolution 
complicates the problem here, since it becomes necessary to 
evaluate a path integral instead of a double integral. The 
arsenal of quantum field theory must be brought to bear on 
the problem: find classical solutions and average them over 
quantum fluctuations, incorporating zero modes. Let us see 
how this is done. 

The Hamiltonian of the harmonic oscillator is 

where p and q are the momentum and coordinate, m is the 
mass, and w is the resonant frequency. The corresponding 
partition function is determined by a Gaussian integral. Us- 
ing the sources J, and J,, we write this partition function as 

In calculations in real time, the constant h, with the 
dimensionality of an action, arises in intermediate steps. 
Since physical properties do not depend on this constant, it is 
convenient to switch to dimensionless variables. We intro- 
duce the matrix notation 

In terms of these variables the Hamiltonian of the system is 

When we introduce the dimensionless proper time 7 = wt, 
the equations of motion become 

We also make the replacement /?+wh/?. The partition func- 
tion in real time then takes the form of (3.10) with the action 

icp2 
n=iEici + j a T [  -cp ( a . -~)h+i l (a . -~)c  + -1. (4.6) 

0 2 

To study the capabilities of the method it is interesting 
to try to change the order: first evaluate the path integral 
over [dp]  and then evaluate that over [dA] {if we begin with 
[dA], we immediately go back to Eq. (4.2)). We recall that 
in the preceding sections of this paper we omitted coeffi- 
cients of ( 2 ~ )  - "' of the differentials d p  and dA. We now 
put them back in. As a result, the Gaussian integrals are 
normalized (to unity) : 

jdx (2n)-'& exp (-d/2) = l .  

After integrating over [dp]  , we find 
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where Zc is the ghost-dependent part of the partition func- 
tion. 

From the equations of motion of the fields A which arise 
when the effective Lagrangian in (4.7) is varied, 

we can find a classical solution which satisfies the boundary 
conditions3' 

Introducing the shift of variables A -A,, + A in (4.7), we 
find 

As usual, incorporating the classical solution leads to 
the argument of the exponential function [which is the same 
as the argument of the exponential function on the right side 
of (4.2) 1, and the preexponential coefficient is determined 
by quantum fluctuations. In the case at hand, this coefficient 
is universal, independent of the sources. 

In the calculations of Z(0)  = Z,Zc it is convenient to 
free the variables at the points 0, f l  and to fix the boundary 
conditions by means of corresponding &functions. We then 
write 

(4.1 la )  

Z,(O) = j d i f  dc ,  d t i  d ) ,  e x p  (-%,ct-&~.) ( c .  I S.(B. 0) I &). 
(4.1 1b) 

The only subtlety to be kept in mind below is that the 
spectra of A, E,  and c contain zero modes. These modes satis- 
fy Jacobi equations (2.13) [the equation for A is the same as 
Eq. (2.13b) for Z ]  . For free fields, the latter equations are the 
same as the equations of motion 

In the case of fixed boundary conditions, there would be 
no zero modes. When the boundaries are freed, classical tra- 
jectories close to the main trajectory, (4.9), come into play, 
and the distances between them satisfy Jacobi equations. 
The explicit expressions for the zero modes are 

In the calculation of Z(O), we should integrate separately 
over the quantities A, C, and C. The parts of expressions 
(4.1 1 ) which depend on the zero modes are 

2. (0) = j dC dC exp -[E..ci0+ Z:C? + E ~ C ~ ' + ~ ~ C ~ ~ + E ~ ~ ; ]  

To find (4.14b), we separated the zero and nonzero modes, 
c = c0 + cL, F = .?' + F', and we used 

After (4.14) is substituted into partition function 
Z(0)  = Z O . Z L ,  we easily see that the boundary conditions 
are altered in the parts which do not contain zero modes. 
Integrating over the sources 7, l, ,  and lf, and also over the 
fields Z l ,  we find (det pi' = 1) 

&' = j d h  ( e o n h  I j [ d h ' ]  e x p  {-'l, j [ (6'-P) h ' ]  ' d r  ) 1 A), 
(4.16a) 

2.' = dc  ( e w c  1 j [ d c r  d c l ] e x p {  - j  (8.-P) c' dr) / c )  . 

Surprisingly, our classical problem has become analogous to 
a quantum-mechanical problem. In both cases, we are to 
evaluate the trace of an evolution operator over a finite time 
B. Admittedly, the boundary conditions in the classical case 
are not periodic, and they contain a relative rotation 
("twist") in thep, q plane: 

However, we can take some approaches which are familiar 
in quantum statistics. In calculating the Feynman diagrams, 
we run into a summation over a discrete series of frequencies 
w + for bosons and w - for ghosts. Because of the twist, these 
frequencies are shifted from the Matsubara frequencies by 
the resonant frequency of the oscillator: 

Making use of the arbitrariness in the definition of the con- 
stant i ,  we could of course bring these series of frequencies 
into coincidence with the Matsubara frequencies. To make 
the time interval equal to a? integral number of periods, it 
would be sufficient to take h = 2rk  /&, where k is an in- 
teger. In complicated problems, unfortunately, this ap- 
proach can be taken only for several multiple frequencie~.~' 

It is convenient to use column-matrix harmonics: 

It would be interesting to pursue the analogy with the 
quantum case, noting that the matrix R, where R2 = - 1, 
has assumed the role played by the square root of negative 
unity (i).  Classical statistical physics is thus converted into a 
field theory in an imaginary "matrix" time. However, it is 
not clear how to introduce wave functions which would have 
the meaning of probability amplitudes, and so forth. 

We will not use a Fourier expansion; we will evaluate 
the partition function in a different way. We transform 
expression (4.1 l a )  in the following way: we extend the inte- 
gration over time to the interval ( - TN, TN) (we "sew 
tails" on front and back), and we impose periodic boundary 
conditions on the fields. We then take the limit N- CZ. This 
method makes it possible, through the imposition of bound- 
ary conditions, to preserve the zero modes: 
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After an integration over dA O[dA '1 we find 

The Green's function of the fields A is 

G (s- y ) = (8,-Q) - Z = t / z  15- y I  en'"-^'. (4.22a) 

In any case, we introduce the ghost propagator 

After substituting G ( x , y )  into (4.21 ), and noting that the 
fields contain two components, we find 

The factor Z, (0)  [see (4.1 1b) ] in the partition function is 
calculated in the standard way.9 As a result we find 

Collecting (4.101, (4.23), and (4.24), we find 

Aside from the switch to dimensionless variables, this 
expression is the same as (4.2). Q.E.D. 

We see that the harmonic oscillator turns out to be a 
rather rich "toy field theory" in calculations in real time. We 
would point out the following circumstances. 

First, if we wish to reproduce the exponential factor in 
the partition function, we need to consider the classical solu- 
tion. This solution is determined by a system of Hamilton's 
equations for the fields g, and inhomogeneous Jacobi equa- 
tions for the Lagrange multipliers A. 

Second, the zero modes, which are necessarily present 
in the spectrum, play an important role. They satisfy the 
homogeneous Jacobi equation. They arise because of the 
continuous dependence of the solution on the boundary con- 
ditions. 

Third, incorporating quantum fluctuations leads to a 
preexponential factor which is independent of the sources 
for a free field. The nonzero modes satisfy the "twisted" 
boundary conditions and have an equidistant spectrum. This 
spectrum is shifted with respect to the Matsubara spectrum 
by the resonant frequency of the oscillator. The Lagrangians 
of both the boson and fermion degrees of freedom are ex- 
pressed in terms of the Jacobi operator - wacdcd,H. 
The preexponential factor arises because of the difference 
between the boson and fermion frequencies. 

Our last comment is of a technical nature. We have 
written the equations in terms of two components, and we 
have represented operators by 2 x 2 matrices. However, we 

could have gone over to holomorphic and antiholomorphic 
components: 

That approach would have made it possible to completely 
separate variables in the case of a free field; it would appar- 
ently also be useful in solving other problems. 

5. CONCLUSION 

Let us list the basic results of this paper. We have shown 
that the path-integration formalism of classical mechanics 
can be generalized to classical statistical physics. The ther- 
modynamic functions are calculated as path integrals in a 
phase space supplemented with the time. The partition func- 
tion is BRST-invariant. Admittedly, we do not have a literal 
analogy with quantum statistics, since (first) the calcula- 
tions are carried out in real time, and (second) instead of 
using periodic boundary conditions we have to fix the La- 
grange multipliers at the ends of the interval. 

In place of Planck's co?stant we are obliged to intro- 
duce a "quantum of action" h, which has an arbitrary value 
in the classical case. The physical properties do not depend 
on this quantum of action. 

The thermodynamic functions can be represented as the 
results of an evolution over an infinite time; alternatively, we 
could limit the time interval. We chose the second method. It 
turns out that in terms of the discrimination of classical solu- 
tions and zero modes the spectrum of quantum fluctuations 
may be combined with the Matsubara choice of scale. 

Path integration can be used to study the dynamic char- 
acteristics. In that case, the scale would be dictated by the 
particular problem. 

The capabilities of this approach appear to us to depend 
on the following considerations. We have seen in the exam- 
ple of a free field that the strongest exponential dependence 
of the partition function is determined by the classical solu- 
tion. The value of this solution at the end of the interval, 
t = ~ h ,  coincides with the saddle point in the ordinary parti- 
tion function, whose calculation is simplified in the present 
case. It may turn out that this is true of all perturbation- 
theory problems in classical statistics. However, we know 
that the partition function in asymptotically free problems in 
Euclidean field theories (e.g., QCD or a two-dimensional n 
field) is not saturated by the classical solutions. Here is a 
place to try to find new approaches for analytic calculations. 
pe;haps the additional coordinate will prove to be a pawn 
which can be sacrificed in a trade for a queen. 

I would like to thank A. A. Roslyi for friendly discus- 
sions and Ya. I. Kogan for moral support. 

"The operator L = - d,Hoabd, is called the "Liouville operator." 
2' We have introduced a nonnegative function f in place off in the argu- 

ment of the exponential function to avoid spoiling the convergence of 

1120 Sov. Phys. JETP 73 (6), December 1991 A. A. Abrikosov, Jr. 1120 



the integral. In addition, it is necessary to introduce a normalization 
factor N = $ [ d f  ]6Cf2 -ph)  .27r. 

"If we go back to action (4.6), we see that this formula specifies an 
extreme trajectory on which the equation 
9 = - (UP) [expO(r - P) ]J holds. The value of p(P) coincides 
with the saddle point of the ordinary partition function, (4.2). 

4 '  Another way to get rid of the frequency shift is to introduce Heisenberg 
state vectors Y,, = el"$, and to use the redefinition d-d + fl. 

A .  A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii, Quantum 
Field-Theoretical Methods in Statistical Physics, Fizmatgiz, Moscow, 
1961 (Pergamon, New York, 1965); E. M. Lifshits and L. P. Pitaevskii, 
Statistical Physics, Part 2, Fizmatgiz, Moscow, 1978 (Pergamon, Ox- 
ford, 1980). 

'E. Gozzi, M. Reuter, and W. D. Thacker, "Hidden BRS invariance in 
classical mechanics," Preprint CERN-TH.5271/89; E. Gozzi and M. 
Reuter, "Algebraic characterization of ergodicity," Preprint CERN- 
TH.5241/89. 

A. A. Migdal, "Stochastic quantization of field theory," Usp. Fiz. Nauk 
149,3 (1986) [Sov. Phys. Usp. 29, 389 (1986)l. 
5. Greensite and M. Halpern, Nucl. Phys. B242, 167 ( 1984). 
'L. D. Landau and E. M. Lifshitz, Mechanics, Nauka, Moscow, 1965 

( Addison-Wesley, Reading, Mass, 1969). 
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, Pergamon, 
Oxford, 1980. 
' E. M. Lifshits and L. P. Pitaevskii, Physical Kinetics, Nauka, Moscow, 

1979 (Pergamon, Oxford, 198 1 ). 
' C .  Becchi, A. Rouet, and R. Stora, Ann. Phys. (NY) 98,287 ( 1976); I. 

V. Tyutin, Preprint No. 39, P. N. Lebedev Physics Institute, Academy of 
Sciences of the USSR, Moscow, 1975. 
L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quan- 
tum Theory, Nauka, Moscow, 1988 (a previous edition of this book was 
published in English translation by Addison-Wesley, Reading, Mass., 
1981). 

Translated by D. Parsons 

1121 Sov. Phys. JETP 73 (6), December 1991 A. A. Abrikosov, Jr. 1121 


