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The energy levels and the wave functions of nitrite groups ( NGs) in the crystal potential of 
NaNO, are determined and used to construct a four-dimensional representation of the Hubbard 
operators for the NGs. The Born-Mayer and dipole-dipole interactions between the NGs are 
projected into the Hubbard-operator representation and the Hamiltonian of the system is 
constructed taking into account the coupling of the NGs with the translational degrees of 
freedom. Based on this a quantitative phase diagram of the crystal is obtained in the temperature- 
pressure plane. The dependence of the wave vector of the incommensurate phase on the 
temperature, pressure, and dipole moment of NGs are also found. 

INTRODUCTION 

In Ref. 1 we proposed a microscopic theory of phase 
transitions (PTs) in alkali-metal cyanides taking into ac- 
count the short-range repulsive interactions between the 
metal ions and the atoms of the cyanogen groups as well as 
the elastic and dipole-dipole interactions. The theory is 
based on the finite-dimensional representations (Hubbard 
operators), constructed on the basis of the characteristic 
functions of the cyanogen groups, rotating in a multimini- 
mum potential produced by the metal ions. As a result, using 
the empirical interatomic interaction constants and the elas- 
tic constants as the starting data we were able to determine 
the entire sequence of PTs and the type of ordering in each 
phase. 

In the present paper this theory is applied to NaNO, . A 
quite complete qualitative understanding of the nature of the 
PT into the incommensurate (IC) phase in NaNO, was at- 
tained in Refs. 2-4. It was shown that the incommensurate 
phase results from the combined effect of the dipole-dipole 
interactions of the NO, groups (NGs) and the short-range 
interactions of the atoms in the NGs with the nearest metal 
ions. Another important circumstance with which the IC- 
phase is associated is the form of the ordering molecule itself, 
more accurately, the relative geometry of molecular struc- 
tures in the unit cell, to which Heine and McConnell drew 
attention.' Indeed, all these interactions also occur in alkali- 
metal cyanides, which, nonetheless, do not exhibit an IC- 
phase. The difference between NaNO, and, say, KCN lies in 
the form of the ordering molecular group NO,, which has 
the form of a triangle (Fig. 1 ); this changes its placement in 
the unit cell as compared with the CN-group in KCN. 

The phase-transition temperature, the wave vector, and 
the temperature interval in which the IC-phase exists in 
NaNO, were determined on the basis of the Ising model,6 in 
which the NGs are regarded as interacting dipoles, occupy- 
ing in the paraelectric phase with equal probability the + b 
directions (Fig. 1 ) in a rigid lattice. As will be shown in this 
paper, however, in order to give a complete quantitative de- 
scription of PTs in NaNO, a four-level description of the 
NGs is needed. In addition, the standard pseudospin de- 
scription ignores the change in the equilibrium positions of 
the Na+ ions and the NGs relative to one another, as was 

done in Refs. 7 and 8. These displacements are important 
because they induce elastic dipoles, whose interaction makes 
a significant contribution to the IC-phase. In Ref. 8 the 
strong correlations between the orientations of the NGs and 
the positions of the metal ions nearest to them were taken 
into account. Both theories agreed qualitatively with the ex- 
perimental results concerning the temperature dependence 
of the polarization of the crystal. 

In all works cited above, however, only the problem of 
giving a qualitative description of the sequence of PTs was 
solved. In the light of the fact that the IC-phase exists in only 
a very narrow temperature range (of the order of 1 K) ,  the 
problem of giving a quantitative description of the PTs 
seems to us to be quite important. In this connection we had 
to extend Heine's model,9 adding the interaction between 
the permanent dipoles of the NGs and the elastic dipoles. 
Second, the possibility of the existence in NaNO, of a rip- 
plon phase (R) between the IC-phase and the ferroelectric 
phase has not been examined. In addition, in this paper we 
shall construct the phase diagram in the temperature-pres- 
sure plane. 

ORIENTATIONAL STATES 

In the paraelectric phase the structure of NaNO, be- 
longs to the body-centered orthorhombic group (space 
group D 2 5 )  with unit-cell dimensions a = 3.725 .&, b = 5.73 
.&, and c = 5.325 at t z220  "C.12 The equilibrium posi- 
tions of the atoms are determined by the vector r,, , where n 
designates the unit cell and i designates the type of atom in 
the unit cell: for NO, i = 1 and for Na i = 2. The nearest 
neighbors of the NGs consist of six Na + ions and ten NO; 
ions (Fig. 2 ) .  This environment creates an orientational po- 
tential V for the NGs through the short-range repulsive in- 
teractions. It is well-known that it has two absolute minima 
in the directions f b and determines the preferred rotation 
axis, which is parallel to the line connecting the oxygen 
atoms and is directed along the c-axis3 In the calculations 
below we shall assume that this preferred axis is also the only 
rotation axis of the NG. In addition, we shall assume that the 
NG is absolutely rigid. 

We determine the position of the center of rotation of 
the NG as the intersection of its rotation axis and the bisec- 
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TABLE I. 
-- 

Bonds C , ( i , i ) .  ergs cz(i,t). A-I 

FIG. 1 .  
where i, j = Na, N, and 0 .  Using the Born-Mayer interac- 
tion (2) ,  we write the interaction of a NG with the Na atoms 
from the neighboring metal environment as2z3 

tor of the angle 0-N-0. We orient the z coordinate axis 
ui (cp) = 7, y, C, (Na. s) exp[ -C. ( N n .  s) I p-q. ( q ~ )  I 1 

along the rotation axis of the NG, we orient the x and y axes ~r r = i  

along the a and b axes, respectively, and we determine the 
relative coordinates of the 0, , O,, and N atoms of the nitrite 

(3)  

group in the nth unit cell (Fig. 1 ): and the interaction with the nearest NGs 

3 

qi = d l  T z,, i = I, . . ., .3, U , = C  J', C , ( S , S ~ ) ~ X ~ [ - C ~ ( S . S ~ )  1*l.(m,)-q.,(.p)+111, 
I e , r r = l  d ,  = - do (cos cp, sin cp, 0), d, = - d o  (cos cp, sin cp, O), 

{ d ,  = d (cos cp, sin cp ,  0 ),, (1 (4) 

where ,u runs over the sixth nearest metal ions, 1 runs over 
the 10 nearest NGs, and s labels the atoms in a NG according 
to the formulas ( 1 ). The Coulomb energy, which is associac 

where 1, = 1.215, do = 0.303, d = 0.365 (in A)  and ed with the charges of the crystal and is related with the 
a = 113.2" (Ref. 13). existence of the dipole moment of the NG p, = p  

We describe the repulsive interactions between the (cos p ,  , sin p, , 0)  , has the following form 
atoms of the NG and the nearest neighbors by means of the 
Born-Mayer potential W=Wep+Wpp, 

U=C, exp(-C,R), ( 2 )  where 

where the Na-Na, N-N, and 0-0 interaction constants are W e p  = enp , [pn( rn* i - rn , )  l / l r n , r - r n f  l 3  (5 

taken, respectively, from Refs. 14-16 and are presented in n,n',t 

Table I, while the mixed interaction constants are deter- 
is the energy of interaction of the dipole moments of the NGs 

mined from the relations" 
with the charges of the ions Na+ and NO;, and 

FIG. 2. 
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is the energy of the dipole-dipole interactions of NGs, and 
rnn.  = r , ,  - r,,, . One can see from Eqs. (3)-(6) that the 
force acting on an ion depends on the entire collection of 
values of CPn ), so that to each collection of angles there is 
associated its own collection of equilibrium positions { r n l  ). 
In order to transform to a lattice that does not depend on the 
positions of the NGs, we expand the expressions ( 3 )  and 
(4) ,  which contain information about the form of the NGs, 
in powers of the small quantities d/p, d,/,u, d /I, and do/l .  
Now the angle-independent part of the potential energy of 
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the crystal, which is the potential energy of the lattice, can be 
used to determine the equilibrium positions of the ions {r,, >. 
It is natural to assume that {r,,) are also the average equilib- 
rium positions of the crystal in the paraelectric phase. The 
angular part of the expansion of the expansions ( 3 )  and ( 4 )  
consists of the crystal field, in which the NG rotates, and the 
two-particle NG-NG interactions. Correspondingly, we 
shall write out only their leading terms: 

U(rp) = 7, y, C, (s ,  Na)exp[-C,(s. Na) ( p ' + ~ ~ ~ ) " l  

1 

+ 2 CI ( s ,  s ' )  exp [-C, (s. s ' )  (12+z,2+z,~L)'h] 
I 5.7 = I 

where 

Generally speaking, the potential in which a NG rotates is 
determined by the sum of the expressions (5)  and ( 7 ) ,  but 
because of the symmetry of the crystal in the paraelectric 
phase the energy satisfies We, = 0. The crystal field, calcu- 
lated taking into account the relations ( 1 ) and ( 9 )  and the 
leading term ( 7 ) ,  has the form, to within an unimportant 
constant, 

U ( q )  =U,(cos 2q+0,08 cos 4rp), ( 1 0 )  

where U, = 1.3. 10-l3 ergs. The other harmonics are at 
most 6-10-3 .  The height of the potential barrier ( 1 0 )  
A U z 2 U o  = 2.6. 10-l3 ergs, which is close to the experi- 
mentally observed value 3.1.10- " ergs.'' 

The Hamiltonian of the NG will thus have the form of 
the Hamiltonian of a two-dimensional rotator: 

where I is the moment of inertia of the NG relative to the z- 
axis and is equal to 7.82. g.cm2. We present below 
five energy levels and the corresponding eigenfunctions of 
the operator ( 1 1  ), obtained by the Rayleigh-Ritz variation- 
al method:I9 

A,,: El"-1,252, 
I$,= (0,51-0,65 cos 2rp+0,47 cos 49-0,28 cos 6rp+0,14 cos 89 

-0,05 cos IOrp) In'", 
B,, : EZo=- 1,243, 

$,=(0,71 sin rp-0,57 sin 3q+0,36 sin 5rp-0,16 sin 7rp)/ni", 
B,,: EZo=-0,981, 

$,= (-0,43 cos rp+ 0,62 cos 3rp-0,54 cos 5rp-t 

0,34 cos 79-0,14 cos 9rp) In", 

B,,: E,O=-0,972, 
$,=(0,24 sin 2rp-0,58 sin 4rp+0,62 sin 8rp-0,44 sin 8q )  In'", 

A,,: ESo=-0,697, 
$5= (0,39-0,28 cos 2rp-0,27 cos 4rp+0,59 cos 6rp-0,53 cos 8rp 

+0,26 cos IOrp)  ln'". (12) 

Here A, , ,  B,, ,  B,, , and B,, designate the irreducible repre- 
sentations of the group D,, l 9  and the energy levels are mea- 
sured in units of 10 l 3  ergs. Since the transition temperature 
kT, z 6.1 - 10 l 4  ergs, we can neglect the fifth energy level 
and confine our attention to the four-dimensional represen- 
tation of the Hubiard operators,' constructed based on the 
eigenstates ( 12) X "O = la) (fi 1, which are matrices consist- 
ing of zeros, with the exception of the matrix element afi, 
which is equal to unity. In particular, the Hamiltonian of the 
NG ( 1 1 ) in this representation has the form 

The two-particle NG-NG interactions assumes the form 

where 

are the matrix elements of the pair interactions. 

NaNO, HAMlLTONlAN 

The total energy of the crystal consists of the interac- 
tions between the metal ions, between the metal ions and 
NG, and finally between the nitrite groups. In addition, 
aside from the rotational degrees of freedom of the NGs, 
represented by the Hamiltonian ( 1 1  ) and ( 13) ,  it is, of 
course, also necessary to take into account the translational 
degrees of freedom of both the Na ions and the nitrite 
groups. Thus the Hamiltonian of the NaNO, crystal has the 
form 

where H ,  is the energy of the translational degrees of free- 
dom and is determined by the electrostatic interactions and 
the short-range Born-Mayer interactions, V describes the 
coupling between the rotational degrees of freedom of the 
NG and its displacements, and W is the sum of all NG-NG 
pair interactions: 
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v = z V., (n) 2."" z [ A l  (n)AIa'(n) f ~2 (n)Aiab(n) 
n.1 

In order to simplify the notation we shall describe the 
translational degrees of freedom by the displacements di- 
rected along the b axis (i.e., along they axis), since the spon- 
taneous displacements of the NGs and Na atoms in the in- 
commensurate and ferroelectric phases occur precisely 
along this axis.20 Then in the harmonic approximation 

where V,  (n, m) (i = 1, 2) are dimensionless, and the cou- 
pling constants in units of lo- '  ergs/cm are equal to 

whereg(pl)  = g ( p 2 )  = g l t g ( p 3 )  = . . . = g ( p 6 )  = g 2  are, 
respectively, the force constants, which take into account 
the interactions of the NGs with the Na ions along the b axis 
and the plane orthogonal to this axis, and uni is the displace- 
ment of the ith atom in the nth unit cell. These force con- 
stants are related with the elastic moduli as follows: 

Substituting the known values for NaNO,, i.e., 
C,, = 3.8  10" ergs/cm3 and C6, = 0.5.10" ergs/cm3 (Ref. 
21) and the dimensions of the unit ce11,I2 we obtain 

In order to obtain the explicit form of the operator cor- 
responding to the interaction of the rotational and transla- 
tional degrees of freedom, we return to the expressions (3  ) 
and (5).  Making in them the substitutions 

and the combinations of displacements 
6 

A'(.) =un+..2+un+.2-2~n,, A2(n) =z (un+wiz-uni). 
i=3 

(26) 
and making an expansion in the displacement uni,  we obtain 
to a first approximation 

The pair interactions ( 17), taking into account Eqs. 
(4) ,  (6),  (14), and (15), have the form 

v =C r ,C pe sin q.vj (n, m) (unj-unl) 

where 

where 

Wp=i ( l l~~ l2>1~ ,  Wq=(12JW(cpn, (P.+I) 121), 
(llpv12>=0,96p, (121 W (cp,, cp,+,)21>=-2,3. 10-'' ergs. 

1-3 (rnj-rm) u2/ (rnj-rmi) 
Vj (n, m) = - , i=1 ,2 ,  (22) 

I rn,-rmi 1 

Here we have employed the fact that with the exception of 
the matrix elements 

the other matrix elements are equal to zero or are small. 

FREE ENERGY 

We analyze the structural transformations in the 
NaNO, crystal on the basis of the effective free energy, writ- 
ten in terms of the translational degrees of freedom uni (Ref. 
1) 

Next, substituting into Eq. (21 ) the values of the dipole mo- 
ment of the N G p  = 0.372 D and the charge e = 4 . 8 . 1 0 "  
CGS units and projecting this interaction on the characteris- 
tic four-dimensional representation of the NG, described by 
the functions ( 12), we obtain 
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F ( u )  =HT-kT In Sp{exp[-B(H,+V+W) I ) ,  ( 2 9 )  

where Sp denotes summation over all four states of each NG. 
In order to carry out this summation, we write the pair inter- 
actions in the molecular-field approximation 

Then the self-consistency equations will assume the form 

In order to carry out the Sp operation in Eq. ( 2 6 )  it is neces- 
sary to diagonalize the matrix 

where 

B ( n )  = 
E,0+V3, ( n )  V 3 k  + (n)  ] ( 3 3 )  
V4,  ( n ) +  W ( n )  E,O+V44 ( n )  ' 

The ratio of the energies ( 1 2 )  and the coupling con- 
stants ( 2 5 )  is such that the eigenvalues of the matrix 

are equal to the eigenvalues of the matrix ( 3 2 )  to within 
( A ~ / I I ; ~ ) ~ -  lop2. For this reason, in what follows we ap- 
proximate the Hamiltonian ( 3 2 )  by the matrix ( 3 5 ) ,  whose 
eigenvalues are equal to 

On the basis of the relations ( 2 4 )  and ( 3 2 ) ,  we have 

where 

Z(n) =2 exp (Be1)ch 81Y~i-2 exp (Pe2)ch Be2, 
whence we obtain 

A4261-' exp (Bel) sh B61+Blz.6.2-1 exp (Bez) sh PZf.2 
Y .  = - 

exp(Pel)ch Be1 + exp(Pe2)ch Be2 

This equation is the self-consistency equation, since, as one 
can see from the relations ( 3 6 ) ,  ( 3 3 ) ,  and ( 3 4 ) ,  the matrix 
elements contain the averages Y, . 

In order to expand the thermodynamic potential ( 2 9 )  
in a series in the displacements, we make some estimates. 
From the expressions ( 2 4 ) ,  ( 2 5 ) ,  ( 3 3 ) ,  and ( 3 6 )  it follows 
that 

A l , - A 2 2 = - o o ~ - 1 0 - 1 5  ergs, B l l - B 2 2 ~ - m 0 ,  

e l=  1,25.10-'3 ergs, ~ ~ ~ - 0 , 9 7 7 . 1 0 - ' ~  ergs. 

Next, it is obvious from the formulas (25 ) and ( 3 3 )  that 
A , ,  z B , ,  . As a result, near a PT, where the displacements 
are small, so that 

the self-consistency equations ( 3 7 )  can be replaced by the 
linearized equation 

which relates the spontaneous deformations with the order- 
ing parameter of the NG. 

The last expression in the thermodynamic potential 
( 2 9 ) ,  according to Eq. ( 3 6 ) ,  equal to 

can be expanded in a series in the displacements, which gives 

Here we have employed the fact that flu, 4 1. Since the aver- 
ages Yn  can be expressed in terms of uni with the help of the 
self-consistency equations (381 ,  we can see that the expres- 
sion ( 3 9 )  is the thermodynamic potential of the transla- 
tional degrees of freedom uni. 

Fourier transforming, 

u n~ = N - "  ZU, exp ( ikn)  , Y,,=Nd" Y~ exp ( ikn)  . 

Vj (n ,  m) = V j  (n -m)  =N-sh Z L V,  (k ) exp [ ik  (n -m)  1 ,  

we obtain instead of Eq. ( 3 8 )  

where 

x exp (- ikbl2)  +h12Vz ( k ) ,  

+4 cos (ka l2)  cos (kb l2)  cos ( k c / 2 ) ]  . ( 4 3 )  

It is easy to show, using the invariance of Eq. ( 2 2 )  under an 
interchange of the arguments 
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that V,  (k )  are real functions. Numerical analysis shows 
that, in agreement with the experimental data of Ref. 22, the 
potential V,  (k )  has a minimum which is typical for the exis- 
tence of the IC-phase, for a wave vector inside the Brillouin 
zone and directed along the a axis (Fig. 3 ) ,  while the poten- 
tial V, ( k )  has a minimum at the edge of the zone23 for 
k = (2.rr/a, 0, 0 ) .  In what follows we shall assume that the 
wave vector has a component only along the a axis: 
k = ({a*, 0, 0) .  

Transforming to k-space and substituting for Y,  the 
expression (41 ), we obtain the thermodynamic potential in 
the variables u,;: 

2 

where 

~ ~ , ( k ) = 2 ( g , + 2 g ~ ) - f J h ~ ~ ( k ) / [  I+PW(k) l L ,  
D 2 , ( k ) = 2 ( g , + 2 g 2 ) - p h ~ ( k ) / [  l+pW(k) 12,  
Dlz(k) --Dz,(k)=-2(gI+2g2 cos(kaI2) ) 

+$h, (k)hz(k)l[ l+pW(k) 1'. (45) 

We do not present the expression for the positive-definite 
coupling constant b(k, ,  k , ,  k,, k,), since it is not em- 
ployed in this work. 

PHASE DIAGRAM 

In order to analyze the thermodynamic potential (44) 
we diagonalize the matrix (45) in it, after which we obtain 

FIG. 3. Graphs of V ,  (k)  in units of A - '  for k = 5,  a*, 
k = a*/4 + { 2 b  *, and k = a*/4 + { 'c* .  

FIG. 4. Behavior of R: and R: at T = T, (upper curves) and T< T, (low- 
er curves). 

where 

are the squared effective frequencies of, respectively, the 
acoustic and optical modes, which, in reality, represent the 
inverse susceptibilities of the normal coordinates Qki. The 
displacements uki are related to the normal coordinates Qki 
by the transformation 

0 2 2  (k)-Q12(k) 0 1 2  (k) 

The temperature dependence of the frequencies (47) is pre- 
sented in Fig. 4 and has the following features. First, as the 
temperature decreases there arises on the lower branch a 
minimum at a value of k different from zero, which vanishes 
at the point k, = {;a*, where li -0.134 at the critical tem- 
perature Ti ~ 4 4 2  K. Figure 5 shows the numerical analysis 
for Ti and the reduced wave vector ci as a function of the 

FIG. 5. The temperature of the transition into the IC-phase (upper curve) 
and the temperature interval in which this phase exists (lower curve) as 
functions of the dipole moment. The reduced wave vector g, (upper 
curve) and the difference 6, - {, (lower curve) a function of the dipole 
moment. 
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magnitude of the dipole moment p of the NG. This depend- 
ence is of interest because when the ionic crystal is doped24 
the dipole moment of the NG changes in the range 0 . 2 0 -  
0 . 9 7 0  and the dependence presented makes it possible to 
judge, on the basis of the transition temperature, the dipole 
moment of NG in NaNO, . Returning to this feature, with 
regard to the temperature dependence of fit ( k )  it should be 
noted that it leads to a PT into the incommensurate or modu- 
lated phase, where the spatial dependence of the displace- 
ments is determined by the formula ( 4 8 )  with the corre- 
sponding substitution for R ,  (k, ) and Q,, = 0 .  

Second, from the formulas ( 4 3 ) ,  ( 4 5 ) ,  and ( 4 7 )  we 
obtain 

As the temperature decreases the quantity D l ,  vanishes at 
the temperature 

and then becomes negative. In addition, it follows from the 
formula ( 4 9 )  that for T< To R: ( 0 )  remains equal to zero 
while fi: ( 0 )  becomes negative, as shown in Fig. 4, and 
therefore the mode Q,, is unstable at k = 0 .  Thus if fluctu- 
ations of the order parameter are ignored, two normal modes 
can be retained in Eq. ( 4 6 )  : Q, = Q, (ki ) and 
Q, = Q, (k  = O ) ,  and the thermodynamic potential of the 
two interacting single-component order parameters can be 
written as25 

where 

The equation of state 

has three types of solutions, which we give below together 
with the corresponding thermodynamic potentials: 

These phases are, respectively, the incommensurate, ferro- 
electric, and ripplon phases.'' The regions of stability of the 
phases are determined from the inequalitie~,~ 

and, together with the conditions of existence of the solu- 
tions ( 5 4 )  

have the form 

1 .  tiGO, 2q~, - f i r , ,<O;  
2 .  t o s o ,  3 q ~ o - - y t , < ( i ;  ( 5 6 )  

3.  y6-Kq2>0, 3 q ~ , , - y t i > O ,  2 . r l t , - f i to>(~ .  

Since the wave vector k, lies close to the center of the Bril- 
louin zone, we neglect the k-dependence in the coupling con- 
stants ( 5 2 ) ,  i.e., we employ the approximation 

In this case, according to the inequalities ( 5 6 )  only the solu- 
tions 1 and 2  of the solutions ( 5 4 )  are realized and the equa- 
tions for determining the temperatures and the reduced 
wave vectors of the phase transitions 

F ,  ( T i ,  k,) =0,  dr ,  i kt) /dk=O. 

F,(T, ,  k , )  =F,(T, .  0 ) ,  dr , (k , ) /dk=O 

have the form 
t , = O ,  drC (k,)/(l/c=O, 

The solution of the first pair of equations in Eq. ( 5 9 )  gives 
the temperature of the PT into the IC-phase and the reduced 
vector of the IC-phase, while the solution of the second pair 
gives the temperature of the PT into the ferroelectric phase. 
The results of these solutions are presented in Fig. 5  as a 
function of the dipole moment of the NG. 

Substituting the expressions for Q, and Q, ( 5 4 )  into Eq. 
( 4 8 ) ,  we find the displacement of the ions in, respectively, 
the incommensurate phase 

u.1 = 
2  IDzz ( k )  -Qi2(k)  I Q, cos ( k n )  

{[D22 (k) -Qi2  (k)  I 2+D122 ( k )  1% ' 
-2D,, ( k ) Q i  cos ( k n )  

u.2 = 
{[D22 ( k ) - Q t 2 ( k )  12+D122 ( k )  ) I h  

and the ferroelectric phase 

The relation between the displacements of the ions in a unit 
cell and the position of the NG can be determined with the 
help of Eqs. ( 5 4 ) ,  ( 4 8 ) ,  and ( 4  1 ) : as the ions move closer to 
one another the nitrogen ion of the NG moves to the position 
farthest away from the metal atom. 

The sequence of phase transitions ( 5 8 ) ,  which is ob- 
tained under the assumption ( 5 7 ) ,  is identical to the se- 
quence given in Refs. 5  and 22. In Ref. 10, however, in an 
analysis of the x-ray structural data it was concluded that 
between the phases I and I1 in an interval ~ 0 . 2  K there 
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exists a third phase 111-the sinusoidal ferroelectric phase 
(ripplon phase). In our case the ripplon phase is described 
by the solution 3 in Eq. (54). Indeed, substituting this solu- 
tion into Eqs. (48) and (50), we obtain the ion displace- 
ments corresponding to the sinusoidal ferroelectric phase 

u.1 = 
2[DZ,(k)-Q12(k)  IQi cos(kn)  + Qo2-"', 
{ [D22 ( k )  -Qi2 ( k )  1 2 + ~ i z a  ( k j  } I h  (62) 

-2D12 ( k )  Qi cos ( k n )  
u.2 = - Q02-"'. 

{ 1 ~ 9 2 2  ( k )  -Qi2 ( k )  I 2+D122 ( k )  1'' 

The necessary condition for the existence of the solution 3 in 
Eq. (54) is the inequality 

Ys-6q2>0, (63) 

which, on the basis of the relations (57), cannot, of course, 
be satisfied. However this relation can change significantly, 
if the anharmonic contributions to the translational part of 
the elastic energy of the crystal ( 18) are taken into account. 

It is interesting to study the dependence of the tempera- 
ture of the phase transition not only on the dipole moment p 
of the NG but also on the unit-cell parameters. This makes it 
possible to find the complete phase diagram of NaNO, in the 
temperature-pressure plane, since application of pressure 
gives rise to uniform lattice deformations 

P~=Cllu,+C,,u,,+C,3u.,, 
Pu=Cziuw+CzzuUu+Cz3~,,, (64) 
Pz=C31~ i~+C32~zu+C33~zrr  

which in turn change the unit-cell parameters 

where C,, = 22, C,, = 38, C,, = 40, C, ,  = 8.4, C,, = 7.1, 
C2, = 6.2 in units of 10'' dynes/cm2 (Ref. 21). 

Since the effect of hydrostatic pressure 
( P  = P, = P, = PC ) in NaNO, has been investigated ex- 
perimentally,,' we shall examine this case. Expressing in 
terms of P with the help of the formulas (64) and (65) the 
changes of the parameters of the unit cell, we calculate the 
transition temperature and the corresponding reduced wave 
vector using Eq. (59). The results of the calculations are 
presented in Fig. 6. For P = 10 kbar the computed transition 
temperature T, is 120 K higher than the experimental value, 
while the temperature window Ti - T, = 8K agrees with 
the experimental window. There are still no experimental 
data on the dependences ki = ki (P) and k, = kc (P) .  

CONCLUSIONS 

The quite good agreement between the computed val- 
ues Ti=442.0 K, l i=0.134,  Tc=441.5 K, and 
cc = 0.132 with p = 0.3720 and the experimental data 
Ti = 437.0 K, 6, = 0.12, T, = 435.7 K, and 6, = 0.1 with 
p = 0.410 (Refs. 28 and 29) indicates that the present mod- 
el is adequate for describing the sequence of phase transi- 
tions in NaNO,. However, the temperature dependence of 
the incommensurateness factor obtained in this work (Fig. 
6) is an order of magnitude weaker than the dependence 
observed experimentally.20 One way to obtain a strong tem- 

FIG. 6. The pressure dependences of the temperatureof the transition into 
the IC-phase (upper curve) and the temperature interval in which this 
phase exists (lower curve). The pressure dependences of the reduced wave 
vector 5, (upper curve) and the difference {, - i, (lower curve). 

perature dependence of f i  is to take into account the fluctu- 
ations of the order parameters. However this would have 
made this account too long, so that it will be done in a sepa- 
rate paper. 

It was found that the introduction of the interaction of 
elastic dipoles with NG, which are described by the first 
term in Eq. (2 1 ), was critical not only for the quantitative 
but also the qualitative behavior of the model. This interac- 
tion was found to be of the same order of magnitude as the 
Born-Mayer interaction (23),  to say nothing of the impor- 
tance of the form of the dependence V ,  (k) ,  j = 1, 2 (Fig. 
3) .  

We are deeply grateful to V. I. Zinenko for numerous 
discussions and valuable criticism. 
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