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We present the results of an experimental and theoretical investigation of the second-harmonic 
nonlinear longitudinal response of the magnetization M, of the cubic ferromagnet CdCr,Se, in 
the critical paramagnetic neighborhood of T, when the latter is placed in a constant magnetic 
field. The experimental data were obtained for the phase components of M, in the exchange region 
under both weak- and strong-field conditions. The Re M2 part of the signal due to the nonlinearity 
of the magnetization curve allows us to determinex,. Analysis of Im M, showed that the 
contribution to this signal is due not only to the frequency dispersion of the susceptibility x,, 
which has a static limit, but also to the dynamic portion of the response, which has no static limit. 
The latter arises due to the influence of the AC field on the relaxation processes. In the limiting 
strong- or weak-field cases the experimental data for Im M, are well described by using well- 
known limiting formulas for TI, (Refs. 1,8).  An interpolation expression is proposed for Tll 
which allows us to describe the behavior of Im M, from the region of weak fields to the limits of 
the region of strong fields. The value of the spin-diffusion coefficient Do is determined. 

It is well known that ferromagnets possess a pro- 
nounced nonlinearity in their magnetic properties in the 
fluctuation-dominated paramagnetic neighborhood of T,. 
Ref. 1 contains a theoretical analysis of a number of dynamic 
effects caused by this phenomenon, as well as a discussion of 
the very few papers in which it is investigated experimental- 
ly. However, these phenomena are still very ill-studied. 

The nonlinear contribution to the response of a ferro- 
magnetic to an external uniform harmonic magnetic field of 
amplitude ho and frequency w leads to the generation of 
higher harmonics of the excitation frequency. Since the mag- 
netization of a ferromagnet above Tc is an odd function of 
the field, only odd harmonics can appear when the field has 
no constant component H. Although the even harmonics are 
an even function of h,, they are odd in H; therefore, in order 
to observe them we need a constant field. 

This paper is devoted to a theoretical and an experimen- 
tal investigation of the second-harmonic magnetization M2 
of a cubic ferromagnet, caused by nonlinearity in its longitu- 
dinal response (Hllh,), under conditions where M2 - h i. In 
this case, the expression for M2(t)  induced by a field 
h ( t )  = ho sin o t  can be written in the following form: 

dition Im X, ( 0 )  > 0 follows from the requirement of posi- 
tiveness of the energy absorbed by the body located in the 
external field, while the contribution to the absorption from 
Im x2 (0) is negligibly small. ' In the fluctuation-dominated 
neighborhood of Tc, the asymptotic behavior ofx, in w and 
H can be determined in a number of simple cases from con- 
siderations of dynamic similarity.' The detailed functional 
form of X, (w ) in the critical region is not analyzed. 

We know of only a few experimental papers regarding 
the investigation of the nonlinear dynamic response of ferro- 
magnets to an external field above Tc .3s4 In these appears the 
dependence of the amplitudes of the higher harmonics on 
T = ( T  - T,)/T, is investigated for H = 0 (without separ- 
ating the phase components) for the cubic ferromagnets 
CdCr2S4 and CdCr2Se, in the dipole region of temperatures 
47rx > 1. It was observed that in the immediate vicinity of T, 
the magnets possessed anomalous dynamic properties, 
which up to now have not received any theoretical explana- 
tion. In the region 2 0 2 4 ~ ~  > 1, where only the odd harmon- 
ics were observed, it was possible to carry out a comparison 
with similarity theory in one limiting case: at sufficiently low 
frequencies, the dependence on T of the third harmonic am- 
plitude of the magnetization M3 under conditions where 

Herex, (w) is the second-order dynamic susceptibility, 
which describes the nonlinear longitudinal response and is 
expressed in terms of the fourth-order spin Green's function 
of the mag-net.ls2 Using this relation and symmetry consider- 
ations, we can determine the general properties ofx,(w) . ' r 2  

Let us list several of these. By virtue of the reality of the 
response, x,(w) = X: ( - w ) . The function x,(w) is odd in 
H, and since the entire susceptibility is described by a retard- 
ed response, it is analytic in the upper-half o plane. In con- 
trast to the linear susceptibility, the quantity Im x,(w) for 
w > 0 is not required to have a definite sign, because the con- 

M,ah:  was found to agree with its static limit: 
( ) M3/h : a d 'M/dH ( H  = 0) .  Data on the amplitudes of 

those higher-harmonic components that reduce to zero as 
w-0 (i.e., those that have no static limit) in the normal 
dipole region were not obtained, due to the small contribu- 
tion they make to the signal in the region of frequencies em- 
ployed in experiment. The problem of isolating this contri- 
bution is further complicated by the fact that these authors 
did not separate the phase components of the signals they 
recorded. Let us note that, generally speaking, even harmon- 
ics have not been studied in the dipole region, let alone in the 
exchange region ( 4 q  < 1 ) where the magnitude of the sig- 
nal is greatly reduced in proportion to the decrease in the 
value of the susceptibility. 
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The experimental method used in this paper allowed us 
to operate with weak signals. We have demonstrated this 
previously in our studies of solid magnetically-dilute para- 
magnets and their alloys under conditions where single-par- 
ticle nonlinear effects p r e d ~ m i n a t e . ~ , ~ , ~  In this case we 
showed that it is possible to investigate paramagnets in 
which no EPR signal is observed due to large line widths or 
appreciable splitting in zero-field.' The second harmonic 
was also reliably observed in high-grade crystals of 
La,CuO,, a material which is currently under intense study 
and which, as is well-known, exhibits no EPR signal. This 
being the case, there is clearly no advantage in studying M; 
for this material, in the absence of any detailed interpreta- 
tion of the results of investigations of M2 in magnets that 
undergo phase transitions. We recall that in La,CuO, there 
is a phase transition to the antiferromagnetic state. 

One of the reasons for the appearance of a nonlinear 
response in the single-particle approximation is the field de- 
pendence of the spin-relaxation timee6 As we will see, nonlin- 
ear effects of this kind also arise in concentrated magnets 
that undergo a phase transition, in which the influence of the 
AC magnetic field on the relaxation process reduces to a 
dependence of the relaxation rate T on the instantaneous 
value of the field H ( t )  = H +  h ( t ) .  The part ofx,(w) that 
corresponds to this effect does not have a static limit. The 
primary contribution, which is cc w/r,  enters into the phase 
component M,"" cc Im X, (w 1. A second and more trivial 
reason for the appearance of the second harmonic in the 
longitudinal response is the nonlinearity of the magnetiza- 
tion curve M(H) .  This part ofx,(w) has a static limit, and 
contributes primarily to the phase component 
MyocRe  ~ ~ ( 0 ) .  

In this paper we investigate the properties of x2(w) ,  
both theoretically and experimentally, for the cubic ferro- 
magnet CdCr,Se, (T ,  z 129 K)  in the exchange regions of 
temperature and field [ 4 q (  T,H) < 1 ] and at comparative- 
ly low frequencies for which the Lorenz formula correctly 
describes the linear response. 

The purpose of this paper is to obtain experimental data 
in the exchange region under both weak- and strong-field 
conditions, and to analyze these features quantitatively 
based on existing theoretical ideas. In addition, in this paper 
we address the question of how to isolate from the total sig- 
nal that portion which is due to the effect of the AC field on 
the relaxation processes, which in our view is the most inter- 
esting part. 

The dependence of rll on H for a ferromagnet was ana- 
lyzed in Ref. 8. It is important to emphasize that not all of 
this dependence leads to a nonlinear response. The theoreti- 
cal investigation of this group of questions is the subject of 
Sec. 1 of the paper, where we determine the function ,y2(o) 
and propose an interpolation expression that describes the 
behavior of TI,  (H) from the region of weak fields up to the 
limits of the strong-field region. This expression is required 
for our analysis of the experimental data. In Sec. 2 we briefly 
describe our experimental method. In Sec. 3 we present the 
results of our experimental investigation of the r-depend- 
ence of the two phase components of x,(u) at a fixed fre- 
quency f = 15.7 MHz for two values of the field H, along 
with a discussion of the experimental results. 

Comparing theory and experiment allows us to deter- 
mine the rate of longitudinal relaxation of the magnetization 

TI, (r,H) in the exchange region. As far as we know, this 
kind of data on the H-dependence of Tll has never been ob- 
tained from investigations of the longitudinal linear re- 
sponse. 

We discuss how the r-dependence of the attenuation rlI 
for fixed H obtained in this paper differs from the r-depend- 
ence of r, obtained previously using the EPR method." 

1. xz(w) FOR A CUBIC FERROMAGNET IN THE EXCHANGE 
REGION 

It is well-known that for not-too-high frequencies the 
linear longitudinal susceptibility of a cubic ferromagnet in 
the exchange region is described by the Lorenz formula in 
the uniform limit, with rll determine by dipole forces that 
are included via perturbation theory.'38 The behavior of 
Xi')  (a) can be obtained from the Bloch equations. Under 
the same conditions, the Bloch equations can also be used to 
describe the behavior ofxh2' ( w  ), if these equations are modi- 
fied in an obvious way to include the nonlinearity of the 
magnetization curve and the requirement that the fields re- 
lax to the instantaneous value of the magnetic field (this 
approach is used in the analysis of single-particle nonlinear 
effects in the high-temperature region, where the nonlinear- 
ity of the magnetization curve can be neglected3" ): 

Here AM(t) = M ( t )  - M, is the deviation of the mag- 
netization from its static equilibrium value caused by the AC 
field h ( t ) ,  while = dM/dH, = (1/2)d2M/dH2. 
In essence, we have expanded the equilibrium magnetization 
on the right side of the equation in a power series in h ( t ) ,  
which allows us to represent the relaxation to an instanta- 
neous value of magnetic field explicitly while taking into 
account the nonlinearity of the magnetization curve M(H)  . 
The latter is treated in an obvious way by the term involving 

xi2'. 
Let us turn to an analysis of rlI for a ferromagnet. For 

Tll we will use the uniform-limit expressions obtained in 
Refs. 1 and 8, in which we take into account the influence of 
the AC field. Let us recall that in Refs. 1 and 8 Til was 
calculated within the relaxation time formalism, which in- 
volves the use of pair correlators of the spin density for the 
total spin of the system obtained by averaging with respect to 
an equilibrium distribution function. The attenuation Tll is 
determined by the decay of the uniform mode into exchange 
fluctuation modes, a process that is mediated by dipole 
forces. A magnetic field can change rll in two ways. First of 
all, the field affects the equilibrium distribution function, 
leading to a "static" H-dependence of both the mode ampli- 
tudes and the excitation spectrum. Secondly, the equations 
of motion change their form in the presence of a field. The 
transverse components of the spins precess in the field, lead- 
ing to a shift in the dispersion frequency of the transverse 
pair correlators by w, and to the appearance in the longitudi- 
nal correlator of components that depend on (w + w,) due 
to the interaction of the longitudinal and transverse modes. 
We emphasize that this shift is a consequence of the fact that 
the exchange Hamiltonian and the interaction with H com- 
mute. As a result, the function r,, (o,H) given in Ref. 8 has 
both static and dynamic (dispersive) H-components, the 
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latter consisting of a shift by w, and 2wo in those terms that 
have the form of functions of w w, and w + 2w0. In the 
low-frequency region, where the dispersion of rll is not im- 
portant (the corresponding criteria will be given below), the 
response can be analyzed on the basis of the Bloch equations 
with Tll (o,H) =: rll (0,H). In this case the effect of the AC 
field on the relaxation processes will be manifested as a mod- 
ulation of the precession frequency. In the low-frequency 
region, this effect reduces simply to replacing the static field 
Hby its instantaneous value H(t) = H + h ( t )  in the expres- 
sion for the precession frequency w, = gpH, in complete 
analogy with the single-particle case. 

From Eq. ( 2 )  it is easy to determine xi2' (w): 

where rll = r,, (H,~, ,T)  and = (H,T). 
The first term in (3) is due to the nonlinearity of M(H) .  

Its structure is analogous to Xi"(o),  since it measures the 
deviation of AM(t) from xi2'h '(t). The second term is a 
consequence of interference between the dynamic part of the 
linear response, given by the difference AM(t) -xi1)h(t) ,  
and the linear term in the expansion of rl, [w,(t) ] with re- 
spect to h( t ) .  The quantities ril and Xi1) are even, while 
(d  /dwo)rll  andx(12' are odd functions of H. It is easy to see 
that possesses the correct symmetry and analytic prop- 
erties. 

We now consider the properties of Tll  (H,~, ,T)  and de- 
termine the limits on admissible values of w in ( 3 ) .  Let us 
recall the frequency scales in the problem. The characteristic 
energy for critical fluctuations is R(T) cx T,,r5I3 [here we 
have taken into account the fact that the Fisher index r ]  in 
three-dimensional systems is negligibly small, while the 
critical index for the correlation length is v=2/3 (see Ref. 
I ) ] ,  and the dipole attenuation in zero field 
T,(T) a wd2( T,r) - I, where wd = 4 ~ ( g p ) ~ / u ,  is a charac- 
teristic dipole energy. Here v, is the volume of an elementary 
magnetic cell. In the exchange region R (T)  ) T,(T). The 
field is weak if w, < R (T) , and strong in the opposite case. 

The dependence of rll on o and H in a weak field is well 
known.' Let us recall the results of Refs. 1 and 8, where it 
was shown that in the hydrodynamic region (g<x, where q 
is the momentum of the critical fluctuations and z is the 
inverse correlation length) the appearance of irregular dis- 
persion corrections to r, with respect to H and w (where r, 
is the Huber attenuation in zero field) is caused by the non- 
trivial frequency and field dependences of the kinetic coeffi- 
cients (LII  = xlI Tll ), which in turn are due to the existence 
of singular points associated with the decay of the critical 
modes. The main contribution to the correction to T, is 
caused by double decays.',' The most interesting interval is 
R (T)  ) w,) To, where important dispersion corrections to 
r, appear that are caused by diffusive modes. We note that 
the characteristic scale over which these corrections vary as 
a function of w and H is not R ( r ) ,  but rather the Huber 
attenuation r, = you: ( T,T). The corresponding expres- 
sion for o = 0 has the form 

Here yo and C are positive coefficients of order unity, 
CI, a 0, 3/2, D = 0 , ~ " ~  = Cd 'TC is the coefficient of 
spin diffusion, d is the magnetic lattice constant, andois the 
amplitude of the critical su~ceptibility.~ The dependence of 
Don Tin (4)  enters into the overall exponent that r is raised 
to in the second term. The diffusion correction to (4) is the 
primary term that determines the H dependence of rll in a 
weak field. The regular corrections are of order [w,/R(r) ] 
and [ H  /R ( T )  12, and we can neglect them. If o f 0  holds, 
then in place ofw, in (4)  there appear terms with o - w, and 
w + w,. From this there arises a frequency limitation w gw, 
in (3) ,  which is more restrictive than the usual condition for 
applicability of the pole approximation w 4 R(T).  This is 
quite natural, because in (3)  the factor d r l l  /dw,is due to the 
dispersion of r l l .  

The expression for the attenuation in the region of small 
fields gpH = w,) R (T), where the primary energy scale is 
determined by the field and the characteristic size of the 
critical fluctuations becomes the quantity 

is also well-known:' 

Here y$ is a constant coefficient of order unity. 
In order to analyze the experimental data we had to 

have an expression for rll that was correct both in weak and 
strong fields. Because its calculation does not appear to be 
possible, we present here an interpolation formula which re- 
duces to expression (4)  for rll in a weak field, is in agree- 
ment with dynamic similarity, takes into account the anisot- 
ropy of fluctuations in the field, and finally-this is very 
important-contains a "dynamic" dependence on a, and a 
"static" dependence on H: 

Here X, = M/H, xIl -xi1' = dM/dH are the trans- 
verse and longitudinal susceptibilities, Cll and C, are fitting 
parameters (i = 1,2,3), C, > 0, and i, is a dimensionless 
susceptibility, i.e., X, normalized in such a way that 
XI = T - 4/3 under weak-field conditions in the exchange re- 
gion. A specific expression for i, will be given below. By 
introducing xil and X, into the expression for r i l ,  we can 
transform the dependence on r into a scaling dependence on 
Hand T, which makes it possible for us to describe the behav- 
ior of rIl as we pass from the weak-field to the strong-field 
regime. The dependence on o, is exhibited in explicit form, 
while the "static" dependence on H is contained in 2, and 
x ~ ~ , ~ .  The terms with C2 and C, describe the anisotropy. 
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Let us describe the considerations that led us to calcu- 
late r in the form (6) .  Consider the term with wi in a weak 
field, wherei, 5/2z (r5/3)2- f12(r), xII /xL z 1. It is not dif- 
ficult to show that this expression corresponds to the contri- 
bution to Tll  from the decay of the uniform mode into two 
transverse modes or a transverse and a longitudinal mode, a 
contribution coming from the region of momenta q - x. The 
appearance of is caused by the spectrum of transverse 
modes which has the form w (a, + b *gpHq2/x2) + i rq ,  
where b * - 1 and I?, - f l ( r )  when q-x (see Refs. 8, 10). 
We omit an interference term proportional to wJY which 
appears along with 0:. In an arbitrary field T is replaced by - 
X; 3/4 in the term with wi, the diffusion term, and the overall 
factor of r- ' in (4) .  This implies that for arbitrary fields we 
must replace x, which is the weak-field effective scaling of 
the momentum for decay into transverse modes, by the natu- 
ral static scale x, ax; for the transverse modes. The 
overall factor  of^,/^^^ in (6)  includes the fact that the per- 
turbation-theory plot corresponding to Tll is proportional to 
xl; I .  Finally, the distinction between decays into two trans- 
verse modes and a longitudinal mode is taken into account in 
a simple way, i.e., by the ratio of the amplitudes of these 
modes in the terms with C, and C,. We will see that Eq. (6)  
contains enough parameters to reconstruct the function 
Tll (H,wO,r) from the experimental data. 

We also need expressions  for^^,^. These susceptibilities 
can be determined from the experimental data, since for 
w g r,, we have, according to ( 3), that 

Re xi2)(0)  = xi2) = 1/2(d / d H ) x I .  

We will use the known two-parameter representation for the 
dimensionless xl1,, (Ref. 11 ) which is written in a form that 
is convenient for us as follows: 

Here A,  a are positive coefficients. In this approxima- 
tion the theoretical value of a = 2y/3 = 8/9, h = g,uH/T,. 
The function p(x) decreases monotonically from unity to 
zero asx varies from zero to infinity. The parameters A and a 
have a clear physical meaning. The function X I  (r,h) has a 
maximum with respect to r for fixed h, whose position is 
determined by the coefficient a. In this case the value of the 
amplitude ofid at its maximum is proportional to A "'. The 
susceptibility X, for h = const decreases monotonically with 
increasing 7. The maximum anisotropy xII /x1 = 1 - a is 
reached for r = 0. The reason for introducing a two-param- 
eter representation for xII,, is obvious-it enables us to in- 
clude not only the r-dependence of x but also its h-depend- 
ence, so that the susceptibility is fully specified in an 
arbitrary field. Including the correct scale factor is not diffi- 
cult when we use experimental data9 based on the static sus- 
ceptibility. 

2. EXPERIMENTAL METHOD 

In our experiments we investigated the longitudinal 
nonlinear response to a harmonic magnetic field in the pres- 
ence of a constant field [H( t )  = H + h, sin wt] at the sec- 
ond harmonic 2w of the excitation frequency. The phase 
components of the second harmonic of the magnetization 
M2 were recorded for the sample under study as a function of 
the magnitude of the constant magnetic field for different 
values of temperature. The frequency of the AC field was 
f = w/27~ = 15.7 MHz. Although the experimental setup 
and method of calibrating the phase of the reference voltage 
at 2w in order to separate out the phase components of M, 
were essentially described in Ref. 7, there are certain differ- 
ences, which we will touch on briefly, associated with the 
need to make measurements in a constant magnetic field H. 
They are reflected in Fig. 1. In this setup, the high-frequency 
(hf) coil of I (Fig. 1 ), which creates the AC magnetic field 
within which the sample under study is placed, is situated in 
a separate electromagnetic shield 2 and thermal isolation 
shield 3, and is taken out from the remaining high-frequency 
elements of the operating detector. The coil is connected to 
these elements by means of a coaxial cable 4. This is done so 
as to decrease the influence of the constant field H on the 
remaining high-frequency elements of the detector, which is 
manifest in these elements as a parasitic signal that depends 
on H.' The hf coil is placed in the gap of an electromagnet 
together with sweeping coils 5 for the magnetic field Hand  
output elements of two thermal stabilization systems-one 
system for stabilizing the temperature of the hf coil and one 
for stabilizing the sample temperature, in which we used 
nitrogen vapor as a cooling agent. Separation of the fluxes of 
the two systems was ensured by a quartz diaphragm 6. 

The measurements were carried out for two values of 
the constant magnetic field, H = 1.5 kOe and H = 3 kOe, 
both on single-crystal CdCr2Se4 and on samples consisting 
of groups of small single crystals placed on the surface of the 
quartz sample holder 7 in a single layer. The size of these 
small single crystals was less than 35 X 15 x 15 ,um3. This 
type of sample 8 ensured a considerably larger surface for 

FIG. 1. Schematic of a portion of the operating detector placed in an 
electromagnet: 1-high-frequency coil, 2 and 3-electromagnetic and 
thermal isolation shields, respectively, 4--coax, 5-scanning coil for 
magnetic field, 6-quartz partition, 7--quartz sample holder, 8-sample 
under study, 9-thermocouple. 
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thermal contact with the heat sink of the thermal stabiliza- 
tion system. Comparison of the experimental results for a 
single crystal and the polycrystalline samples did not show 
any appreciable difference in the shape and magnitude of the 
signal. We note that the signal shape, both for a large single 
crystal and for the small single crystals, can roughly be rep- 
resented as an ellipsoid with axes that differ from one an- 
other by a factor of two, the large axis being oriented parallel 
to the field. The experimental data near Tc allow us to esti- 
mate the influence of absorption of the H F  power due to 
dielectric and magnetic losses at the sample temperature, 
and to choose the amplitude of the H F  field h, such that 
these effects are smaller than the measurement error at that 
temperature, which for reasons we will describe below was 
rather large, about 0.2 K. 

Yet another limitation on the amplitude of the hf field 
h, at zero constant field follows from the condition 
gpho(C2(r). In our experiment the closest approach to Tc 
was the valuer = 3.88. l op3 ,  at which h 7' = 96 Oe. In our 
case, where the constant fields H = 1.5 kOe and 3 kOe are 
comparatively large and the dipole interactions considerably 
suppressed, the limitation on h, was less severe. From these 
considerations we chose an amplitude h, = 6 Oe. 

The measurements were carried out in the temperature 
range 129.5 to 146 K. The temperature was measured with a 
thermocouple 9 (Fig. 1)  made of copper-constantan, with 
the temperature of one of its junctions fixed at 0 "C. Calibra- 
tion of the thermocouple was accomplished by tying its read- 
ings to specific well-determined temperature points 0 "C, 
100 "C, - 195.8 "C, using well known fifth-degree polyno- 
mial approximations to describe the temperature curve of 
the thermocouple. " The zeroth-order approximation for the 
coefficients of the polynomial was obtained from tables of 
data in Ref. 13 for a sample copper-constantan thermocou- 
ple. Corrections to the coefficients for the real thermocouple 
were determined by matching at the temperature points de- 
scribed above. The error in determining the temperature 
came to 0.1 K. Since the thermocouple was located a certain 
distance from the sample under study in order to keep it 
from being heated by the hffield, a temperature gradient was 
present, and consequently an additional error in determin- 
ing the sample temperature. The total error in measuring its 
temperature came to (0.2 K. 

1 

Re M,, 
rel. units 

- 

-300 -200 -700 0 100 ZOO JOO 

FIG. 2. Real part o f  the second harmonic signal as a function of H for 
symmetric scanning o f  Haround zero field near T,  : 1-T = 127.6 K ,  2- 
T =  129 K ,  3-T= 129.9 K .  

Matching of the thermocouple readings to the tempera- 
ture of the sample was accomplished using the Curie tem- 
perature as a reference. In order to determine the Curie point 
we investigated a known feature of the behavior of the sec- 
ond harmonic of the magnetization M2 in a weak field H- 
the fact that the temperature dependence of its amplitude is a 
maximum at Tc (Ref. 3).  The portion of the experimental 
results used to determine T,, i.e., the phase components of 
Mz near T, as a function of H,  were obtained by symmetric 
scanning of H through zero field and are shown in Fig. 2. The 
scanning frequency of H was 1 Hz, and the amplitude of the 
AC field in this case was ~ 0 . 3  Oe. The character of the 
dependence of Mz on H below Tc became very complicated 
and is not the subject of analysis in this paper. We note only 
that, depending on the value of H, excess noise appeared 
over and above the noise input from the detector at a certain 
A T  = T - T, below T,, which disappeared as H increased 
without changing the temperature of the sample. We also 
observed hysteresis in several regions of H (but not on all 
curves), along with the appearance of additional extrema of 
the signal whose position changed as we varied the tempera- 
ture. This behavior is apparently due to domain-formation 
processes. 

3. RESULTS AND DISCUSSION 

The experimental results for nonzero values of the con- 
stant magnetic field H (the pedestal) equal to 1.5 kOe or 3 
kOe for a constant scanning range AH (about 70 Oe) are 
straight lines with an accuracy (%lo)%, whose slope 
changes as a function of temperature. We calculated the ra- 
tios AM2'OS /AH and AMzsin/AH (the slope angles) be- 
cause the 7-dependence of the derivatives is considerably 
stronger, with characteristic special points (a  zero or a maxi- 
mum). The ratios AMzC0VAH and AMZs'"/AH are respec- 
tively the real and imaginary parts of the second harmonic 
response. Figures 3 and 4 show these experimental points in 
arbitrary units as a function of AT = T - Tc for H = 1.5 
kOe. The error present in the experimental curves was 
caused primarily by errors in measuring sample tempera- 
ture. In reality the variation of the sample temperature 
causes a change in the amplitude of the signal, which is pro- 
portional to the derivative with respect to 7 of the experi- 
mental curve. Therefore, the errors are unequal at different 

Re(AM,lAH), rel units 

FIG. 3. Dependence o f  Re( AM, /AH)  = AMZC""/AH on AT for H = 1.5 
kOe. The parameters o f  the theoretical curve are a = 0.7 + 0.02, 
A = 0.33 + 0.1. 
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FIG. 4. Dependence of Im(AM,/AH) = AMZMn/AH on AT for H = 1.5 
kOe. a-strong-field region 2.5 K > A D 0 . 5  K; in the approximation we 
used the limiting formula ( 5 )  for TI;  y? = 3.9 + 0.8. b-weak-field re- 
gion A D 1 2  K: the limiting formula ( 4 )  was used to approximate T I , ;  
CII = 1.45 f 0.7. c-approximation of the curve in the region A D 3  K. 
The interpolation formula ( 6 )  was used for TI,; C, = 0; C, = 1.6 + 0.1; 
C, = - 2.14 + 0.15; C,, = 1.49 i 0.1 1-F, (theoretical curve)-dy- 
namic part, which does not have a static limit, caused by the @,,-depend- 
ence of rll . 2-F2 (theoretical curve)-contribution from frequency dis- 
persion of x,. 3-F, + F2 = AMZvn/AH. The normalizing factor is the 
same for a, b, c. 

points on the experimental curves. The minimum error was 
determined by the input noise of the detector. 

Because the theoretical results presented above, which 
were used for the analysis of the experimental data, were 
obtained to lowest order in ho (i.e., - ho2), it should be noted 
that we carried out a preliminary check of the dependence of 
the signal amplitude on h, both in a field H = 1.5 kOe and in 
H = 3 kOe. It showed that the quadratic dependence on ho is 
obeyed up to an amplitude h0z20  Oe in the temperature 
range D T, . In the experiments, as we have already noted 
above, we used an amplitude h o z  6 Oe. 

We note also that over the entire temperature range 
used in the experiment O<AT<20 K and in the presence of 
the constant fields H = 1.5 or 3 kOe, the following equation 
holds: 

as is clear from the experimental data regarding the magnet- 
ic susceptibility9 and theoretical estimates which are easy to 
derive using the results of Ref. 1. The reason that condition 
( 10) is fulfilled is obviously suppression of the phase transi- 
tion by the magnetic field. In the immediate neighborhood of 
T,, where the anisotropy of the susceptibility is consider- 
able, condition (10) for H =  1.5 kOe naturally holds less 
well for x,: 4 q ,  ( r  = 0)  ~ 0 . 6 ,  and better for xll : 
4 q l ,  ( r  = 0) ~ 0 . 1 8  (Ref. 9), i.e., we can assume that our 
experiments, in which the minimum value of the tempera- 
ture difference is AT=. 1 K, took place in the exchange re- 
gion. 

We must also determine the region over which the other 
important condition is fulfilled, i.e., the weak-field region: 

where k is Boltzmann's constant. It is not difficult to verify 
that gpH=.n holds for CdCr,Se, at ATz2.65 K when 
H  = 1.5 kOe, i.e., condition ( 11 ) is fulfilled for AT> 2.65 K. 
Let us also recall once more that' 

where Z = z$(S + 1 )/3 ( z o z  1 ); for CdCr2Se4 we have 
rd =. 1.56.10 - ', i.e., AT, =.2 K. In the presence of a con- 
stant field H21.5 kOe, as mentioned above, and a sample 
whose shape is close to ellipsoidal, such a value of AT, al- 
lows us to assume that the corrections to the magnetization 
are small (the estimates indicate less than 10%) in the tem- 
perature range AT> 2 K. 

The frequency limitation was mentioned previously. 
The frequency becomes comparable to R for AT~0 .09  K. 
Therefore, in the range of temperatures that we studied in 
our experiments, i.e., A D  1 K, we may assume that the fre- 
quency is small according to this criterion. Furthermore, 
data from EPR investigations9 show that for CdCr,Se4 the 
width of the resonance transition in the exchange region sat- 
isfies r > 3 0  Oe in field units, or r2277.10' in frequency 
units. An estimate shows that in our case w/T<O. 16, so that 
in analyzing the experimental data we may neglect terms of 
higher order in w/r .  

In order to analyze the experimental data we make use 
of expression (3)  forxi2'(w), taking (6)-(9) into account. 
From this, by virtue of the smallness of w / r  we obtain 

AM;'" (H, T) x h 2 . -  u {[sd" -------. ax,;1' d r ,  1 

A H O r,, d ~ ~  d ~  d ~  r,, 

d~, '"'  ( i ,  (drfl' 2 r i  drll )I} - [ r l l + x , ,  ---- 
rll a~ r,, a~ 

where rg = d r , ,  /dw,; F, describes the dispersive contribu- 
tion to xi2', taking into account the static field dependence 
of Tll (this is necessary since we are interested in 
AM,"'"/AH rather than M,"'" which is obtained in experi- 
ment), and F2 describes the contribution due to the function 
r [wo( t )  I .  

We compared the experimental data with the theory, 
taking into account our estimates of the boundaries of the 
weak-field region and the value of r,, in the temperature 
range A D 2  K. Because the interpolation formula ( 6 )  pro- 
posed above gives the required field dependence of rll in the 
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strong-field region' and a correct expression for Tll in the 
weak-field region, we expect it to describe the behavior of TIl 
adequately in the intermediate region as well. Expression 
( 13), which contains three fitting parameters (a,  A,  and the 
normalization) taking into account (7)-(9), was used as an 
approximation for AM,""~AH, i.e., the curve shown in Fig. 
3. Here and in what follows, we determine the fitting param- 
eters and the normalization factor are by standard methods, 
i.e., minimization of the sum of squares of the deviations of 
the theoretical curve from the experimental points. In this 
case we obtain the following values of these parameters: 
a = 0.7 + 0.02; A = 0.33 + 0.01. The theoretical curves are 
shown in Figs. 3 and 4 (the solid curves). 

Using Eq. ( 14) and taking (7)-(9) into account, we 
constructed an approximation for AM2"*/AH; the results 
are shown in Fig. 4. In this case we made use of the values of 
a and A we had already found without further changes. In 
Fig. 4b we show the results of our approximation using the 
exact expression (4)  for Tll , which is valid for the tail of the 
experimental curve in the weak-field region, and in that re- 
gion of temperatures where we can neglect the anisotropy of 
the critical fluctuations, i.e., AT>12 K. As fitting param- 
eters we used Cl, and the normalization. We obtained the 
value Cll = 1.45 f 0.7. The error in determining Cll is large, 
since in this region of AT the experimental curve is rather 
featureless. Continuation of this theoretical curve into the 
region AT< 12 K, where, as is clear from Fig. 5, consider- 
able anisotropy is already present, shows a significant dis- 
agreement with the experimental points, which attests to the 
importance of including the temperature dependence of the 
anisotropy of critical fluctuations even under weak field con- 
ditions in the exchange region. 

In Fig. 4a we present the results of approximating the 
experimental curves Im(AM,/AH) using Eq. (5)  for T i1 ,  
which is valid in the strong-field region gpH > R ( t ) .  The 
approximation was carried out only for the first four points, 
for which the strong-field condition was fulfilled approxi- 
mately. Retaining the normalization constant obtained in 
the previous case for the tail of the experimental curve, we 
found that y;i = 3.9 0.8. It is true that at these tempera- 
tures the proximity to the dipole region, which is not includ- 
ed in the magnetization calculations, can introduce a consid- 
erable amount of error. 

In Fig. 4b we show the results of approximation using 

C 
I I I I ~ I I ~ I I I I I J  

0 4 8 12 AT, K 

FIG. 5 .  Dependence o f x 1  (curve 1)  a n d x ,  (curve 2)  on AT for H = 1.5 
kOe. 

the interpolation expression (6)  for Tll  . In this expression 
there are four fitting parameters plus the normalization, i.e., 
five parameters in all. Despite the large number of param- 
eters to be determined the problem is correctly posed, since 
the presence of a maximum, minimum, and zero on the ex- 
perimental curve already gives the necessary number of 
equations. We note that in the limit C, = C2 = C, = 0 for 
the experimental points corresponding to Fig. 4b (in the 
tail), use of Eq. (6)  as an approximation for rlI gives the 
same results for the constant Cll and the normalization fac- 
tor as does the use of the exact expression (4)  for the weak 
field. 

In the region of temperatures AT>3 K, use of the ap- 
proximation leads to the following results. The coefficient 
C,, i.e., the field correction to the Huber attenuation, is 
found to equal zero. The values of the remaining parameters 
are as follows: C, = - 1.6 +_ 0.1; C, = - 2.14 + 0.15; and 
CI1 = 1.49 + 0.1. It is clear from this that the value of the 
constant CII to good accuracy coincides with the value ob- 
tained in the limiting case for the tail of the experimental 
curve. The normalizing factor also coincides with the factor 
obtained in this limiting case to within 20%. Curves 1 and 2, 
which are shown in Fig. 4c, reflect the dependence on ATof 
the functions F, introduced into ( 14) (the dispersion contri- 
bution from xi2') and F, [the contribution caused by the 
dependence of Tll  on wo(t) 1. The parameters C2 and C, have 
values -2, i.e., they are well-defined. The fact that they are 
contained in the factors that determine the effect of the ani- 
sotropy attests to their considerable influence on the relaxa- 
tion, even in the weak-field region, starting at temperatures 
where the anisotropy of x becomes appreciable. This agrees 
with the conclusion arrived at from the previous analysis. 
The coefficient CII for the diffusion correction to T l l ,  which 
depends on wo(t), can be correlated with results obtained by 
EPR method9 in the exchange region under conditions 
xI =xi,. From Ref. 1, by taking into account the difference 
in the constant coefficients ( T i  - 1 + 25/2, 
T;-5/2+2'/'), isolating an overall factor 
h ' / 2 ( ~ i / ~ c  ) T " / ~ ,  taking into account that in our case, ac- 
cording to ( 6),  yo is an overall factor for r I ,  and using the 
value of the constants from Ref. 9, we find for the diffusion 
correction 

In our case 

where CII = 1.49 + 0.1, as we proposed above. From this we 
obtain Cz0.115 and Do = (24.5 f 6 )  M~v-A' ,  which, tak- 
ing into account the errors, is rather close to the value 
Do= 15 3 of Ref. 9. 

In Fig. 5 we show the dependence of the quantities xII 
andxI, normalized according to the results of measuring the 
static ~usceptibility,~ on AT. The character of the variation 
ofxl l  andxI in the presence of a constant field H i s  found to 
be in agreement with the experimental data obtained by mea- 
suring the static magnetic ~usceptibility.~ In Fig. 6 we show 
the dependence of Tll = To + ATh - T"' - Ti2' on AT I - I 1  
(curve 3 ) ,  plotted according to Eq. (6)  while using the val- 
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lo3r;l ,  rel. units r,, Xll , rel. units for H = 1.5 kOe. To this end the experimental points for 
'92 - - 24 H = 1.5 kOe were recalculated in the region H = 3 kOe, us- 

ing the following expressions: 

AT, - H2 3/5 A? 14/5 

- - (7~;) =:1.52,=-- - (  - ~ 0 . 1 4 4 ,  
AT,, A ;:; 

078 - A "i" 11/5 

14 A L =  ‘in (2) ~ 0 . 2 1 8  
1.5 

obtained from scaling relations between h and r. Here 

074 - HI = 1.5 kOe, H, = 3 kOe, A " = AM;/AH, n = cos, sin; 
A T,A ; are the values in the region H = 3 kOe obtained from 
the experimental values AT,,,, A ;',, are for H = 1.5 kOe. 
The results of the recalculation, together with the experi- 
mental points for H = 3 kOe, are shown in Figs. 7a, 7b. 

0 4 8 12 AT,K There is good agreement between theory and experiment for 
Re(AM,/AH) with a disagreement which goes somewhat 

FIG. 6. Dependence of TI!, r , ,  r Z ,  and LI  = T I I ~ I l  on A T  for H =  1.5 
kOe: 1-r, (in the weak-field region this is the Huber attenuation); 2- 
r2 (in the weak-field region this is the o,,-dependent diffusion correc- 
tion); 3-rll = r, - r 2 ;  &LI = r l I~ l , .  

ues of the parameters Ci ( i  = 1-3) and CII presented above. 
Here we also show the AT-dependences of the individual 
parts of TII  , i.e., Ti1) in curve I (in a weak field this is the 
Huber attenuation) and Ti2' in curve 2 (in a weak field this 
the h-dependent correction from the diffusion mode), as 
well as the dependence of the quantity Ll l  = r l l ~ l l  on AT in 
curve 4 (here Ll l  is the kinetic coefficient of Ref. 1 ). The 
transformation of the function Ti2' which takes place when 
we pass from the weak-field regime to the strong-field re- 
gime is interesting. For the weak-field regime we have 
expression (4) .  As r decreases the "diffusion" term de- 
creases, and then changes sign, in the intermediate region. 
This transformation is completely natural, since in a strong 
field only one scale remains for the characteristic energy- 
the energy gpH- Cl (H)-and the frequency region 
[gpH< Cl (7) ] that is the origin of the "diffusion" term in Tll 
disappears. It is clear from Fig. 4c that the expression ( 14) 
gives a rather good description of the experimental data. 
This implies that the parametrization we have proposed here 
with a minimum number of parameters adequately reflect 
the features of the behavior of Tl l  . 

The attenuation Tl l  (T)  shown in Fig. 6 increases mono- 
tonically as r decreases. At the same time the function 
T, (T),  which describes the EPR line width, has a maximum 
at fixed H whose position is determined by the field.g In 
order to understand the origin of this sharp difference in the 
behavior of Tll and T,, let us compare the T-dependence of 
the kinetic coefficients LI,,, = TI l , , ~ l l , , .  The coefficient 
Lll  (7) (Fig. 6, curve 4) increases monotonically as T-0. 
Using the data of Ref. 9, we can verify that the same charac- 
ter is seen in the function L, (7) for H = const. Thus, the 
difference in the behavior of Tll and r, in a field originates 
primarily in the anisotropy of X. 

The analysis of the experimental data given above was 
carried out for H = 1.5 kOe, where the results are more reli- 
able in the sense of measurement accuracy. In order to con- 
trol the accuracy of the results obtained, we carried out mea- 
surements at H = 3 kOe and the same value of h, as we used 

beyond the range of experimental error only in the region of 
maximum signal in the vicinity of the boundary of the 
strong-field region. Satisfactory agreement is also obtained 
for the dispersive part of the response Im(AM,/AH). The 
rather small difference is most likely connected with the dif- 
ference in the frequency dispersion ofx, (w ) for H = f .5 kOe 
and H = 3 kOe. In the analysis above we used the static limit 
for Re x , ( w ) z R e  ~ ~ ( 0 1 ,  and assumed that Im 
x,(w) -w/T Because TIl  (H = 1.5 kOe; T) > Tll (H = 3 
kOe; T ) ,  this condition is fulfilled badly for H = 3 kOe, 
which also is the origin of a certain disagreement in the time 
dependence when the "scaling" method is used for recalcu- 
lation. These factors obviously explain the small discrepan- 
cy in Re(AM,/AH) shown in Fig. 7a, which was mentioned 
above. The fact is that Re(AM,/AH) contains a small ad- 
mixture from relaxation effects that is proportional to w/Tll 
Im ( AM,/AH) ,,, = w/Tll F,. 

We also note that we have not included the contribution 
of the spin lattice relaxation T,, to rll in Eq. (6),  which is 
caused by spin-phonon coupling.9 The fact is that this term 
does not contribute to the relaxation part of the response 
AM,""/AH, which is proportional to d r i l  /dwo, since, likex, 
it depends only on the static field and is only weakly affected 
by its second part (proportional to the term in T I  ) while its 
value is known from Ref. 9. 

CONCLUSION 

The results of these investigations of the phase compo- 
nents of the second-harmonic longitudinal nonlinear re- 
sponse of the cubic paramagnet CdCr,Se, in the presence of 
a constant field in the critical paramagnetic vicinity of T, (in 
the exchange region, under weak-field conditions up to the 
edge of the strong-field condition) have shown that Re M, is 
caused by that part ofx, which has a static limit. The use of 
the well-known two-parameter representation for xi1' (Ref. 
1 1 ) makes it possible to obtain xi'' in the exchange region of 
longitudinal fields by applying standard approximation pro- 
cedures to the experimental curve. This allows us to carry 
out a detailed analysis of the imaginary part of M, and to 
isolate that portion which is caused by the frequency disper- 
sion of X, from the dynamic part, which does not have a 
static limit. This latter contribution is due to the effect of the 
AC field on the relaxation process. The mechanism that 
creates this response is revealed in the dependence of rIl on 
w,. We emphasize that the dependence on the static field, 
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A M;'~/AH, rel. units 

a 

A M ? ' ~ / A H ,  rel. units 

t t  
I I I I ~ ~ ~ I I ~ ~ ~ ~ I ~ I ~ , ~ J  

0 4 8 12 16 AT, K 

FIG. 7. Experimental results for AM2/AH for H = 1.5 kOe and H = 3 
kOe as a function of AT. The points with H = 1.5 kOe (and their error 
bars) are recalculated using the scaling relations, where the scale is set at 
the experimental points for H = 3 kOe: (0)-H = 3 kOe; (0)-H = 1.5 
kOe. 

e.g., in X, which is the limiting form of the T-dependence in 
the region of small T, does not lead to the appearance of the 
response mentioned above. In the limiting cases of weak and 
strong fields the experimental data for Tll  are correctly ap- 
proximated when expressions are used for Im(AM2/AH) 
that are well-known from the theory corresponding to these 
limiting  condition^,'.^ which allows us to determine the con- 
stant coefficients in the expressions for Tll  mentioned above. 

We have presented an interpolation expression for Tll 
that accurately describes the behavior of rll in the weak-field 
limit and takes into account anisotropy as the edges of the 
strong-field region are approached, and also contains a por- 
tion which is dependent on w , ( t ) .  Approximations of the 
experimental points for the imaginary part of AM2/AH that 
take into account the results of approximations for 
Re(AM,/AH) allow us to obtain well-defined coefficients 
for rll and to define the coefficient of spin diffusion Do. We 
note that the coefficient C ,  in the @,-dependent correction to 
Tll  turns out to equal zero in the approximating procedure, 
which confirms the sensitivity of the dynamic part of 

Im(AM2/AH) to its @,-dependence. Using our interpola- 
tion formula, we obtain a phenomenological T-dependence 
for rll and its parts I'i" and Ti2) from the region of weak 
fields up to the edge of the strong-field region. While the 
behavior of Tll  as a function of T differs from the behavior of 
r , ,  the behaviors of the kinetic coefficients LII  z T I I ~ l l  and 
L, z Tlxl coincide qualitatively in that both coefficients de- 
crease monotonically with increasing 7. This implies that the 
difference in behavior of r is essentially caused by the anisot- 
ropy of X. 

Especially noteworthy is the agreement in the limiting 
case of weak field between the descriptions of the experimen- 
tal data for Im(AM,/AH) using both the well-known limit- 
ing expression (4)  from theory and the interpolation formu- 
la ( 6 )  for TI ,  in the limiting case where anisotropy of critical 
fluctuations is not included, along with the values of the 
constants obtained in this case for the diffusion term in Tll 
and the normalization constant. Within the limits of experi- 
mental error, these same values of the constants are obtained 
when the largest part of the experimental curve, including 
the intermediate range of field values, is approximated by 
the interpolation formula for r I .  

We also note that this paper is the first example of a 
quantitative description of the nonlinear dynamic response 
caused by the influence of an AC field on relaxation pro- 
cesses. A quantitative description of this response has not 
been attempted before even for the simplest systems, where 
the single-particle approximation is applicable. Our work 
here show the effectiveness of the use of experimental ap- 
proaches of this kind in investigating concentrated magnets 
with exchange interaction, at least in the critical paramag- 
netic vicinity of the phase transition point. 
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