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The simple nonlinear equation a = ha2, describing "parquet" patterns on a front which result in 
the "pencil structure" of growing crystals, has been obtained for the well-known "Stefan 
problem" of the motion of the solidification front of a supercooled liquid, when instability of the 
Mullins-Sekerka type develops. A new, "bulk" mechanism of filamentation and self-organization 
of nonlinear flows of heat and gas, flowing out of the cooling solid body, is studied. This 
mechanism could lead to the "columnar structures" which are observed in nature and also have a 
structure of the stack-of-hexahedral-pencils type. 

1. INTRODUCTION 

When crystals are grown from melt there sometimes 
arise structures that look like a stack of tightly packed hexa- 
hedral pencils whose ends form a "parquet" structure. This 
well-known phenomenon is caused by the instability of the 
solidification front (SF) of the melt. 

The problem of the motion of the solidification front is 
known in the literature as "Stefan's problem."' The solidifi- 
cation front becomes unstable when the liquid ahead of it is 
in a supercooled state with temperature T less than the so- 
lidification temperature T,. This instability is customarily 
called the Mullins-Sekerka instability for a flat SF.2 Togeth- 
er with the temperature, impurities can also play a signifi- 
cant role in this process. The diffusion of impurities is de- 
scribed by the same equations as the equation for the 
temperature. These mechanisms also explain the formation 
of the complicated structure of snowflakes and other "den- 
dritic" crystak3 

These phenomena are reviewed in, for example, Ref. 4, 
where a quite complicated integrodifferential equation 
z = zf = a(t,  x, y)  describing the SF is presented and 
solved by numerical methods. 

In the first part of the present paper we briefly recount 
the results of Ref. 4 pertaining to the case of only a flat SF, 
and we show that in the steady state the surface of the SF can 
be determined approximately from a much simpler nonlin- 
ear equation a = Aa2. In the one-dimensional case it gives 
approximately the profile of the surface of the SF in the form 
a (x )  a [ 1 - cos(kx) ] ' I3,  which is in good agreement with 
the experiments of Jackson5 and in the two-dimensional 
case describes on the SF a parquet pattern of hexagons which 
engender the "pencil structure" of the crystals. 

Part 2 of the present paper examines the superficially 
similar problem of the appearance in nature of hard pencil 
structures, termed in volcanology "columnar structures" 
and "stacks," encountered in volcanogenic regions. Thus in 
the USSR extensive areas with "parquet" and rocks consist- 
ing of tightly packed hexahedral blocks (see Fig. 1 )  are 
found on Mys Stolbchatyi on Kunashir Island in the Kuril 
Islands. There arises the question: how do they form from 
the cooling volcanic magma? 

In the volcanological literature (see, for example, Ref. 
6) the most common opinion is that they are formed as a 
result of settling of the rock, resulting in fragmentation of 
the rock along a honeycomb system of cracks. It cannot be 

excluded that when the magma solidifies a phenomenon 
such as the Mullins-Sekerka instability also occurs. In our 
opinion the formation of columnar structures is unlikely to 
be related to a single passage of magma down the SF, and the 
"pencils" most likely form here after the passage of the SF, 
when the lava can already be regarded as solid. However it 
can be conjectured that the gas dissolved in the lava contin- 
ues for a long time to flow up through the lava; this flow is 
described by the nonlinear equations of diffusion and heat 
conduction. This gas also carries heat with it, and as we shall 
show below it can itself form, owing to the nonlinearity of 
the flows, superheated paths with the structure of honey- 
combs, which subsequently give a stack of "pencils." 

In concluding this introduction we point out that in 
many cases hexagonal cells arise by the well-known mecha- 
nism of "Bbnard cells" in the process of convection of liquid 
in the field of gravity. Thus "structured soil" with traces of 
Binard cells, which are active during the period when the 
crust of ice on the soil melts, is described in Ref. 7. However 
this mechanism of self-organization of flows will not be stud- 
ied in this paper. 

2. "UNILATERAL MODEL" FOR THE TEMPERATURE OR 
IMPURITY ON THE SOLIDIFICATION FRONT 

We briefly reproduce some results of Ref. 4 which de- 
scribe simultaneously two problems-the "temperature" 
and the "impurity" problems. Suppose that the solidifica- 
tion front moves downwards with constant velocity v along a 
gas-saturated supercooled liquid. Then, in the system of co- 
ordinates where the front is at rest in the planez = 0, we have 
the equation of heat conduction (for simplicity, we assume 
that the solid and liquid phases have the same densityp, heat 
capacity c, , and thermal conductivity x )  : 

If z = a(t,  x, y )  is the surface of the disturbed front, 
whose normal is 

N=(N,, N,, N,), N , = ~ = [ l f ( V a ) ~ ] - ~ ,  N,,,=-vV,,,a, 

(2.2) 

then, taking into account the motion of the front itself with 
the velocity vf = Nuf, where vf = va;, and the liberation of 
heat of fusion Q on the front, we have on the front the bound- 
ary conditions that the temperatures are equal 
T, = T2 = T, (T, is the solidification temperature) as well 

1029 Sov. Phys. JETP 73 (6). December 1991 0038-5646/91/121029-07$03.00 @ 1991 American Institute of Physics 1029 



as the condition of correct matching of the jump of the heat 
fluxes 

Here the index 1 refers to the liquid phase and the index 2  
refers to the solid phase, and if in what follows for conve- 
nience we introduce the "penetration depth of heat," equal 
to 1 = x/pcpu as well as the dimensionless temperature 
T = Tcp /Q ,  then the above system of equations can be writ- 
ten in the form 

The problem of the behavior of an impurity with concentra- 
tion n, , , ,  described by the diffusion equation for a moving 
medium 

also reduces to a system of equations of exactly the same 
form. In contrast to the heat fluxes which, owing to the liber- 
ation of the heat of fusion, have a discontinuity at the front, 
the impurity fluxes should be continuous and for this reason 
for them we have the boundary condition 

but in order to determine the ratio of the boundary values of 
the concentrations themselves n ,  and n, it should be noted 
that on the contact front of the media the chemical potentials 
of the media must be equal: ,ul ( n ,  ) = ,u2 ( n ,  ), where, gener- 
ally speaking, the chemical potentials depend differently on 
the concentrations n, ,2 .  When the phases are in contact with 
one another for a long time complete thermodynamic equi- 
librium should be established in the system and the concen- 
trations should take on equilibrium values n?,, such that the 
equality p l  (ny ) = ,u2 (n;  ) = pO, where ,uO is the common 
equilibrium chemical potential of both phases. Under these 
conditions, the corrections to the equilibrium chemical po- 
tentials ,L(n) = , u ( n )  - ,uO rather than the concentrations 

FIG. 1. Parquet of solidified lava and on Mys Stolb- 
chatyi on Kunashir Island. 

should be regarded as the basic quantities sought. Setting 
n  = no + Sn and assuming the increments to be small, we 
have approximately ,ii = ,u; Sn, where for simplicity the de- 
rivatives ,uA = d,u/dn can be regarded as being the same for 
both phases. Under these conditions the corrections intro- 
duced above for the chemical potentials will satisfy the same 
equations ( 2 . 5 )  as the concentrations, but on the front they 
must now be equal to one another, as the temperatures were 
previously, and the condition ( 2 . 6 )  gives 

If we now introduce the "diffusion length" I = D / v  and the 
dimensionless "chemical potential correction" 
T = ,ii/A:,uk, then we obtain once again the system of equa- 
tions ( 2 . 4 ) ;  this shows that both problems are equivalent. 

In the absence of perturbations the solutions of the sys- 
tem ( 2 . 4 )  are the functions 

rl0 ((r = A + B  exp( f) , r , ~  ( z )  =C+E enp (S). ( 2 . 8 )  

where A, B, C ,  and E are constants. The simplest case is 
obtained for E = 0, when the other coefficients are equal to 
C =  T 3 c p / Q ,  B =  1 ,  and A  = C -  1 .  This is the case that 
corresponds to the "unilateral model" which we shall exam- 
ine below. 

3. INSTABILITY OF AND STATIONARY PATTERNS ON THE SF 

We note first that the requirement E = 0 in Eq. ( 2 . 8 )  
leads to A = C - 1 = ( T 3 c , / Q ) - 1 ,  and since 
A  = T y  (z-+ o ~ ,  ) c p / Q ,  the temperature of the liquid far be- 
low the surface must have the strictly determined value 
T y  ( - o ~ ,  ) = T3  - ( Q / c p  ) > 0, less than the melting tem- 
perature T,;  this corresponds to supercooling of the liquid. 
Thus value of T y  ( - o ~ ,  ) ensures that the velocity of the 
front is constant, but it may not correspond to the actual 
experimental conditions. In addition, the condition E = 0 
means that the temperature of the solid phase is exactly 
equal to the solidification temperature; this condition also is 
not always satisfied, so that the model under study is some- 
what arbitrary, but it does make it possible to analyze easily 
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the problem of the stability of the solidification front. 
In such a model it can be assumed that there are no 

disturbances in the solid phase and that in the liquid phase 
7' = 7: + ir. Then from Eq. (2.4) we obtain the complete 
nonlinear system of equations for the corrections ?: 

u-lt , '+?,'=l(i , ,"+AI?), A,i='t,"+t,,", 
(3.1) 

7 1,=,=1-ea, 1 (7,'-\ ,aL ,t) I,=,=l-em-a,'l/u, 

where a = a/l. In the linear approximation with a 4 1 we 
assume that 

a=ao (x, y)exp(yt), t=-a exp(pz), (3.2) 

and then the last boundary condition ( 3.1 ) gives the relation 
= 1/1+ y/u, and the main (first) equation in Eq. (3.1) 

assumes the form 

Fora,-cos(kx) Eq. (3.3) givesthegrowthratey = Ik Ivof 
the instability of the solidification front. This instability is 
customarily called the "Mullins-Sekerka" in~tabi l i ty .~ '~ 

Here the short-wavelength perturbations grow most 
rapidly. In a more detailed calculation, however, the stabi- 
lizing effect of the surface tension forces should be taken into 
account, as done in Ref. 4, some results of which we present- 
ed above. Next, for simplicity we shall neglect them and we 
shall examine immediately the stationary case, which was 
not studied separately in Ref. 4. Setting in Eq. (3.1) 
a: = ?: = 0 and ? = t j  exp (z/21), we obtain for the function 
*(x, y, 2) 

This system can be reduced to an integral equation for the 
surface by noting that it has a very simple Green's function 

using which it is easy to obtain the identity 

Assuming that the point r, lies inside the liquid and 
integrating over the entire volume of the liquid phase we 
express $ in terms of the boundary values: 

and in what follows we shall try to shift the point r, onto the 
boundary z = a, (x,, yo ); this should give the desired inte- 
gral equation. In so doing, however, it is necessary to take 
into account one subtlety, namely, the fact that on the other 
side of the surface, i.e., in the solid phase, there are no distur- 
bances, so that the integral Stja(R)dV should extend only 

over the hemisphere adjoining from below the boundary un- 
der study, and for this reason we have on the left-hand side in 
Eq. (3.7) only half of the boundary value of the "potential;" 
this gives 

where NR/v=R, -R,V,a = a  -a, - pV,a, 
p =  ( x - x o , ~ - y o ) .  

This integral equation is still quite complicated, and if 
numerical methods are not employed, it can be solved only 
approximately, assuming that the quantity a = a/l is small 
and retaining terms of order no higher than second-order 
infinitesimals, which is what we shall do below. 

4. APPROXIMATE EQUATION FOR STATIONARY PATTERNS 
ON THE SF 

With accuracy up to quadratic terms Eq. (3.8) can be 
rewritten in the form 

where G( p) = p - ' exp ( - p/21) satisfies the relations 

and for this reason Eq. (4.1) can be rewritten in the form 

1 + - V , a 2 O , ~ ]  dz dy .  
2 

Here, for convenience we introduce the following notation 
for the integral operator: 

Integrating by parts the terms containing derivatives of the 
function G, the result (4.3) can be put into the form 

A 

Next, we note that intyducing the operator G - ' in- 
verse to the Ferator G, we obtainA the gquality 
(1 - 412A1) = (G and (1  -412A,)Ga= (G  -')a. 
Eut from Eq. (4.5) we have, in the linear approximation, 
G - 'a =a ,  and for this reason Eq. (4.5) can be rewritten in 
the form 

Finally, introducing the auxiliary function 
Z = a - +a2 + I 'Al a2,  which also describes approximately 
the surface of the solidification front, we obtain for it from 
Eq. (4.6) the equation 
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Finally, this equation can also be obtained directly from the 
system (3.4) by writing the solution of the main equation 
(3.4) in the form 

where d k = dk, dk,, kr = xk ,  + yk, . Hence we find the 
quantities 

which turn out to be related to onE another by the integral 
operator introduced above: qh0 = GF. Next, expanding the 
boundary conditions (3.4) in powers of a ( 1, we once again 
obtain Eq. (4.7). 

h 

For waves with long wavelengths the operator G can be 
represented in the form of a series: 

However the short-wavelength disturbances are of greatest 
interest. For such disturbances, as is obvious from Eq. (4.9), 
the term CZ in Eq. (4.7) can be approximately completely 
neglected. This leads to the equation 

which we shall examine. 
In the one-dimensional case the solution of Eq. (4.11 ) is 

the function 

(4.12) 

If the expression ( 1 - cos f l )  is replaced by its approxi- 
mate average value 

then for the solution (4.12) we obtain 

A graph of the function f = [ 1 - cos (kx) ] ' I3 is shown by 
the dashed lines in Fig. 2b, where the solid line shows the 
profile of the solidification front, observed in Jackson's ex- 
periments5 with supercooled melt of liquid CBr, . As we can 
see, here the agreement between theory and experiment is 
good, so that Jackson's front is described, with good accura- 
cy, by the formula 

" , h=2.10-' cm. (4.15) 

The unilateral model employed above is not the only 
model. It is possible to use a different approach (see, for 
example, Refs. 8-10), in which the interphase boundary, 
moving with constant velocity, satisfies an equation of the 
type 

FIG. 2. Solidification front of liquid CBr, in Jackson's experiments:' a )  
for a 25 ,urn thick layer of liquid between two glass sheets, b) enlarged 
scheme of the front: solid line-numerical calculation from Ref. 4; dashed 
line-the formula (4.15 ) . 

p2= (x-x')~+ [a (x) -a(x') 12, A =  (T,-T-,)c,/Q. 

Here KO is the modified Bessel function, and for simplicity, 
as done everywhere above, the contribution of surface ten- 
sion, which is taken into account in Refs. 7-9, is neglected. 
An equation of this form was used previously in Ivantsov's 
theory of dendrites, but it is also applicable in the two-di- 
mensional problem of the form of the solidification front. 
Although Eq. (4.16) differs from Eq. (3.8), it nonetheless 
gives similar results. Namely, a flat front (a = 0) is possible 
only for A = 1, i.e., T -  , = T, - Q/C,, and under this 
condition the expansion in powers of the amplitude once 
again gives Eqs. (4.7) and (4.1 1 ) with the approximate solu- 
tion (4.15); now, however, the equations are one-dimen- - 
sional. For A # 1, then there is no solution in the form of a 
flat front, but solutions of the type Saffman-Taylor "fingers" 
( A  = const) 

I -A mx a (x) = -k ------ (4.17) 
n 

in the limit 1- a, and similar solutions9 are possible. They 
describe periodic sequences of dendrites, separated by slow- 
ly (logarithmically) narrowing "interlayers" of the liquid 
phase. In Jackson's experiments, whose results are shown in 
Fig. 2, such "interlayers" are not observed. After a signifi- 
cant amount of impurity (several percent) is added den- 
drites grow on the front.5 

5. "PARQUET" OF HEXAGONS ON THE SOLIDIFICATION 
FRONT 

In Jackson's experiments a one-dimensional solidifica- 
tion front was artificially formed between close parallel 
sheets of glass. In the absence of close boundaries, however, 
there should form on a flat SF disturbances in the form of a 
hexagonal parquet, approximately described by the formula 

C=Ao,, oo (x, y ) =cos fp, + C O S  cpz+cos 9 3 ,  

cpi=knir,, (5 .1)  
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where n,,2,3 are three two-dimensional unit vectors whose 
sum is zero: n, + n, + n, = 0. The square of the function 
a (x, y)  is equal to 

and contains the "resonance" term a,. Neglecting the non- 
resonance terms olt and substituting the expressions (5.1 
and (5.2) into Eq. (4.1 I) ,  we find the amplitude 
A = - (kl) -2. If we attempted to find a solution with a 
parquet consisting of quadrangles, approximately described 
by the function ZE = A (cos kx + cos ky), then the square of 
this term would not give a "resonance" term, and for this 
reason in our approximation, which takes into account only 
quadratic corrections, a solution consisting of quadrangles 
cannot arise. This situation is close to the picture of the ap- 
pearance of a "parquet" on a surface (see Ref. 11) of an 
oscillating liquid, where, owing to the parametric resonance 
between oscillations of the bottom and surface waves, there 
first arises with a small amplitude a parquet consisting of 
hexagons, after which a larger amplitude a parquet develops 
consisting of quadrangles, and finally, with an even larger 
amplitude, a Parquet develops consisting of one-dimension- 
a1 rolls. 

The solution (5.1 ) is approximate, but it can be refined 
by seeking within the boundaries of one cell a solution in the 
form of an expansion in powers of the radius: 

The square of this sum is equal to 

Substituting these expressions into Eq. (4.11 ) we obtain the 
recurrence equations 

S,"(cp)+4nZS,,=1-20,,. (q ) .  11=1, 2 ,  :3. . . . , ao=const. (5.4) 

Note that a similar expansion for the function o, has the 
form 

where p, = 3, 8, = - 3k 2/4, p2 = 3k 4/64, and the de- 
pendence on e, starts with 0, : 

-k6 
p3 = -(8 cos 6cp-I-ti (.us 4q+ 19 cos 2(p+40). (5.6) 

6!64 

If we write x, = (kr/2) 2,  then the expression (5.5) assumes 
the form 

Analogously, in our solution for a cell we set a, = - /ao 1, 
and denoting x = r 2/81 21ao I > 0, we write in the following 
form the solution obtained from Eq. (5.4): 

x-'/,,x2-'IBx3 ( l + A  cos 6cp) +. . .I , (5.8) a= - l a  I [ l -  

where A is an arbitrary constant. It is simplest to set here 
A = - 1, and if it is assumed that x, =x, then we find 
lao I = 1/2k 21 and 

This series for a cell can be continued. 

6. "VOLUME" MECHANISM OF FORMATION OF COLUMNAR 
ROCK STRUCTURES 

The "surface" mechanism described above explains 
well the appearance of "pencil structures" on the surface of a 
moving solidification front in the process of growth of crys- 
tals from supercooled melt. In experiments it is easy to create 
conditions of supercooling by appropriately adjusting the 
heater settings and, vice versa, to exclude supercooling so 
that such a Mullins-Sekerka instability and pencil structures 
would not arise. We cannot exclude the possibility that this 
mechanism also results in the formation of "pencil struc- 
tures" in a cooling volcanic lava. 

In our opinion, however, in a lava it is difficult to ima- 
gine the appearance of a supercooled layer whose tempera- 
ture would be lower than the temperature both above and 
below this layer. An exception could be concentration super- 
cooling, but its presence does not always result in instability 
of the front. For this reason, in what follows we shall study a 
different mechanism, not a surface but rather a "bulk" 
mechanism, for the appearance of rock "pencil structures" 
of the "columnar" type and "stacks." 

It can be conjectured that, in contrast to crystals, in a 
cooling magma the process of liberation of gas, primarily 
water molecules and sulfur dioxide, dissolved in the magma 
plays a significant role in the cooling magma. 

We describe this process by the diffusion equation 

in which, however, we assume that the diffusion equation D 
is temperature dependent. As is well known, for molecular 
diffusion (see, for example, Ref. 12) this dependence is ap- 
proximated well by the empirical formula 

D (T) =Do esp  ( - - Q / ~ B T ) ,  

where Q is the activation energy. Since D(T)  increases with 
temperature, it can be expected that the escaping gas will 
form for itself more thoroughly heated channels, and this 
can result in instability. The empirical formula presented 
above, however, is too complicated for our purposes, and we 
shall replace it with a simpler formula of the form 
D(T) = D - T/T- ,  , where T- , is the temperature of 
the deep magma below. We note that at T = 0 both formulas 
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give D = 0, but we shall study comparatively small varia- 
tions of the temperature. In addition, the solidifying magma 
can have a significant porosity, raising the effective diffusion 
coefficient above the molecular value. 

It is also necessary to take into account the fact that the 
rising gas itself transports heat, and for this reason we shall 
write the heat conduction equation in the form 

where y, = y,,, = c,/c,, and k, T / (  y, - 1 ) is the energy 
transported by one molecule of gas. Introducing the dimen- 
sionless temperature T = T / T  , and the thermal diffusiv- 
ity x = x/pcP, we rewrite Eq. (6.2) in the form 

and taking the gradient of Eq. (6.1 ) and writing, for brevity, 
q: = - D - , Vn,  we represent Eq. (6.1 ) in a form conve- 
nient for our purposes: 

d - qnO=D-, V div q,, q,=zqno. 
d t 

(6.4) 

In order to simplify as much as possible the formulation of 
the problem, we assume that in the stationary undisturbed 
state the temperature is everywhere equal to the value T -  , , 
so that T = 1, and the diffusion flux of gas is also constant 
and has some value q,, artificially maintained constant as a 
result of prolonged injection of gas from deep inside the 
magma, which in our formulation is regarded to be a single- 
phase motionless medium without any solidification front. 
We shall show below that such a stationary state is unstable: 
random acceleration of the transport of hot gas increases the 
temperature locally, which in turn accelerates the process 
even more. 

It should be emphasized that our formulation of the 
problem is somewhat artificial. For example, Eqs. (6.3) and 
(6.4) can have a different stationary solution with a constant 
gas flux q, = q,, but with variable temperature, also satis- 
fying Eq. (6.3) : 

T=T-,-(T-,-To) exp ( z / l ) ,  1 - x  (y,-1) /k,qoa . (6.5) 

Here To is the temperature at the surface z = 0, k, is Boltz- 
mann's constant, and I is the characteristic cooling length. 
However, we assumed that To = T-  , , and this assumption 
is essentially equivalent to the assumption made in the "uni- 
lateral model" for the solidification front. 

7. INSTABILITY AND FILAMENTATION OF NONLINEAR HEAT 
AND GAS FLOWS 

For brevity we introduce the notation for the vector 
q = q;/q, and rewrite again Eqs. (6.3) and (6.4) in the 
form 

~ -~ t~ ' -Az+d iv  (t2g/1) =0, g,'=D-,V div ( tg)  (7.1) 

with unperturbed solutions T~ = 1; here go = I, is a unit 
vector. In order to investigate the stability we set 
T = T~ + T, and g = g,, + g, , making the assumption that 
the quantities T, and g, are small. Then in the linear approx- 
imation we obtain from Eq. (7.1 ) 

. , 
glir-D-,V div (g,+z,gq)=O. 

The simplest model variant of the solution is obtained if, 
first, it is assumed that the diffusion coefficients D - , and 
the thermal diffusivity X, which have the same dimension, 
are equal to one another and, second, it is assumed that the 
corrections T, and g, depend exponentially on the coordi- 
nate z [ cc exp(z/l) ] with the same characteristic length 1 as 
in Eq. (6.5), so that we seek the solutions in the form (for 
z < 0)  

r,=cc(t, x, y)exp(f),  div g, = @(t, X, Y) 
1 e x )  (7.3) 

and substituting them into Eq. (7.2) we obtain 

Hence for solutions of the form 
a a exp [ yt + i(xk, + yk, ) ] we obtain the growth rate of 
the instability y = ( 1 kl - I / k1 ,)x/l, which has the maxi- 
mum value y,,, = x/41 , for I k /  = 1/21, which corresponds 
to the wavelength 

Thus the fastest growing perturbations are of the form 

which advance downwards along the magma with velocity v, 
proportional to the gas flux, and give "nuclei" of blocks with 
the diameter (7.5), which is inversely proportional to the 
gas flux. If quadratically small terms were taken into ac- 
count, "pencils" with a hexagonal cross section would be 
obtained. 

8. DISCUSSION 

The applicability of the above "bulk" mechanism of fi- 
lamentation to a cooling magma is difficult to check, because 
no direct observations have been made. Up to now geologists 
have explained the formation of "columnar structures" pri- 
marily on the basis of the phenomenon of compression (con- 
traction) of lava as the lava cools under certain conditions: 
with moderate viscosity of lava whose composition corre- 
sponds to basalts and andesite-basalts, and with gradual and 
uniform cooling of the lava.', In Ref. 6 it is pointed out that 
when a basalt dike cools from a temperature of 1000 "C to 
25 "C a 100 m length shrinks by 25 cm, so that a crack ac- 
counts for 1/400th of the length. In the same book, on page 
221 a photograph of the "Giants Causeway" in Northern 
Ireland is also presented (Fig. 7-33 in Ref. 6 ) .  The condition 
of uniform cooling of lava is evidently realized in under- 
waterI2 and under-iceI3 eruptions or when intrusions cool in 
closed  volume^,'^ which gives rise to the appearance of a 
thermal screen in the upper layers of lava. In reality colum- 
nar structures form in dark lavas of different viscosity- 
ranging from olivine basalts in the region of the Vilyuchins- 

1034 Sov. Phys. JETP 73 (6), December 1991 Zhdanov et aL 1034 



kii volcano on ~ a m c h a t k a ' ~  to hornblende andesites of Plo- 
tin's  extrusion^'^ and dacitic liparites of Mys stolbchat~i . '~  

Using for the thermophysical parameters of basalts" 
the approximate values p = 2.6 g/cm3, c, = 0.2 cal/ 
g.deg, and x = 5.2- cal/cm.s.deg or for the more vis- 
cous andesite-dacitic rocks p = 2.49 g/cm3, c, = 0.2 cal/ 
g.deg, and x = 5.7.10 - cal/cm.s.deg, we find the typical 
thermal diffusivity of lava x = x/pc, = cm2/s. Ac- 
cording to data given by different authors, the diffusion coef- 
ficients of the emanations in rocks vary over wide limits 
10- 2-10-4 cm2/s and depend on the porosity, water satura- 
tion, temperature, and sorption properties of the rock." It 
has not been excluded that effusive or extrusive lavas reach- 
ing the surface have significant porosity, which increases by 
two to three orders of magnitude the effective diffusion coef- 
ficient of gases, as has been found for rocks near pipes. '' For 
this reason the model assumption which we have made, that 
x is equal to D - , can be approximately satisfied. 

The hexagonal "pencils" on Mys Stolbchaty'i (Fig. 1) 
have a diameter of 20 cm, and if it is assumed that this diame- 
ter is equal to the wavelength (7.5), then taking for water the 
value y, = 1.2 and Boltzmann's constant k, = 3.38. 
cal/deg, we find that the formation of "pencils" with 
such a diameter requires a gas flux den- 
sityq,=4rx(yr -l)/k,A, =2.10Zo molecules/cm2~s 
= 6. g/cm2.s. For such a flow of vapor "pumped" 

through the magma the "honeycombs" should grow down- 
wards at a rate v = x/41= 5.65 cm/h = 1.35 m/day, so that 
over a period of one month the "honeycombs" will grow to a 
depth of 40 m. Such estimates of the rates of formation of 
nuclei of boundaries of blocks, which are ultimately formed 
owing to the contraction of rocks during prolonged cooling, 
seem reasonable to us. It is also helpful to note that in the 
mechanism which we have adopted the maximum growth 
rate is determined not by surface tension but rather by the 
same diffusion. When surface tension is taken into account 
the estimates of the dominant wavelength are incorrect, even 
when constructing a theory of growth of dendritic crystals 
(see Ref. 4).  In magma, however, with relatively large diam- 
eters of "pencils" ( - 50 cm in the Giants Causeway) it is 
very difficult to expect that the effect of these forces will be 
significant. 

In our opinion the effect of contraction undoubtedly is 
important, but because of the purely mechanical fragmenta- 
tion regular columns with a length-to-diameter ratio of the 
order of 100 are unlikely to grow. Cracks evidently grow 
along existing boundaries of the "honeycombs," formed by 
the above mechanism of filamentation of nonlinear heat and 
gas flows. It is this mechanism that is primarily responsible 
for the formation of the "columnar structures" and stacks. 
However this problem requires further study. 

Finally, we note that purely theoretically the nonlinear 

instability, studied in the first sections above, of the solidifi- 
cation front usefully supplements the nonlinear descrip- 
tions, which we gave earlier in other works, of the instability 
of other hydrodynamic discontinuities, namely, velocity 
shear2' ("Kelvin-Helmholtz instability"), flute instability 
of shock waves2' ("D'yakov instability"), Rayleigh-Taylor 
instability of the jump in the density of two liquids in a gravi- 
tational field,22 instability of a flame front23 ("Landau- 
Zel'dovich instability"), and finally instability of the front of 
many types of solitons24 (see also Ref. 22). 

In conclusion we thank S. A. Fedorov, N. A. Zharinov, 
P. P. Firstov, A. N. Khrenov, and V. V. Vladimorov for 
helpful remarks. 
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