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Nucleation in two-component metastable systems as compared with single-component systems is 
analyzed. In this case the main dissipative mechanism becomes diffusion, which predominates 
over viscosity near the phase equilibrium curve or when the critical nuclei are sufficiently large. 
This results in new temperature dependences in the exponential characterizing the probability of 
quantum tunneling. A characteristic of nucleation in a superfluid is that the lifetime of the 
metastable phase is very sensitive to the presence of a low concentration of impurities. 

1. INTRODUCTION 

Investigation of the kinetics of nucleation with phase 
transformations in a metastable system at low temperatures 
is undoubtedly of interest as a method for observing quan- 
tum phenomena at the macroscopic level. The point is that at 
sufficiently low temperatures, instead of the standard activa- 
tional mechanism caused only by thermal fluctuations, the 
transition from the metastable state into a stable state also 
occurs with the help of quantum-mechanical fluctuations 
corresponding to subbarrier tunneling.Is2 One metastable 
system where observation of macroscopic tunneling is possi- 
ble is the helium isotopes, in which phase transitions exist 
right down to absolute zero. Thus in superfluid helium 4He 
supercooling of the liquid was observed experimentally with 
crystallization at temperatures below 2 K. The average life- 
time of the metastable liquid increases as the temperature 
decreases.'s4 

Supersaturated liquid or solid 3He-4He solutions, in 
which a phase transition also exists down to absolute zero, 
can be used as a possible metastable system for investigating 
macroscopic tunneling. Phase-separation processes in solid 
'He4He solutions at low temperatures have been systemati- 
cally investigated in recent years with the help of the NMR 
method by V. A. Mikheev eta/.' Phase separation of liquid 
solutions 3He-4He near the tricritical point was studied in 
Ref. 6. However the temperature corresponding to the tricri- 
tical point is still too high for a phase transition to occur 
through the mechanism of subbarrier quantum tunneling. In 
this paper we shall study the kinetics of nucleation and phase 
separation at low temperatures only of the liquid 3He-4He 
solutions. 

The phase diagram of a liquid 'He4He solution is well 
known (Fig. 1 ).' At temperatures T< T, = 0.87 K the solu- 
bility of 3He in liquid 4He is limited,* and solutions with a 
molar concentration of 'He corresponding to the concentra- 
tion range x,  < x  < x u  are unstable and decompose into two 
phases with temperature and pressure dependent concentra- 
tions X, ( T, P) and Xu ( T, P). The lower phase x < x,  is a 
solution of 'He in superfluid 4He. As T-0, depending on the 
pressure, the 3He content lies in the range 
0.065 < x, < 0.094. The upper phase x > xu,  conversely, is 
enriched with 3He and is a normal (not superfluid) solution. 

The quantum kinetics of nucleation and phase separa- 
tion of dilute liquid solutions 3He-4He at low temperatures 
were first studied in Ref. 9. The analysis in Ref. 9 was per- 

formed under the assumption that no dissipative processes 
occur in the medium and referred only to separation of a 
supersaturated superfluid solution, which refers to the re- 
gion of the lower phase. Below we shall study the quantum 
kinetics of phase separation in the upper phase, correspond- 
ing to a supersaturated solution of the normal liquid, and in 
both types of solutions we shall also study the effect of dissi- 
pative processes occurring in the liquid solution on the quan- 
tum kinetics of nucleation at low temperatures. Nucleation 
processes in the upper and lower phases will evidently occur 
differently as a result of the difference in the flow of dissipa- 
tive processes in the normal and superfluid solutions. It is 
well known that dissipative processes play an important role 
in the kinetics of decomposition of the metastable state. 
These processes lead to a decrease of the rate of decomposi- 
tion at zero temperature'' and sharply change the tempera- 
ture dependence of the average lifetime of the metastable 
state." The effect of dissipative processes on the quantum 
kinetics of phase transitions occurring in a medium consist- 
ing of a one-component liquid was studied in Ref. 12. 

The formation and growth of a nucleus of a stable phase 
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FIG. 1 .  Phase diagram of a liquid 'He-"He solution. 
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in a medium is unavoidably accompanied by dissipation of 
the total energy of the nucleus. Two types of dissipative pro- 
cesses occur in both one- and two-component media: heat 
conduction, governed by the presence of a temperature gra- 
dient in different sections of the medium, and viscosity (in- 
ternal friction), which is manifested in irreversible momen- 
tum transfer from sections of the medium which move with 
high velocity into sections of the medium which move with 
low velocity. The presence of a second component in the 
solution leads to an additional mechanism of dissipation of 
energy of the nucleus as compared with a one-component 
system. The point is that as a nucleus of the stable phase 
forms and grows the distribution of the concentration of the 
solution changes. The concentration of the solution can 
change by two methods. The first method involves purely 
mechanical mixing of the liquid, when each element of the 
liquid moves together with the liquid as a whole with con- 
stant composition. If the dissipative processes of heat con- 
duction and viscosity (internal friction) can be neglected 
with such mechanical motion, then such a change of the 
concentration occurs in a thermodynamically reversible 
manner without dissipation of energy by the nucleus. The 
second method is diffusion, when the concentration of each 
element of the liquid is equalized by means of molecular 
transfer of the solution components. Diffusion is an irrevers- 
ible process and together with heat conduction and viscosity 
is an additional mechanism of energy dissipation in the solu- 
tion. 

The formation and growth of nuclei of a stable phase in 
a metastable medium involves the overcoming of an energy 
barrier, whose magnitude depends on the degree of metasta- 
bility of the system, and this is accompanied by dissipation of 
the total energy of the nucleus. This motion can be described 
by adding to the standard potential forces the forces of fric- 
tion, which prevent growth of the nucleus. With the help of 
the approach developed in Refs. 10 and 11 we shall find the 
probability of subbarrier formation of the critical nucleus. 
As in Ref. 12, the description of the action of dissipation on 
the probability of decomposition of the metastable phase re- 
duces to finding the effective action that is nonlocal in the 
imaginary time. In what follows we shall study separately 
the case of phase separation of a normal solution and the case 
of phase separation of a superfluid solution. 

2. QUANTUM FORMATION OF NUCLEI IN A NORMAL 
SOLUTION 

We study phase separation of a liquid supersaturated 
two-component solution, which is a nonsuperfluid (normal) 
liquid, for example, phase separation of the solution 
3He-4He in the region of the upper phase. We designate by p 
the density of the solution and we characterize the composi- 
tion of the solution by the concentration c, which we define 
as the ratio of the mass of one component of the solution to 
the total mass of the liquid in a given volume. For simplicity 
we assume that the thickness of the transitional layer be- 
tween the phases is small compared with the size of a nu- 
cleus. Then the optimal distribution of density and concen- 
tration corresponds to a spherical fluctuation of the stable 
phase with radius R and potential energy of the nucleus 
U(R), which has the standard form 

Here LT is the surface tension of the interphase boundary and 
R, is the critical size of the nucleus, determined from the 
condition U ( R ,  ) = 0. The critical size R, characterizes the 
degree of departure of the system from equilibrium and is 
inversely proportional to Ax, where Ax is the supersatura- 
tion of the solution. The relation between the molar concen- 
tration x = N, / ( N ,  + N4 ) and the concentration c is given 
by the simple formula 

where m,, N, and m,, N, are the mass and the number of 
,He and 4He particles. 

The formation and growth of a nucleus of a new phase is 
unavoidably accompanied by the motion of the liquid. This 
motion is connected with the transport of the components of 
the solution to the nucleus or away from it. In the description 
of the dynamics of a macroscopic nucleus of a new phase 
several macroscopic variables are usually distinguished: the 
volume, density, pressure, concentration, velocity, etc. In so 
doing, it is assumed that all other "unimportant" variables 
are uniquely determined by the macroscopic variables that 
are singled out. This means that the relaxation times for es- 
tablishing an incomplete equilibrium, i.e., equilibrium with 
respect to the "unimportant" variables with fixed macrovar- 
iables, are short compared with the relaxation times neces- 
sary for establishing the equilibrium values of the macrovar- 
iables. This dynamics of the "unimportant" variables has the 
character of adiabatic adjustment and occurs reversibly and 
without dissipation. The processes involved in establishing 
equilibrium, whose characteristic relaxation times are long- 
er than the characteristic growth time of the nucleus, make 
the motion of the liquid irreversible and therefore result in 
dissipation of the total energy of the nucleus. 

For what follows we need to find the equation of motion 
that describes the growth of a nucleus. The flow of the liquid 
surrounding the nucleus leads to the fact that the nucleus has 
not only the potential energy ( 1 )  but also kinetic energy. 
These energies are dissipated as the nucleus grows. In order 
to find the kinetic energy of the nucleus and the amount of 
the total energy of the nucleus that is dissipated it is neces- 
sary to know the distribution of the velocity field v ( r )  and 
the concentration distribution c(r) in both phases, ex- 
pressed in terms of the radius of the nucleus R ( t )  and the 
velocity of its boundary R (t) .  At the boundary of the nu- 
cleus, which is a surface of discontinuity, boundary condi- 
tions expressing the continuity of the mass flux of the liquid 
and the mass flux of one component of the solution must be 
satisfied, i.e., 

p'(R)c'(R) [v' (R)-A]+il(R)=p(R)c(R) [v(R)-R]+i(R). 

Here the vector i is the diffusion flux density. 
In what follows we neglect the compressibility of the 

liquid, since for large nuclei, for which the departure from 
phase equilibrium is small, the velocity of motion is small 
compared with the velocity of sound s. Taking into account 
the compressibility of the liquid corresponds to taking into 

1021 Sov. Phys. JETP 73 (6), December 1991 S. N. Burmistrov and L. B. Dubovskil 1021 



account in the kinetic energy terms of order R /s< 1 and 
leads to small corrections to the transition probability.I3 
Thus the instantaneous velocity field and the concentration 
distribution are determined from the equations of continuity 
for the metastable phase 

div pv=O, (5) 

and analogous equations for the stable phase. 
The first equation in Eq. (51, together with Eq. ( 3 ) ,  

gives the well-known velocity profile of the liquid' 

R, r>R(t) 
u ( r )  = 

r<R(t) ' 

The kinetic energy of the nucleus, defined as the integral of 
the kinetic energy density over the volume of the entire sys- 
tem, assumes the standard form' 

In order to find from Eqs. (4)  and (6)  the concentra- 
tion distribution c ( r ) ,  which is needed for calculating the 
dissipation in the system, it is necessary to have an expres- 
sion for the diffusion flux. For small concentration gradients 
in the system and when the mean-free path of excitations 
l (T)  in the metastable phase is small compared with the 
dimensions of the nucleus, the hydrodynamic expression for 
the diffusion flux can be employed:I4 

where D is the diffusion coefficient, which, generally speak- 
ing, depends on the concentration. From Eqs. (4)  and (6),  
substituting Eq. (7) ,  we obtain the following concentration 
distribution in the system: 

c- (cl-c)--- 
c ( r )  = 

P' , r>R(t) 
P D(c) r 

c', r < R ( t )  ' 

(10) 

It is obvious that as the nucleus grows one component of the 
solution will be depleted near the surface of the nucleus, if 
the new phase corresponds to a higher concentration of the 
component c' > c and, vice versa, enrichment with the com- 
ponent will occur if we have c' < c. The distribution ( 10) in 
such a simple form occurs only if the nucleus grows so slowly 
that terms proportional to R can be neglected and the diffu- 
sion coefficient D can be assumed, to the same accuracy, to 
be constant and independent of the concentration c. This 
restriction presumes that the following condition is satisfied: 

which means that the characteristic time for a particle to 
diffuse over the distance R is short compared with the time 
required for the particle to traverse the same distance R 
purely mechanically together with the flow of the liquid. The 
condition ( 11 ) is also equivalent to studying motion corre- 
sponding to small Reynolds numbers: 

It is obvious from Eqs. (7)  and ( 10) that the growth of 
the nucleus in the solution is accompanied both by flow of 
the metastable liquid with the nonuniform velocity v(r)  of 
the macroscopic motion and by a nonuniform concentration 
distribution in the volume. This means that dissipative pro- 
cesses associated with relaxation of the solution to complete 
thermodynamic equilibrium arise in the solution. One dissi- 
pative process, governed by irreversible viscous transfer of 
momentum from sections of the medium moving with higher 
velocity to sections moving with lower velocity, also occurs 
in a one-component liquid.'' The second dissipative process 
is associated with irreversible diffusion transfer of the solu- 
tion components from sections of the medium with high con- 
centration to sections with low concentration. 

The hydrodynamic equations for an incompressible liq- 
uid solution can be used to find the energy dissipation in the 
hydrodynamic limit, when the size R of a nucleus is much 
larger than the mean-free paths of the excitations in the solu- 
tion. Then the intensity of energy dissipation is determined 
by the relationI4 

where 77( T) is the coefficient of viscosity of the metastable 
liquid surrounding the nucleus and Z(p,  T, c) is the suitably 
defined chemical potential of the solution 

Here p3 and p4 are the chemical potentials of the compo- 
nents of the solution and m, and m4 are the masses of the 
constituent particles of the solution. Substituting the veloc- 
ity distribution of the liquid (7)  and the concentration dis- 
tribution ( lo) ,  we obtainI5 

The dependence of the rate of energy dissipation on the 
size of a nucleus in the solution is more complicated than in a 
one-component liquid. For large nuclei, to which there cor- 
responds quite weak supersaturation of the solution, when 

I P'-P l R>RD (T)  =2 

the energy dissipation of a nucleus is determined entirely by 
diffusion processes. They will also determine the probability 
of formation of a critical nucleus. 

As the temperature decreases the mean-free paths I (  T) 
of the excitations, as a rule, increase rapidly and when they 
are of the order of the characteristic radius R, of a nucleus 
the hydrodynamic relations are no longer applicable. In this 
case it is necessary to study the kinetic equations with defi- 
nite boundary conditions, which are characterized by the 
interaction of excitations with the surface of the nucleus. In 
the Knudsen limit, when collisions are rare ( I >  R, ), the 
problem simplifies significantly, since the excitations collid- 
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ing with the surface relax in the medium itself far from and 
independently of the nucleus. 

In this case the rate of dissipation of energy of the nu- 
cleus becomes proportional to the area of the surface of the 
nucleus and can be found from the general equation of heat 
transfer,14 which gives for the rate of irreversible dissipation 
of energy in the solution 

where oik is the tensor of the dissipative momentum flux 
density, which determines the internal friction forces acting 
in the solution. Using the equations of motion for a liquid 
solution, which are simplified owing to the slow growth R of 
the nucleus, we obtain 

Here (T,, (R)  is the additional force acting along the normal 
to the surface of the nucleus together with the usual pressure 
of the liquid. This force arises in connection with the motion 
of excitations in the metastable phase relative to the nucleus. 
The strength of this force is determined by the momentum 
flux transferred from excitations to the nucleus and is pro- 
portional to the velocity of the liquid 

The coefficient 9 depends only on the properties of the exci- 
tations in the metastable phase and on the character of their 
interactions with the surface of the nucleus. In order of mag- 
nitude the coefficient 9 is the product of the density of the 
excitations by their characteristic velocity. 

The second term in Eq. ( 18) is related to the presence of 
the diffusion flux in the metastable solution. 

is the diffusion flux at the surface of the nucleus and can be 
found with the help ofEqs. (5)  and (6 ) .  For further simplifi- 
cation we take into account the fact that the appearance of a 
difference c - c ( R )  between the concentration on the sur- 
face and far away from it is caused exclusively by the growth 
of the nucleus and the fact that the concentration difference 
is nonzero to the extent of the rate of growth R. Expanding 
the difference of the potentials in Eq. ( 18) in powers of the 
concentration difference and using the relation between the 
diffusion flux density at the surface and the depletion (en- 
richment) of one of the solution components at the surface 
of the nucleus 

for the rate of dissipation of energy of the nucleus in the 
Knudsen limit. Dissipation in this case does not depend on 
the mean free path. The viscous contribution depends on the 
size of the nucleus in the same manner as does the diffusion 
contribution; this is different from the hydrodynamic limit 
(15). 

When dissipative processes are present in the metasta- 
ble medium surrounding the nucleus the dynamics of the 
development of the nucleus can be described by introducing 
a friction force F, which is a linear function of the rate of 
growth and opposes the growth of the nucleus. The growth 
of the nucleus is determined by the following equation of 
motion:I2 

where L is the Lagrangian of the system of interest 

1- ( f i ,  R ) = M ( R ) R L - U ( K ) .  

The kinetic and potential energies are determined by 
the relations ( 8) and ( 1 ) . As one can see from Eq. (23), the 
energy of the nucleus is dissipated at the rate 

which makes it possible to establish a relation between the 
coefficient of friction p (R ) and the dissipation of energy per 
unit time. 

In order to calculate the probability W of the decay of 
the metastable state of the solution we employ the approach 
proposed in Refs. 10 and 11 and employed in Ref. 12 to 
calculate the probability of decay of a metastable quantum 
liquid. The probability of the formation of the nucleus of a 
new phase is given, to exponential accuracy, by the expres- 
sion 

where A is the extremal value of the effective action S,,, 
defined in terms of the imaginary time as 

M ( R )  A' 
S t =  ./ dr { 

3 + U ( R )  
4, L 

we obtain for the diffusion term in Eq. ( 18) the expression 

The coefficient S is also determined only by the properties of 
the metastable phase and the properties of the surface of the 
nucleus. In order of magnitude, it is also the product of the 
density of the excitations by their characteristic velocity. 

Using Eqs. (7)  and (20), we obtain finally 

with periodic boundary conditions R ( - P /2) = R (P/2) .  
Here P= T - '  is the inverse temperature. The first two 
terms in Eq. (26) are the kinetic and potential energies. The 
vertex function y(R) is determined by the classical mobility 
(24) according to the following relation 
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~ ( R ) = ( a y l a R ) ~ ,  
friction force F in  Eq. (23 ) . Correspondingly, in the Knud- 

(27) sen and hydrodynamic limits the vertex function y(R) de- 
and the last term in Eq. (26) corresponds, in real time, to the pends nonlinearly on the radius R and has the form 

As one can see from the relation (26), the dissipative pro- 
cesses in solution, which are associated with viscosity (inter- 
nal friction) and diffusion, reduce the probability of subbar- 
rier formation of a critical nucleus as compared with 
nondissipative kinetics's9 by the amount in the exponent of 
the exponential -,u (R, ) R z. Since the nucleation kinetics in 
the Knudsen regime R, (I  and in the hydrodynamic viscous 
regime R, ) I  and R, (R, is entirely analogous to the nu- 
cleation kinetics in a one-component liquid (RD = cu ) in 
the corresponding regimes and with correspondingly rede- 
fined kinetic coefficients and is examined in detail in Ref. 12, 
we shall analyze below only the case of the hydrodynamic 
regime R, ) I ,  RD7 which has no analog in the one-compo- 
nent metastable phase. The diffusion regime is realized not 
only when the density of the metastable solution is almost 
equal to the density of the new stable phase, but also in the 
important case of the limit of a weakly supersaturated solu- 
tion (R, - cu ), where diffusion processes completely deter- 
mine the quantum kinetics of nucleation processes. This is 
what makes a solution fundamentally different from a one- 
component system, where the kinetics of subbarrier nuclea- 
tion in a weakly nonequilibrium metastable liquid is dictated 
by the kinetic energy K of the medium, which in turn is de- 
termined by the fluxes of the liquid accompanied by growth 
of fluctuations of the new phase. 

So, in the diffusion hydrodynamic limit R, ) I ,  R, the 
effective action is determined by the expression (26) with 
the vertex function y(R), which is given by the bottom line 
in Eq. (28). As usual, there exists a stationary extremal tra- 
jectory R (T)  = R, = +R,, which passes through the maxi- 
mum of the potential energy U(R ) ( 1 ) and gives the classi- 
cal exponential for the probability of nucleation, equal to the 
height of the potential barrier 

A (T) = U o / T ,  Uo= ( 4 /27 )haR ,Z .  (29) 

The second extremal trajectory is explicitly time dependent, 
and in order to analyze it it is convenient to distinguish two 
cases: weak and strong dissipation. In the first case, when 
supersaturation of the solution is still quite large and the 
critical radius R, satisfies the inequality 

A (T) =&+At (T), (31) 

where A, is given by' 

The transition from the activational regime (29) to the 
quantum regime (31) occurs at the temperature To, for 
which 

and occurs as a first-order phase transition. In the limit of 
low temperatures T(T, or T < 1 where 
T, = (lApl/p)(pR :/20)'/~ is the transit time along the 
null-temperature extremal of the local part of the action 
(26), we obtain the following expression for the correction 
A ,  ( T ) ,  calculated by making an expansion in the tempera- 
ture: 

where 

We shall now transfer to the more interesting case of 
strong dissipation, when the inequality opposite to (30) 
holds. In this limit the evolution of the nucleus under the 
barrier is entirely determined by the diffusion term, and the 
kinetic energy plays the role of a correction. The extremal 
trajectory is determined from the effective action, which in 
the corresponding variables has the universal form 

16n 8Zldc 
A (T) = -(c '-c)~~" - 

25 PD R,"s~/, ( t )  

The functional s,,, [ x ,  ] is given by the expression 
1 / 2 1  1 /2 t  ~. 

ntz -/ (x* =-x:.' )2 
s.,.= j dr [xTz(l-xT)+ - j dr' 

- t / z t  
4 -l lz l  sinz nt (7-r') 

and the reduced temperature t is the ratio of the tunneling 
exponential to the activational exponential 

the nonlocal term in Eq. (26) can be regarded as a perturba- For zero temperature the value of s,,, (0) is of the order of 
tion of the nondissipative regime. As a result we have unity s,,, (0) = 2.8 ... . In the regime of strong dissipation 
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the temperature To of the transition into the' activational 
regime is defined as the temperature at which the action on 
the stationary trajectory x,  = 2/3 is equal to the action for 
the nonstationary trajectory, i.e., from 

The transition from the classical activational trajectory to 
the quantum trajectory in this case also occurs abruptly and 
the curve s,,, ( t )  has a break at the point To. 

Thus in metastable solutions with sufficiently small de- 
grees of supersaturation the main process limiting the rate of 
quantum nucleation is diffusion of the solution components 
accompanying growth of fluctuations. As one can see from 
Eq. (34), a larger diffusion coefficient corresponds to a 
shorter lifetime of the supersaturated solution. A distin- 
guishing feature of the probability of quantum nucleation is 
that the exponential depends much more strongly on the 
critical size of the nucleus than in the case of the activational 
mechanism. 

3. QUANTUM NUCLEATION IN A SUPERFLUID SOLUTION 

We now study nucleation processes in a superfluid su- 
persaturated liquid solution consisting of a 3He-4He solu- 
tion in the region of the lower phase. As in the preceding 
section, the problem reduces in practice to finding the classi- 
cal equation of motion (23), describing the growth of fluctu- 
ations of radius R. The potential energy U(R) has the pre- 
vious form ( 1 ) . The effective mass M(R ) and the coefficient 
of frictionp (R ) in turn differ from their values in the normal 
solution. This is connected with the presence of two types of 
motions in the superfluid solution and with the fact that the 
dissipative processes are different. 

To describe the superfluid solution we employ the equa- 
tions of two-velocity hydrodynamics for mixtures and we 
also assume that the impurities (3He) participate only in the 
normal motion. l 6  In what follows we do not study the case of 
extremely low temperatures, when there arises the possibil- 
ity for a phase transformation with a superfluid transition of 
the impurity component (3He) and the motion of such a 
liquid with two superfluid components is now described by 
the equations of three-velocity hydrodynamics." 

We also emphasize that we do not study the region of 
temperatures close to the temperature of the transition into 
the superfluid state. The point is that as the transition point 
is approached the relaxation times necessary for establishing 
the equilibrium value of the superfluid order parameter as 
well as the correlation radius of its fluctuations increase and 
become the longest relaxation times. For this reason the den- 
sity of the superfluid component of the liquid, associated 
with the order parameter, can be expressed as a function of 
other quantities (density, temperature) as long as the criti- 
cal radius of the nucleus and the characteristic time of the 
motion of the nucleus are large compared with the correla- 
tion radius of the fluctuations and the relaxation time of the 
order parameter. Close to the il point, aside from singling 
out the "significant" variables related with the nucleus, it is 
also necessary to include among the "important" variables 
the order parameter also. For this reason, the complete 
equations of motion of the liquid must also include the equa- 

tions determining the evolution of the order parameter.'' 
As before, we assumed that the rate of growth R ( t )  of a 

nucleus is small and the liquid is incompressible. In this ap- 
proximation the equations of motion have the form 

div j=O, (37) 

div (pcvn+i) =O.  (38) 

The mass flux density in the superfluid liquid is equal to 

where p, and p, are the densities of the normal and super- 
fluid components of the liquid. The boundary conditions un- 
der which the mass flux of the entire liquid and of one of the 
components are continuous, taking into account zero veloc- 
ities and absence of fluxes inside the nucleus, have the form 

-p'c'A=pc (R) [v,(R) -A] f i (R) . (41 

One other boundary condition is needed in order to find the 
distribution of the normal and superfluid velocities as well as 
the concentration. The normal velocity v ,  is related with the 
motion of normal excitations, which have all the properties 
of a conventional viscous liquid. For this reason, we set the 
normal velocity vn at the surface of the nucleus equal to the 
velocity of this surface, i.e., 

v,, (R) =R. (42) 

This boundary condition, corresponding to attachment 
of normal excitations to the surface, is equivalent to the as- 
sumption that the excitations are in thermal equilibrium 
with the surface. This means that heat is not transferred be- 
tween the nucleus and the liquid and there is no temperature 
jump at the boundary. As a result, we obtain for the velocity 
distribution 

u,, (r) = { RR:, r>R(t) 
r c R ( t )  ' 

{ - [ ( p ' - p ) / p R 2 / r 2 ,  r>R ( t )  
u, (r) = 

0, r<R (t) 

For velocities of the normal and superfluid components that 
are low compared with the velocity of sound the dependence 
of the thermodynamic quantities on the relative velocity 
I vn - us I can be neglected. Then the kinetic energy associat- 
ed with the growth of the nucleus assumes the form 

K=1/2 p,,~,,' (r) d3r+1/2 psv+' (r) d3r: 
(44) 

Herep,, is the effective density, equal to 

and exceeds the analogous density (8) in a normal solution. 
One of the interesting and unusual consequences of 

(45) is that the lifetime of a metastable superfluid liquid at 
low temperatures, when the contribution of rotons and 
phonons to the normal density p, can be neglected, should 
increase as the impurity 3He is added. The point is that in 
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this case the normal velocity will be determined entirely by 
the concentration of the impurities p, = p*c and increasing 
their concentration will result in an increase of the effective 
densityp,,, and therefore according to Eq. (32), it will lead 
to a decrease of the nucleation probability. If the characteris- 
tic observation times of nucleation range from one second to 
one hour, then, as will be evident from what follows, the 
exponent of the exponential in Eq. (25) must be equal to 
A, - 80. But the change of the exponent as a result of a 
change Sc of the concentration will be of the order of 

so that a change of the impurity concentration by an infini- 
tesimal amount Sc- 10-4-10W3 will change the lifetime of 
the metastable liquid by several factors. Such a picture 
should be observed, for example, for overcompressed meta- 
stable He I1 near the liquid-crystal phase transition. 

It is obvious that growth of a nucleus is accompanied 
not only by nonuniform flows of liquid, but also nonuniform 
distribution of the concentration c(r)  in solution. In order to 
find c ( r )  it is necessary to know the relation between the flux 
i ( r )  and the concentration. For this reason, we shall first 
study the region of weak supersaturations of the solution, 
when the critical radius R, of a nucleus is large compared 
with the mean free path length I(T) of the excitations and 
the hydrodynamic approximation16 

where D is the diffusion coefficient and k,D is the thermo. 
diffusion coefficient, can be employed. The fact that thc 
thermodiffusion term must be included in the diffusion flux 
is dictated by the fact that in a superfluid solution under 
stationary conditions a concentration gradient can occur to- 
gether with a temperature gradient. Indeed, the equation of 
motion for the superfluid velocity, neglecting terms - R 
and the coefficients of second viscosity gi, since div j = 0 and 
div v, = 0, has the form16 

wherep( T, c) is the thermodynamic potential of a unit mass 
of the solution and is equal to 

Thus the motion of the superfluid component satisfies 
the condition that the chemical potential of He I1 is constant 
in the volume, i.e., p, (T, c) = const. From Eq. (48) with 
the help of the thermodynamic identity 
dp = - sdT + dP/p + Zdc we find a relation between the 
concentration and temperature gradients 

where S is the entropy per unit mass of the solution. Now, 
substituting Eq. (50) into Eq. (47) we find that the diffusion 
flux is related to the concentration gradient through the ef- 
fective diffusion coefficient 

The relations found make it possible to determine the diffu- 
sion flux and concentration distributions in the solution: 

{ p ' c ' 7 / r z ,  r>R 
i (r) = 

r<R ' 

c- (c'p'/pD,,,)AR2/r, r>R 
c ( r )  = 

r t R  

Near the surface of a nucleus the dissolved impurity is 
depleted and, according to Eq. (50), the temperature in- 
creases. The depletion of impurity and the increase of the 
temperature are proportional to the rate of the process. The 
distributions (43), (50), and (52) obtained above make it 
possible to calculate the rate of dissipation of energy of the 
nucleus from the relationI6 

and at the same time the coefficient of friction p (R)  (24) in 
terms of the kinetic coefficients of the solution: the viscosity 
7, the diffusion coefficient D, and the thermal conductivity 7t 

In the hydrodynamic limit the dissipation of energy for 
a superfluid solution as a function of the radius R of the 
nucleus is analogous to the dependence for the normal solu- 
tion (15). For this reason all results of the preceding section 
can be transferred to this case. A distinguishing element, 
apart from the different temperature and concentration de- 
pendences of the coefficients, in the superfluid solution is the 
presence of an additional mechanism of dissipation-heat 
conduction. In the limit of weak supersaturations the kinet- 
ics of nucleation will be determined by the mechanisms of 
diffusion and heat conduction. 

In the Knudsen regime R, < I  each dissipation mecha- 
nism makes a contribution proportional to the area of the 
nucleus, and analogously to Eq. ( 18) for the dissipation of 
energy of the nucleus per unit time we have 

When the nucleus is not growing, R = 0, all fluxes, together 
with the corresponding deviations of the thermodynamic 
quantities from equilibrium, vanish. For this reason, for 
slow rates of growth the fluxes can be expanded in powers of 
the departure from equilibrium and only the linear terms 
need be retained. Then, for the rate of dissipation of energy 
we obtain 
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where the coefficients 9 and S can be determined in terms of 
the relations ( 19) and (21 ), and x is the thermal conductiv- 
ity of the nucleus-solution boundary and relates the heat flux 
through the boundary with the temperature difference. In 
order of magnitude x is the product of the heat capacity of 
the gas of excitations by their characteristic velocity and 
density. Using the relations ( 41 )  and ( 50 )  and the depend- 
ence of or, on u,  ( R )  and T - T ( R  ) and the dependence of i 
on c - c ( R )  and T - T ( R  ) we represent the dissipation in a 
form analogous to Eq. (22)  and from the same contributions 
as in Eq. ( 54 )  

The characteristics of nucleation in a superfluid solu- 
tion in the region of the Knudsen regime are the same as in a 
normal metastable solution in the corresponding regime, 
since the functional dependence on the size of the nucleus is 
the same. Differences appear only as a result of the different 
behavior of the kinetic coefficients as functions of the tem- 
perature and concentration. In the superfluid solution they 
are also determined entirely only by the properties of the 
interaction of the normal excitations with the surface of the 
nucleus. The contribution of the dissipative term to the ex- 
ponential for the nucleation probability ( 25 )  is of order 
- p (Rc  )R :. 

4. EXPERIMENTAL OBSERVATION OF QUANTUM 
NUCLEATION 

The dynamics of the development of a nucleus of a sta- 
ble phase at a certain temperature is determined by three 
energies. The first energy is the potential energy of formation 
of a nucleus of the stable phase as a function of the size of the 
nucleus. The second energy is the kinetic energy associated 
with the rate of growth of the nucleus. The third energy 
characterizes the interaction of the evolving nucleus of the 
stable phase with the surrounding metastable liquid and de- 
termines the dissipation of the energy of the nucleus as the 
nucleus grows. We are interested in relatively slow growth of 
a nucleus with rates much slower than the velocity of sound. 
It is precisely in this case that the kinetic energy can be sys- 
tematically separated from the dissipative part of the inter- 
action. Such slow growth of a nucleus occurs with relatively 
small degree of metastability of the unstable phase, when the 
nucleus has a macroscopic size. It is of no interest to analyze 
the formation of the critical nuclei of a smaller size, namely, 
microscopic size, since the formation time of such a nucleus 
is short and is determined by the times of separate micro- 
scopic acts. Indeed, the probability of formation of a critical 
nucleus includes, aside from the exponentials, a large preex- 
ponential factor Wo - wo N, consisting of two factors, where 
wo is the characteristic frequency of small oscillations near 
the bottom of the potential ( 1 ) and N = V(4vR  2/3) - ' is 

the number of possible centers of nucleation. For the volume 
of the system V- 1 cm3, R,  -a, and oo - 1012 s -  ' we have 
Wo -eS0 s- ' .  If the characteristic observation time ranges 
from one second to one hour, then the exponent A for the 
nucleation probability ( 25 )  must fall in the range A-80. 
Such a large exponential factor is possible only for a critical 
nucleus of macroscopic size, while microscopic critical nu- 
clei lead to instantaneous formation of a stable phase, analy- 
sis of which falls outside the scope of the approach studied in 
this paper. 

At high temperatures, when thermoactivational forma- 
tion of a nucleus occurs, the probability of formation of a 
nucleus is determined primarily by the potential energy 
only, more precisely, only by the height of the potential bar- 
rier which fluctuations of the new phase must overcome in 
order for a phase transition to occur in the metastable sys- 
tem. The barrier height is dictated by the effective surface 
tension at the interface between the phases. If impurities are 
introduced into the metastable system, then their role re- 
duces primarily to changing the interphase surface tension. 
When a small quantity of impurities is introduced, generally 
speaking the change in the surface tension and together with 
it the change in the activational exponential must be small 
and proportional to the impurity concentration, if, of course, 
the impurities are not centers of nucleation or are not sorbed 
for any reasons on the interphase boundary, when a high 
degree of metastability of the unstable phase becomes much 
less likely or even impossible. 

In the quantum region T <  To, where To is the tempera- 
ture separating two regimes and is proportional to the inter- 
phase surface tension, the effect of impurities on the lifetime 
of the metastable system is more complicated. Aside from 
changes in the thermodynamic quantities, such as, for exam- 
ple, the surface tension, introducing impurities into a meta- 
stable system will change the kinetic coefficients describing 
the dissipative processes of viscosity, diffusion, and heat 
conduction, which accompany growth of fluctuations of the 
new phase. Since this occurs at low temperatures, these 
changes can be significant and they can even result in other 
temperature dependences. This is clearly seen when 3He-im- 
purities are introduced into superfluid He 11, where at suffi- 
ciently low temperatures dissipative processes will be deter- 
mined entirely by the impurity component. The 
introduction of the impurity component increases dissipa- 
tion in the formation of the critical nucleus and therefore 
results in an increase of the lifetime of the metastable system. 
Moreover, in the limit of strong dissipation the probability of 
formation of a critical nucleus is determined entirely by dis- 
sipative processes and at temperatures T <  To it does not 
depend on the surface tension between them. 

A new qualitative element appears in the superfluid liq- 
uid. Here the presence of impurities (3He) affects not only 
the dissipative part of the effective action (26)  but also its 
dynamic part. The reason is that in a superfluid liquid there 
exist two types of motion of the liquid-superfluid and nor- 
mal-and also that the impurities participate only in one 
type of motion-in the normal motion. The difference in the 
motion of impurities and the liquid as a whole results in an 
increase of the effective density (45)  in the mass for the ki- 
netic energy of the nucleus. The increase in the kinetic ener- 
gy of a nucleus accompanying introduction of impurities 
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into the system also increases the lifetime of the metastable 
phase. Since at sufficiently low temperatures the density of 
the normal component of the liquid is almost equal to the 
density of the impurity, the introduction of even an infinites- 
imal quantity (Sc- 10 - 4 )  of impurities into 3He will result 
in an appreciable increase (46), by several factors, of the 
lifetime of the metastable superfluid He I1 near the liquid- 
solid phase transition. 

A new qualitative element is also present in a two-com- 
ponent system (solution) as compared with the case of a 
single-component metastable liquid. In this case, in the limit 
of large critical nuclei the main dissipation process becomes 
diffusion, which is absent in a single-component system. 

The observation of the effects studied above, depending 
on the degree of metastability of the system, can present defi- 
nite difficulties, caused by the sharp dependence of the prob- 
ability of decomposition on the critical radius. As pointed 
out above, because of the large value of the preexponential 
factor, the exponent A is also a large quantity and is equal to 
A - 80. Since A is also a nonlinear function of R, ,  A a R : 
( n  = 2-5), the experimentally admissable range of variation 
of R ,  is only several percent. A change of R ,  by several tens 
of percent, however, would result in an enormous change of 
the characteristic required observation time, on the order of 
four orders of magnitude. 

One way to overcome this difficulty is to formulate a 
dynamic experiment. As the degree of metastability of the 
system, for example, the difference of the chemical poten- 
tials of the phases Sp(t),  gradually increases, R ,  decreases 
and the probability of formation of the critical nucleus 
W(Sp) increases, so that at some moment in time there oc- 
curs a phase transition, which is recorded. When the experi- 
ment is repeated, because of the probabilistic character of 
the process, the phase transition, generally speaking, will 
occur at a different value of Sp. The distribution of the num- 
ber of creations of a nucleus as a function of the degree of 
metastability P(Sp) is related with the probability of nuclea- 
tion W(Sp) by the simple expression 

which makes it possible, in principle, to determine W(Sp). 
An analogous relation was used to analyze the probability of 
macroscopic quantum tunneling in superconducting Jo- 
sephson contacts.19 The width of the distribution P(Sp) is 
related to the value of the exponential in the expression for 
the nucleation probability. Measuring the width of the dis- 
tribution P(Sp) as a function of the temperature and con- 
centration will make it possible to determine the character of 
the nucleation processes occuring in phase transitions. 
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