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We investigate states of an electron or hole captured by a diamagnetic impurity center in a 
semiconductor layer offinite thickness. By a diamagnetic impurity center (DIC) we mean an 
impurity center in a strong magnetic field whose effect on the electron states greatly exceeds that 
of the Coulomb interaction between the electron and the center. The magnetic field is directed 
perpendicular to the plane of the layer. Analytic expressions for the energy levels are obtained in 
which the dependence on the layer width, impurity position relative to the edges of the layer, and 
the magnitude of the magnetic field, is explicit. We show that as the width of the layer decreases, 
the levels shift towards shorter wavelengths, from the range of the discrete Coulomb spectrum to 
the range of size-quantized energies. The levels shift in the same direction when the impurity 
center is displaced from the symmetry plane of the layer. A special discussion is given of states of a 
DIC located at one of the boundaries of the semiconductor layer. Our results can also be used as 
an approximate solution to the problem of a diamagnetic exciton in a quantum well if the 
constituent electron and hole of the latter have very different masses. 

The energy spectrum and optical properties of multi- 
layer structures and single quasi-two-dimensional quantum 
wells with sizes on the order of 10-'-10-' cm are to a con- 
siderable degree determined by exciton states and states of 
current carriers that are trapped by impurity centers. A clear 
example of such a structure is the heterostructure that exists 
between layers of the semiconductors GaAs and 
Al, Ga, -,As (with x = 0.3), where the latter has a larger 
band gap width. In papers by a number of authors'-4 it was 
observed that excitons and impurity states play an important 
role in the formation of the absorption and luminescence 
spectra of these systems. 

The subject of this paper is the theoretical investigation 
of states of electrons (or holes) that are trapped by Coulom- 
bic impurity centers in a single quantum well in the presence 
of a very strong magnetic field, i.e., a field whose effect on the 
states of the electron considerably exceeds that of the Cou- 
lomb interaction of the electron with the center. By analogy 
with a Wannier-Mott exciton in a strong magnetic field (i.e., 
the diamagnetic exciton5), we will refer to such a center as a 
diamagnetic impurity center (DIC). In this paper, primary 
consideration is given to the investigation of the spectrum of 
hydrogenic states of the DIC. For the energy levels we obtain 
analytic expressions, which contain dependence on the layer 
thickness, the position of the impurity relative to the edges of 
the layer, and magnetic field, in various approximations. In 
the calculations we use the effective-mass approximation 
with a simple parabolic dispersion law, together with zero 
boundary conditions at the layer edges (i.e., a quantum 
well); we do not include the so-called "self-action" (see, 
e.g., Ref. 6) of the charges of the electron and center, assum- 
ing that the dielectric permittivity of the layer and the sur- 
rounding medium are close to one another. 

The results we obtain can also be used as an approxi- 
mate solution of the problem of a diamagnetic exciton in a 
quantum well, if the masses of the electron and hole are very 
different (i.e., m, %me ). In this case, by solving for the ener- 
gy eigenvalues of the problem of an impurity center with a 
light particle as a function of the position of the center within 

the well, we obtain adiabatic potentials for the states of the 
heavy particle. Our conclusions also form a basis for the 
theoretical investigation of magneto-optic properties of sem- 
iconductor heterostructures with specified spatial distribu- 
tions of impurity centers. In particular, we investigate states 
of the DIC located at the edges of the semiconductor layer. 

Let us consider a semiconductor layer of width d 
bounded by the planes z = + d /2, containing a Coulomb 
centerwithpositionsatisfying - d /2<z = b< + d /2.Inthe 
effective-mass approximation, the equation that determines 
the states of this impurity center in a magnetic field H paral- 
lel to the z-axis in a medium with dielectric permittivity E ,  

surrounded by a medium with dielectric permittivity E, has 
the form3 

=EV ( r ) .  

By solving this equation we determine the total energy 
of the particle E and the wave function \V(p,z), which satis- 
fies the boundary conditions 

The characteristic dimensional parameters of the prob- 
lem are the impurity radius a, = &fi2/,ue2, the magnetic 
length a, = ( W e H )  'I2, and the layer width d. In what fol- 
lows, we will consider DIC for which the following inequali- 
ty holds: 

indicating that the effect of the magnetic field is much larger 
than that of the Coulomb field of the impurity. Rather than 
formulating a general approach to the solution of Eq. ( 1 ) 
under conditions (2)  and (3),  we discuss only the special 
cases listed below. 
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1. PERTURBATION THEORY: a, +ao, deao 

The first of the conditions of this section [condition 
(3) ]  implies that the binding energy of the particle at the 
impurity center a fi2/pa; is small compared to the distance 
between Landau levels a fi2/pa, (the energy of motion of 
the particle in the plane of the layer). The second condition 
implies that this binding energy is, however, much smaller 
than the distance between the size-quantized levels a A2/,ud 
for motion of the particle perpendicular to the layer, i.e., 
along the direction of the magnetic field. The solution to Eq. 
( 1 ) that is unperturbed by the impurity potential and which 
satisfies condition (2)  is well-known, and for the chosen ori- 
entation of the magnetic field is written in the form 

where 

here X , , ,  (p), N , J m J  = 0,1,2 ,... is a function that describes 
the motion of the particles in the magnetic field in the plane 
x,y (see Ref. 7).  

The unperturbed energy has the form 

where 

Herep is the effective magnetic moment of an electron, and 

From this we see that the unperturbed energy spectrum 
is a combination of the equidistant Landau levels ( 6 )  and the 
size-quantized level (7) .  

Let us calculate the impurity-induced energy shift of 
those states of (5)  that are odd with respect to the operation 
z+ -z,i.e.,thoseforwhichn = 2p+ I , p =  0,1,2,.. .These 
states form the lowest series belonging to the Landau level 
with N = m = 0. The shift is determined by the diagonal 
matrix elements of the Coulomb attraction energy calculat- 
ed for the functions (4)  with N = m = 0, n = 2p + 1. After 
integration over the coordinates p, p, the correction to the 
energy 4E r' acquires the form 

(8)  
where 

here @(x)  is the probability integral.' 
In the region of very small values of the parameter 

d /a,, the correction A$, (8)  can be written in explicit 
form. If the layer is thin enough that the condition d<a, 
holds, then in Eq. (8)  we can assume that @ (x)  -- 2 ~ -  'I2x; 
then 

For the case where the layer width considerably exceeds 
the magnetic length ( d )  a, ) while remaining much smaller 
than the radius a,, the asymptotic value of the integral8 en- 
tering into (8 )  leads to 

- (C + In 2q2aH') cos 2qb]  , (10) 

where C = 0.577 is the Euler constant. 
Expression (10) was obtained by us under the condi- 

tion It + , - 1 ) 1, i.e., relatively large distances compared to 
a,, which does not allow the impurity center to approach 
the edges of the layer. 

Both the limiting results (9)  and ( l o )  lead us to the 
general conclusions that an impurity center with an attrac- 
tive potential causes the carrier energy to decrease 
(A$, <0) ,  and that displacement of the impurity center 
(b  #O)  from the plane of symmetry of the layer z = 0 de- 
creases the magnitude of the impurity shift [A$, I. 

2. GENERAL METHOD, a, gao 

Let us write the solution to Eq. ( 1 ) in the form of an 
expansion with respect to the transverse functions X , , ,  ( p) 
(Ref. 7): 

After substituting Eq. ( 11 ) into Eq. ( 1 ), we obtain a 
system of equations for the expansion coefficients f 'N.m' (2) : 

(12) 

where 

67N,,=E-E,~,rn. 

As was shown in detail in Ref. 9, for a DIC subject to 
condition (3)  the system ( 12) can be solved in the single- 
band approximation (with respect to the Landau bands), in 
which we set V , , ,  '"' = VN'"'SNN.; we will use this result 
in what follows. We will limit ourselves to states with m = 0 
and ground Landau level N = 0. Let us consider various re- 
gions of the energy spectrum $ , ,  . 

2.1. Region of discrete Coulomb spectrum: go,, <O 

Converting to a new notation in Eq. (12) 
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we obtain the following equation for the f u n c t i ~ n f , , ' ~ . ~ ' r  fv: 

in which 

4 p 2  
gz = -- 

a u Z v Z  ' 

Here, Y is a quantum number that determines the states of 
motion along the z-axis, and (01 . . .lo) denotes an average 
with respect to the function X,,,, (p). 

From condition (2) for the function fv it follows that 

For further investigation of Eq. (14) we use the Ha- 
segawa-Howard method, which was described in detail in 
Ref. ( 10). In the region 

the solution to Eq. ( 14) has the form 

where W ,,, ,, M ,,,, , are Whittaker functions (see Ref. 8, p. 
1073). 

For t < 0, the function fv ( t )  can be obtained from ( 17) 
by the replacements A+ -A_, B+ -+B-, and t-7, where 
I-= -t .  

For J t  1 < 1 we construct the solution by double integra- 
tion of Eq. ( 14), using the initial function 

By virtue of condition (3) ,  the inequality It ( &  1 and 
( 16) are found to be compatible. For values of It I % 2aH/a,,v 
we retain terms of lowest order in t in these integrals to ob- 
tain 

where 

The form of the function f 0, ( t )  for t < 0 can be obtained 
from the expression ( 18) by the replacements c+ -.c-, 
a+ + a _ ,  t+r, where r = - t. 

The form off F ' ( t )  implies that we can fulfill the re- 
quirements thatf,. ( t )  and its first derivative be continuous 
at t = 0 by imposing the conditions c+ = c_=c ,  
a+ = - a- = a ,  respectively. Using the expansions of the 
Whittaker functions given, e.g., in Ref. 8 for It 1 < 1, and set- 
ting equal the coefficients of terms that are the same order in 
t in Eqs. ( 17) and ( 18), as well as in the analogous expres- 
sions which apply for t < 0, we obtain 
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where 

Here T ( u )  and $(u) are the gamma-function and its loga- 
rithmic derivative, respectively. 

The conditions ( 15) give 

By requiring that the system of Eqs. ( 19)-(24) with 
respect to the unknowns c, a ,  A + , , B + , _ be solvable, we 
obtain two transcendental equations determining the quan- 
tum number a and the corresponding energy %', . By calcu- 
lating the matrix elements (OlgZIO) and (Olglng10), we then 
can derive explicit expressions for these equations 

where 

2(01 g In g 10) a,vn'" P a ,  
4 <IQ (v) = - C 

--[ln-+I--] 
(Olgz)O) 2a12aH aov 2 '  

The procedure leading up to Eq. (25) implies that these 
equations are correct under conditions 2a,/a0v< 1, t,,, 
%2a,/a,v. The second inequality requires that the attrac- 
tive center be separated from the edge of the layer by a dis- 
tance that exceeds a,. If the attractive center is located in 
the plane of symmetry of the layer (b  = O), the states can be 
classified with respect to parity. In this case, t, = t,, 
W, = W,, M, = M,, and the upper sign in (25) will corre- 
spond to even, the lower sign to odd, energy levels. For an 
unbounded crystal (d-. ca, t,,, + cu 1, the asymptotic behav- 
ior of the Whittaker functions8 for large real values of the 
argument implies that W,,,  .M ,I-0, and we are led to 
equations which describe even and odd energy levels of the 
DIC.I0 

Let us investigate the group of levels that transforms 
into the even series at b = 0 or as d- cu in somewhat more 
detail. We will restrict ourselves to special cases for which 
the effects of shifting the center b or changing the layer width 
d can be taken into account explicitly. For these cases the 
Whittaker functions under the radical in Eq. (25) can be 
neglected. 

a )  Wide layer, center far from the boundary: t ,  1, 
t,% 1. In this case, the solution of Eq. (25) is conveniently 
writtenin t he fo rmv=vo+S ,  wherevo1:O,1,2,3;.., i s a  
root of the equation that describes the unbounded crystal 
( t ,  = t7_ = cu ), and S is a correction that takes into account 
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the finiteness of the layer width d. For the correction to the 
ground state v ,  -0, taking into account the asymptotic form 
of the Whittaker fun~ t ion ,~  we obtain 

d d 26 D''. 26 
6=vo (--)"l erp (- -)[ ( I + d) w p  (- =) 

aovo aov0 

( y ) " ~  ( 2b ) ]  + 1 -- exp -- 
(LoVo 

The correction S to the excited states v,- k = 1,2,3; . ., 
differs from the corrections obtained above by replacing the 
first factor v,-+ k ( 2 k  !') '. 

For small displacements b &a,v, we have 

d 26" 
ti- e x p ( - b ) ( ~ + y ) .  ov o a. vo 

from which it follows that decreasing the layer width d and 
shifting the attractive center from the symmetry plane (in- 
creasing b )  both increase the value of v ,  and consequently 
decrease the binding energy I 8,/. 

b )  Wide layer, center close to one of the boundaries: 
t2 $ 1 ,  aH/aOv& t ,  & 1.  Here we require not only the asympto- 
tic forms of the Whittaker functions but also their expan- 
sions for small values oft,. In this case Eq. ( 2 5 )  acquires the 
form 

1  
cp (v) + 2h ( v )  + ---- - In t ,  =O. 

2'ti 

Its solution for v &  1 can be found in analytic form. All 
the conclusions arrived at above regarding the effect of 
changing the layer width and shifting the attractive center 
on the binding energy 18, / turn out to be correct here as 
well. 

In both the situations investigated above, the energy 
spectrum g, < 0 is a quasi-Coulombic series of levels having 
the value 87, = 0 as a point of accumulation. 

In the general case t,,, =: 1 ,  we must solve ( 2 5 )  numeri- 
cally in order to find g,. In this case, qualitative arguments 
suggest that as the width of the layer d decreases down to 
values d -a,, the increase in particle energy due to size quan- 
tization will balance the decrease in energy due to attraction 
toward the center. As a result, the energy 87, will pass 
through zero and shift into the region %' > 0. 

2.2. Size-quantized region go,, > O  

The approach to investigating this portion of the spec- 
trum is completely analogous to that described in Sec. 2.1; 
therefore, we will pause only to point out some of its features 
and present the final results. 

If in Eq. ( 12) we introduce the notation 

then in the region It / 9 2aH/a$, a solution can be chosen in 
the form 

fs ( t )  =A+ Re Wis,ah ( t )  +B+ Im Mi,,a12 ( t )  , it>O. (27 ) 

For the region it <O we must make the following re- 
placements in ( 2 6 ) :  A +  - A _ ,  B+ -B-, and t - r ,  where 
r =  - t .  

After double integration of Eq. ( 12) with the starting 
function 

and isolation of the real part of the resulting expression for 
f, ( t ) ,  we obtain an iterative solution for 2aH/a$& It / & 1 in 
the regions it > 0 and it < 0. By smoothly matching the first 
of these solutions with ( 2 7 ) ,  analogous to the matching in 
the region it < 0, and using the conditions for continuity of 
f, ( t )  and f j ( t )  at t = 0 along with the boundary conditions 

we obtain a system of six algebraic homogeneous equations 
with respect to the unknowns A + , , B + 

, c, and a. The 
requirement that this system be solvable leads to two tran- 
scendental equations for the quantum number: 

1 1 1  - = -[ - -- 
I  1. f ( s )  '2i r ( i s )  I'(-is) 

tPi.2=Re Wis,l,2 (aisz) ,  R , , ,=Im Mi*,#,, ( T , , , )  , 

where the quantity Q ( s )  is the same as in ( 2 5 ) .  
Expression ( 2 8 )  is applicable under the conditions 

Let us pause to discuss several special cases. If the cen- 
ter lies in the midplane of the layer ( b  = 0), then the states 
are classifiable with respect to purity. In this case, T, = T,, 
W, = w;, and M, = M ~ .  For the even-parity levels we use 
Eq. ( 2 8 )  with the lower sign, while the upper sign applies to 
the odd-parity levels. Let us compute the position of these 
levels for s< 1, substituting the asymptotic forms of the 
Whittaker functions for I T , , ,  1 $ 1  into Eq. ( 2 8 ) .  For the odd 
levels we obtain the equation 

If we solve this equation by the method of iteration, 
assuming that s = 0 on the left side in the zeroth approxima- 
tion, we find that 

and the value of Z?, coincides with the levels of the even- 
parity state 8:'' [see ( 7 )  for n = 2p + 11 from size-quanti- 
zation. The energy levels of the odd-parity states are given by 
the equation 
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In the zero-order approximation s = O(a, = co ), the 
unbounded increase of Q a a, is cancelled by the singulari- 
ties of the cotangent at the points 

This being the case, the values of $, are the levels of the 
odd-parity states $7:) from (7) ,  with n = 2p. 

From the expressions fors < 1, and the conditions under 
which (28) is applicable, it follows that these equations are 
valid for a, <d. Of course, in this approximation, the same 
values of the energy g:' from (7)  would be obtained for any 
value of b. 

Let us now consider the states which transform into 
even-parity states as b - 0 in the next approximation, taking 
into account the influence of the impurity potential and its 
finite radius a,. The quantum numbers s will be the roots of 
the equation 

In looking for the roots s of this equation under condi- 
tions where their initial values are given by Eq. (29), we find 
that 

where 8:'' is the energy level (7)  for n = 2p + 1, and A$, 
coincides exactly with the right side of Eq. ( 10). This also is 
not unexpected, since the inequality s <  1 is in fact equivalent 
to the condition under which perturbation theory is applica- 
ble, i.e., d<a,. This agreement may be regarded as confirma- 
tion of the correctness of the more general expression (8) ,  a 
special case of which is Eq. ( lo) .  

For the case d-a,, it is necessary to investigate the gen- 
eral form of Eq. (28). Based on qualitative considerations, 
we may expect that an increase in the parameter d /a, will 
cause an increase in the number s, and consequently a de- 
crease in the energy 8, to low values 8 -0. 

If the center is close to the edge of the layer ( Ir,I % 1, 
a,/a$(< lr,l(< 1 ), then from Eq. (28) it is not difficult to 
arrive at an equation for s <  1 by making the replacement 
Y-S, t, -+ 17, / in Eq. (26). 

2.3. Thin layer, d4a,  

For this type oflayer, the t-dependent matrix element in 
Eq. (14) is expressed in terms of the probability integral, 
whose argument always remains small in value. If we limit 
ourselves to the first term of an expression of the probability 
integral @(x)  a 2~-"*x,  then Eq. (14) can be written in 
terms of the variable z in the form 

where F = e /~a$ .  
The equation so obtained describes states of a particle in 

a uniform electric field F. For its general solution f, (z) we 
can obtain a linear combination of the Airy functions Ai and 
Bi (see Ref. 1 1 ), and from condition ( 15 ) the energy g , can 
be determined. However, we should note here that for these 
relations between a,, d, and a, the conditions for applicabil- 
ity of perturbation theory are satisfied, in particular the gen- 
eral expression (8) .  Turning to a special case ( 9 ) ,  we obtain 

where %'Lo', n = 2p + 1 is energy level (7) ,  and A$, has the 
form (9) .  

2.4. Center at edge of layer, b= -2 

a )  Region of the discrete Coulomb spectrum: 
$ ,  = - e2/2~a,v' < 0. In this case, we are required to find 
the solution to Eq. ( 16) that satisfies the boundary condi- 
tions f, (0) = f, (to) = 0, t, = 2d /a,v. In region ( 16) the 
general solution f,, ( t )  takes the form ( 17), while for 
2a,/a,~<t< 1 it takes the form ( 18), in which we must take 
c+ = 0 since f, (0)  = 0. From the condition that the solu- 
tion ( 17) reduce to zero at t = to, and that it match smoothly 
in the region t < 1 with the function ( 18), we obtain a system 
of three equations for the coefficients A +, B + ,  a + . The con- 
dition that this equation be solvable leads to an equation for 
the quantum number Y. This equation can be obtained from 
the relation (25), in which we should formally set 

a ( v )  =0, Wz=W,=Wo, 

choosing the sign " - " in front of the radical. 
If the crystalline layer is sufficiently wide (to% 1 ), then 

in order to find the quantum number Y = k + 6, where 
k = 1,2,3;.., we must find the correction S< 1 by solving 
the equation 

It is not difficult to see that the last term on the left side, 
which comes from the finiteness of the layer width, increases 
the correction 6, and consequently decreases the binding en- 
ergy of the Coulomb DIC compared to its energy in an un- 
bounded crystal. If we assume that in a wide layer it is possi- 
ble to classify the states with respect to parity in the 
conventional way, the last equation applies to the odd-parity 
states [see the text below Eq. (25) 1.  In order to investigate 
the dynamics of levels of differing parity when the attractive 
center approaches the edges of the layer without constraint, 
we apparently must turn to a numerical investigation of Eq. 
( 14), because the analytic method we are using to derive the 
general formula (25) does not allow the center to approach 
the layer boundary closer than a distance on the order of the c 

magnetic length. 
b) Region of size-quantized energies: 

8, = e2/2~a0s2 > 0. Proceeding in a way completely analo- 
gous to the case of negative energies, we are led to an equa- 
tion for determining the quantum number s. This equation 
can be obtained from (28), in which we must formally as- 
sume 
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FIG. 1. Dependence of the position of the ground state of a DIC of radius 
a, on the layer width d(g,(O) = - e2/2&a,?, v <  1 ). 

and take the sign " + " in front of the radical. 
For s< 1, the equation for s takes the simple form 

In the zeroth approximation a,, = cc , Q = a, s = 0, we find 
that d /a# = nrr, n = 1,2,3,. ., and as a result we obtain the 
full set of size-quantized energy levels 8;' from (7 ) .  

In the next approximation, 

2d d 
j n 2 n n ) .  - << 1 

a, ( n n )  " a,,izn 

The impurity potential causes a decrease in the particle ener- 
gy. By further increasing the ratio d /ao, we can decrease the 
particle's energy g, down to small values 8 ,  ~ 0 .  

The investigation we have carried out allows us to iso- 
late the dependence of the positions of the DIC energy levels 
on the width of the semiconductor layer d. In a wide layer 
(d  / ao )  1 ), the position of the level Z?, <0 coincides to expo- 
nential accuracy with its position in an unbounded crystal. 
As the parameter d /ao decreases, the energy increases, and 
ford /ao=: 1 it is found in the region Z?, =:O. As the param- 
eter d /ao decreases, the energy level moves in the direction of 
positive values, and when d /ao< 1, d /a,  g 1, it practically 
coincides with the system levels of an infinitely deep poten- 

tial well of width d. The qualitative dependence of the posi- 
tion of the ground state level 8, on the layer width d is 
shown in Fig. 1. 

The approximation used here of a single-band spectrum 
with respect to the Landau levels is entirely correct for the 
region of the discrete Coulomb spectrum that is adjacent to 
the bottom Landau level N  = m = 0 on the low-energy side. 
However, for the higher Landau levels we must keep in mind 
the following fact. The impurity quasi-Coulomb series that 
adjoins each higher Landau level may end up in the back- 
ground of the spectrum of size-quantized energies that 
branch off of the previous Landau level. In order to take into 
account the interaction of the states of these overlapping 
energy spectra, it is necessary to use the two-band approxi- 
mation developed in Ref. 9. In a wide layer ( d  / a o )  1 ), this 
interaction generally occurs all the time. In a narrow layer 
( d  /ao < 1 ) , two situations are possible. If the spacing be- 
tween unperturbed impurity levels AE'O' = El,,,, + 8;:' 
- - 8:;' considerably exceeds the energy of a parti- 

cle in the field of the impurity, then the one-band approxima- 
tion is applicable as before. If, however, the spacing AE'O' is 
comparable to the impurity interaction, then it is necessary 
to carry out a combined investigation of the Landau sublev- 
els with N l ,  m , ,  and N l ,  m,. 
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