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In this paper we show that the phenomenon of Bose-Einstein condensation can take place in a 
two-dimensional ideal Bose gas subjected to a nonuniform field that varies on a macroscopic 
scale. We calculate the Bose-Einstein condensation temperature To for the class of fields that are 
power-law functions of coordinates. We prove that inclusion of interactions between the bosons 
prevents Bose condensation, but that for the case of a dilute gas To remains a special temperature 
in whose neighborhood the system makes a transition to the superfluid state. We investigate the 
effect of a nonuniform field on the Berezinskii-Kosterlitz-Thouless phase transition. 

The study of superfluidity in thin films has a long his- 
tory (see, e.g., Ref. 1). In recent times, the problem of 
superfluidity in ultrathin (down to monolayer) films has 
attracted special interest. Thus, experiments2 have shown 
that when 4He is adsorbed on a surface as a thin film, some of 
the adsorbate forms a solid layer while the remaining 4He 
behaves rather like a dilute surface Bose gas. At low tem- 
peratures this Bose gas enters the superfluid state; the fact 
that its phase transition temperature can be almost three 
orders of magnitude lower than that of bulk He-I1 suggests 
that the gas phase is extremely dilute. 

In another group of experiments, the properties of spin- 
polarized atomic hydrogen H J  adsorbed by a surface cov- 
ered with a film of helium are investigated.' In these experi- 
ments the film of hydrogen also forms a 
quasi-two-dimensional dilute gaslike phase. Although at 
this time superfluidity in films of spin-polarized hydrogen 
has yet to be observed experimentally (which is also the case 
for three-dimensional superfluidity of H 1 ), there is no doubt 
that this type of superfluidity is possible in principle. 

Two-dimensional superfluidity (more precisely, quasi- 
superfluidity) can occur in an exciton gas created at the sur- 
face of a semiconductor (see, e.g., Refs. 4 and 5).  These ideas 
are also applicable to structures made up of layers with alter- 
nating electronic and hole conductivity, in which pairing of 
spatially separated electrons and holes can lead to boson for- 
mati~n.~. '  (The authors of Ref. 8 report that this type of 
pairing has been observed experimentally.) 

As a final example, we should mention another sys- 
tem-the system of Abrikosov vortices in a number of high- 
temperature superconductors. The authors of Ref. 9 showed 
that this system can be treated as a two-dimensional "Bose 
gas," in which we may expect two-dimensional "superfluidi- 
ty." In Ref. 9, it was established that the partition function 
for the Abrikosov vortices is isomorphic to the partition 
function for a two-dimensional Bose gas. The isomorphism 
arises from the fact that we can identify the vortex lines with 
world lines of a two-dimensional boson. 

From a theoretical point of view the possibility of 
superfluidity in a two-dimensional system was long consid- 
ered a dubious proposition, until the work of Berezinskii" 
and Kosterlitz-Thouless" proved that two-dimensional 
superfluidity is hindered by the presence of vortices in the 
two-dimensional system, which diffuse transverse to the su- 

perfluid flux under the action of the Magnus force, as a result 
of which the flux attenuates with time. Below the critical 
temperature T,,,, these vortices are bound in pairs with 
other vortices of opposite circulation, and the diffusion of 
vortices transverse to the flux is forbidden because the Mag- 
nus force acts on components of a pair in mutually opposite 
directions. This leads to dissipationless flow (i.e., to 
superfluidity) at temperatures below T,,,. Later, in the 
work of Nelson and KosterlitzI2 it was shown that at the 
temperature T,,, the superfluid density p, changes discon- 
tinuously from a value connected with TBKT by the relation 
TBKT = d2 py ( TBKT ) /2m to zero." In this relation, p, 
should be understood to mean the superfluid density renor- 
malized by thermally excited vortices (see Sec. 3 ) . The ex- 
periments of Bishop and ReppyI3 and a number of other 
authors (see, e.g., Ref. 14) on monolayer films of 4He com- 
pletely confirm these latter predictions of the theory. 

The BKT theory describes a transition to the superfluid 
phase for a spatially uniform system. In this paper we con- 
struct a theory of two-dimensional superfluidity in a nonuni- 
form external field. Interest in this problem is motivated by 
the following circumstance: in the three-dimensional case, 
the transition to the superfluid phase is accompanied by the 
phenomenon of Bose-Einstein condensation and by the ap- 
pearance of long-range order in the system at the transition 
point. This allows us to describe the superfluid phase in 
terms of an order parameter. In two dimensions Bose con- 
densation cannot occur at nonzero temperatures, either for 
an ideal Bose gas or for a Bose gas with interactions, and so 
an order parameter cannot be introduced. 

However, the conclusion that there is no Bose conden- 
sation in a two-dimensional Bose gas is correct only for the 
spatially uniform case. In a paper by the author,'' it was 
shown that an ideal two-dimensional Bose gas placed in a 
nonuniform external field exhibits Bose-Einstein condensa- 
tion at a certain nonzero temperature To, just as in three- 
dimensional case. It must be emphasized that this result ap- 
plies specifically to an ideal Bose gas: since the phenomenon 
of Bose condensation in a nonuniform field involves spatial 
redistribution of the bosons and occupation of the lowest 
energy state by a macroscopic number of particles, it is clear 
that the inclusion of interactions between the bosons, which 
inhibits the latter process, can radically change the situation. 
A further goal of this paper is to address a number of ques- 
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tions related to the influence of a nonuniform field on the 
Bose condensate and superfluidity of a two-dimensional sys- 
tem of interacting bosons. 

The fundamental result of this paper can be stated as 
follows: inclusion of interactions between the bosons elimi- 
nates Bose condensation and long-range order in a system of 
two-dimensional bosons placed in a nonuniform field. How- 
ever, it is noteworthy that the Bose condensation tempera- 
ture To for a dilute Bose gas in a nonuniform field is a stable 
characteristic of the system. When interactions between the 
bosons are included, the phase transition associated with 
Bose condensation is replaced by a transition involving the 
appearance of superfluidity in the system, and the transition 
temperature T, to the superfluid state differs only slightly 
from the temperature To.  The more dilute the Bose gas is, 
the smaller is the correction to To.  The diluteness parameter 
is In- ' (  l /na2) ,  where n  is the two-dimensional boson den- 
sity and a  is the characteristic radius over which the repul- 
sive potential between bosons acts. For an applied external 
field u  ( r )  that is a power-law function of one of the coordi- 
nates ( U  a xa) ,  this correction depends considerably on the 
value of the exponent a .  For a S 1 the correction is propor- 
tional to the first power of the diluteness parameter, while 
for a 2 1 the correction is small and is proportional to the 
a th  root of the diluteness parameter. Since under the condi- 
tions of the experiments large values of In( l / n a 2 )  are diffi- 
cult to achieve, let alone large values of the root of this loga- 
rithm, in practice T, will be close to To only for a S 1. 
Because To decreases as a decreases, the optimum value of a 
from the point of view of experiment is a =: 1. 

The paper is set up in the following way. In Sec. 1 we 
show that the presence of a nonuniform field leads to the 
phenomenon of Bose condensation in a two-dimensional 
ideal Bose gas. Although some of the results of this section 
have already been published in a short comm~nication,'~ 
here they are given a more comprehensive and rigorous 
proof. In Sec. 2  we set up the theory of a two-dimensional 
weakly nonideal Bose gas, and show that when this system is 
placed in a nonuniform field the temperature at which a non- 
zero superfluid density appears is close to the Bose conden- 
sation temperature. In Sec. 3  we discuss features of vortex 
formation in a nonuniform field and the influence of the non- 
uniform field on the BKT transition temperature. In the 
Conclusion we discuss the similarities and differences in the 
behavior of a Bose and a Fermi gas in a nonuniform field. 

1. BOSE CONDENSATION IN A TWO-DIMENSIONAL IDEAL 
BOSE GAS 

Let us first discuss the behavior of a two-dimensional 
ideal Bose gas in a nonuniform external field. Assume the 
characteristic distance over which the external field varies is 
on the order of the size of the system. Then in zero approxi- 
mation a quasiclassical approach can be used to describe the 
behavior of the gas. If the potential energy of a boson in the 
external field is u ( r ) ,  the distribution function of the bosons 
in a state of thermodynamic equilibrium will have the form 

Here p is the two-dimensional momentum, m  is the mass of a 
boson, and p is the chemical potential of the Bose gas. The 

chemical potential is found as usual from the normalization 
condition 

where N is the total number of particles in the system. 
The most physically transparent results are obtained 

for the case of a field u  ( r )  that is a quadratic function of one 
of the coordinates, i.e., 

where L, is the size of the system in the direction of the x- 
axis. 

Substituting ( 3 )  into ( 2 )  and replacing the integration 
variable x  by p , L , / ( 2 m ~ , ) " ~ ,  we are led to the following 
equation for the chemical potential (we assume that uo > T )  

The integral on the right-hand side of this equation precisely 
coincides with the integral that arises in the corresponding 
equation for the chemical potential of a three-dimensional 
ideal Bose gas. However, it is well known that the latter case 
exhibits the phenomenon of Bose-Einstein (BE) condensa- 
tion, i.e., the accumulation of a macroscopic number of par- 
ticles in the state with energy E = 0. The phenomenon of BE 
condensation is associated with the convergence of the inte- 
gral ( 4 )  over three-dimensional momentum space for ' 

p + u, = 0. Because this same integral overp appears in the 
present case, it is obvious that BE condensation occurs in a 
two-dimensional ideal gas placed in a field u  ( r )  of form ( 3  ), 
just as for the three-dimensional Bose gas. We can find the 
temperature To for the transition to a state with a Bose con- 
densate from ( 4 )  by setting ,u + uo = 0. As a result we ob- 
tain 

where no = N / L ,  L, is the boson density in the system in the 
absence of the nonuniform field, and < ( 3 / 2 )  is the Riemann 
zeta function. 

Let us turn now to the case of an arbitrary potential field 
u  ( r ) .  Carrying out the integration of ( 2 )  over momentum p, 
we are led to the equation 

Let us assume that u  ( r )  has the form of a potential well 
whose center is located at the point x  = y = 0; u ( r )  could 
also be a one-dimensional potential well, in which case we 
will assume that the minimum of the potential u  ( x )  is locat- 
ed at x  = 0. 

The presence or absence of a Bose condensate is deter- 
mined by the convergence of the integral in ( 6 )  when 
p + u, = 0, where uo is the value of the potential at the mini- ' 

mum point. If u ( r )  increases with increasing x  and y faster 
than In r, and if the condition u  ( cc ) % T holds at the edge of 
the sample, i.e., when x z  L, and y=: L,, then the integral in 
( 6 )  obviously converges for large x  and y. 
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For small u ( r )  - p ,  or more precisely when 
u ( r )  - p 4 T, the expression under the integral sign has the 
form ln[u ( r )  - p] /T; therefore, when u ( r )  depends only 
on a single coordinate, the integral Jdx In [u (x)  - p ] / T  
converges for small x as long as u (x)  goes to zero in this limit 
more slowly than exp( - L,/lxl). Thus, when u has a pow- 
er-law dependence on x, the integral in (6)  converges and 
the phenomenon of BE condensation can occur. For a two- 
dimensional well BE condensation can occur only if u ( r )  
goes to zero more slowly than exp( - L 2/?), because when 
u [r exp ( - L 2/? + E ,  ] the integral Jdrr/? + ' diverges. 

For potential wells u (x )  of the form 

the integration over x in (6)  is easily carried out and we find 
that the temperature of Bose condensation equals 

where T (x )  is the gamma function. 
This result for the transition temperature can be ob- 

tained from simple physical considerations. The Bose con- 
densation temperature To coincides in order of magnitude 
with the degeneracy temperature, i.e., the temperature at 
which the average distance between bosons becomes com- 
parable to the thermal de Broglie wavelength. Thus, in the 
two-dimensional case the degeneracy temperature is of order 

For the spatially inhomogeneous systems under discussion 
here, Ti in this expression should be understood to mean the 
average boson density in the system, i.e., 

where L, (T)  is that characteristic length along the x-axis 
over which the Bose gas is concentrated for a given tempera- 
ture T. Since an ideal Bose gas is localized in regions of space 
where its energy u(x)  satisfies the condition u(x) < T, the 
length L, (T) is found from the relation 

Substituting this expression for L, ( T) into (9)  and ( lo),  we 
obtain 

For a 2 1 this relation for To coincides with the result (8) .  
These considerations are based on the quasiclassical ap- 

proach, which is valid provided that the de Broglie wave- 
lengths of all the particles are small compared to distances 
over which the external field varies. However, particles with 
small momenta, which are important in the analysis of the 
problem of Bose condensation, have wavelengths that are 
commensurate with the wavelength over which the external 
field varies. Therefore, a more careful investigation of the 
problem is required. In a field of the form (3)  we can obtain 
an exact solution. 

In the external field (3)  the state of the bosons is de- 
scribed by a wave function $ which satisfies the Schroe- 
dinger equation 

The eigenvalue spectrum of this equation is the sum of 
the eigenvalues for free motion with momentum fix along 
the y-axis and the eigenvalues of a harmonic oscillator 

where n is a nonnegative integer. 
Now the normalization condition, which determines 

the chemical potential p, has the form ( 6  = u - E,) 

Making use of the Poisson summation formula, we rewrite 
this equation in the following form: 

cx m 

-I} -'[I+~E cos(2ns m"Lz 41. 
f i  (Xu,) '" 

(16) 
s=I 

The terms in ( 16) that contain a cosine will oscillate 
rapidly as L, - W .  However, due to the presence of an infi- 
nite number of terms it is not a priori obvious that the sum 
overs will be small as L, - W .  We will show that in fact the 
sum overs vanishes as L, -. w . Making use of the expansion 
[expx - 1 ] - ' = 2,"=, exp( - nx) and carrying out the in- 
tegration in ( 16) with respect to k and E,  we obtain the fol- 
lowing expression for the sum overs [we will omit the factor 
in front of the integral in ( 16) for the time being J : 

Here we have introduced the notation 
x = 2irrn'I2 ~ ~ , / f i ( 2 u ~  ) ' I 2 .  

For small @/T it is the large n that are important in the 
sum over n, and we can sum the series by replacing it with an 
integration. As a result ( 17) can be written 

In what follows we will verify that as ?t - w in the neighbor- 
hood of To and below the quantity S - I @  I x/nT- 0. There- 
fore, the integral in ( 17a) can be replaced by 
J;exp( - Sx) (dx/x1I2) = (d) 

Returning to ( 16), we are led to the following equation 
for the chemical potential 

101 1 Sov. Phys. JETP 73 (6). December 1991 S. I. Shevchenko 101 1 



Some uncomplicated analysis of this equation shows 
that 

The interval of temperatures over which a transition takes 
place from one value of the chemical potential to another is 
of order [ (u,/m) "*fiT,/L, ] AS L, increases, the width 
of this temperature interval shrinks, and as L, - w a phase 
transition occurs. The phase transition temperature To coin- 
cides with the value obtained in the quasiclassical approxi- 
mation. 

For the case where the potential of the external field is a 
quadratic function of coordinates [i.e., has the form ( 3 )  1, it 
can be shown that the transition to a state with a Bose con- 
densate is a third-order phase transition, i.e., at the tempera- 
ture To the specific heat of the two-dimensional ideal Bose 
gas has a kink. We will omit the details of the calculation, 
since both the order of the phase transition and the character 
of the order that appears in the system change when interac- 
tions between the bosons are included. However, the transi- 
tion temperature To is stable with respect to weak interac- 
tions between the particles of the gas. 

2. SUPERFLUID DENSITY OF A WEAKLY NONIDEAL BOSE 
GAS 

Let us turn to an investigation of a weakly nonideal 
Bose gas. A weakly nonideal Bose gas placed in a nonuni- 
form external field (a  potential well) will accumulate in re- 
gions where the potential satisfies u ( r )  < ? as the tempera- 
ture decreases, these regions occupy a smaller and smaller 
volume. This being the case, the density of the gas will natu- 
rally increase, reaching its maximum value at the bottom of 
the potential well. If the potential u ( r )  varies over macro- 
scopic distances, then at each point in space we may assume 
that the system is quasiuniform, and use the known results 
from the theory of a uniform Bose gas for its description. As 
we have already noted in the introduction, for the uniform 
case the transition to the superfluid state in a two-dimen- 
sional Bose system takes place at a temperature T,,,; this 
temperature is connected with the superfluid density p, by 
the relation T,,, = (d2 /2m)ps  ( TBKT ) . In a nonuniform 
external field the superfluid phase appears primarily at the 
bottom of the potential well as the temperature decreases, 
and the temperature of the superfluid transition [when the 
potential u ( r )  is slowly varying] is determined from the re- 
lation T, = (d2 /2m)p ,  (O,T,), where p, (O,T, ) is the su- 
perfluid density at the bottom of the well. 

It should be emphasized that although the superfluid 
density p, will initially be nonzero only at the bottom of the 
potential well, the corresponding phase transition tempera- 
ture is determined by the properties of the entire system. The 
reason for this is that both the total density p ( r )  and the 
superfluid density p, ( r )  [and, in particular, p, (O)] are 
functions of the chemical potential. The latter, however, is 
found from the normalization condition, which integrates 

contributions from all regions of the system. As we will show 
below, for the case of a weakly nonideal Bose gas the primary 
contribution to the normalization condition for T-T, 
comes from regions in which the interaction of the bosons 
can be completely neglected. This is why the temperatures 
T, and To differ only by a small correction (which measures 
the extent to which the Bose gas is nonideal). Thus, for a 
weakly interacting Bose gas in a nonuniform field the super- 
fluid transition, like the three-dimensional case, turns out to 
be tied to the statistical properties of an ideal Bose gas. 

Turning now to calculations, we must include the fact 
that the bare interaction of two bosons in the two-dimen- 
sional case is strongly renormalized by many-body effects. 
As a result, if a is the characteristic radius over which the 
repulsive potential acts, the effective interaction of two bo- 
sons in a spatially uniform medium takes the form (see Refs. 
16 and 17) 

In what follows we will denote the coefficient in front of the S 
function by y for brevity, i.e., 

Because the kinetic energy of a "typical" boson is of 
order fi2n/m, while the interaction energy of a single boson is 
of order yn, the kinetic energy is large compared to the inter- 
action energy when the condition In( l /na2) % 1 holds. Thus, 
a dilute two-dimensional Bose gas is weakly nonideal in the 
same sense as a dilute three-dimensional Bose gas. However, 
in the two-dimensional case it is considerably more difficult 
to make the gas dilute. This is because the condition na3 < 1, 
which is sufficient for diluteness in the three-dimensional 
gas, is replaced by the considerably more restrictive condi- 
tion In- '(l /na2) < 1. 

After renormalization of the interaction the Hamilto- 
nian of a weakly nonideal Bose gas can be written in the form 

Despite the weakness of the interactions between bo- 
sons, the potential energy cannot be neglected, i.e., treated 
within perturbation theory, because for small momenta the 
kinetic energy is smaller than the potential energy. The most 
%ystematic way to solve this problem is to divide the operator 
$ ( r )  into two parts, corresponding to small and large boson 
momenta respectively. In this case it is convenient to refor- 
mulate the part corresponding to small momenta in terms of 
new "density-phase" variables. For weakly interacting bo- 
sons it is possible to choose a momentum p, that separates 
the "fast" and "slow" parts of g ( r )  in such a way that we can 
use ordinary perturbation theory to describe the fast parti- 
cles (i.e., the potential energy is small compared to the kinet- 
ic energy) while at the same time treating the density fluctu- 
ations of the slow particles as small (for details see Refs. 17 
and 18). 

We can, however, use an approach that is less rigorous 
but considerably simpler to obtain the same results. 
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Let us turn to the interaction representation. Then for 
the operator 

+(r, ~ ) = e x p  [ ( ~ - ~ W ) z ] & ( r )  exp [-- (fi--pW)~] (23) 

we can use (22) to obtain an equation of motion 

If the oscillations of the boson density are small, it is 
convenient to introduce the "density-phase" variables: 

Here the phase operator $ ( r )  and the operator correc- 
tion SF ( r )  satisfy the commutation relations 

wherep(r) is the average boson density at the point r: 

The representation (25) is useful only under conditions 
where the operator correction @(r)  is small compared to 
p ( r ) .  More precisely, the following inequality must hold 

It can be verified that the expression on the right side of this 
inequality diverges due to the zero-poi~t oscillations at large 
wave vectors. The need to separate $(r)  into "fast" and 
"slow" parts mentioned above is associated with just this 
problem. A systematic approach eliminates these diver- 
gences, and the contribution from the zero-point oscillations 
becomes finite. We assume that condition (28) is fulfilled 
and expand the density operator in terms of the small fluctu- 
ation correction SF ( r  ). 

By substituting (25) into Eq. (24), we easily obtain 
equations of motion for the phase @(r )  and the correction 
operator SF(r). If we retain only terms linear in 66 and $ in 
these equations, we can find the spectrum of elementary ex- 
citations. It has the Bogolyubov form 

Note that we are talking about spatially uniform sys- 
tems, or a quasi-uniform description of spatially nonuniform 
systems, in which, e.g., the density p ( r )  is treated as a con- 
stant in which the r dependence is purely parametric. 

We then average both parts of the equation of motion 
for the ~ h a s e  $ [i.e., we multiply this equation by 
exp( - p H )  and take the trace], which leads to a relation 
between the boson density p ( r  ) and the applied field u ( r  ) : 

Here n (E) is the Bose-Einstein distribution function. In ob- 
taining (30) we have retained terms no higher than second 
order in @(r )  in the corresponding equation of motion, 
which is correct for small fluctuations of the boson density. 
Furthermore, we have omitted the contribution to (30) 
from zero-point oscillations (which diverge within our 

method of calculations). A more precise calculation (com- 
pare with Ref. 17) shows that the contribution from zero- 
point oscillations is smaller than that from the terms omitted 
in (30). 

Let us now note that inequality (28), which was a pre- 
supposition in deriving (30), is equivalent to the condition 
~ > p , ~ ,  wherep, is the normal density of a Bose gas. How- 
ever, Eq. (30) also remains valid when the inequality pBp, 
is violated if in the expression for the energy of an elementary 
excitation we replace yp by yp,. As was shown in Ref. 19, 
this replacement can be justified for temperatures T that sat- 
isfy the inequality T<fi2p,/m. In what follows we will be 
interested in the high-temperature region ( T %  yp, ), which 
is compatible with this inequality by virtue of the weakly 
nonideal nature of the Bose gas (In( l/pa2) & 1). 

Evaluating the integral over momentum in (30) and 
replacing yp by yp, in the result, in the high-temperature 
region we obtain 

This equation determines the total density p ( r )  as a 
function of temperature, external field, and chemical poten- 
tial, an expression for which will be obtained below. It is also 
easy to find the normal density p, ( r ) .  

The normal density is given by the well-known Landau 
expression 

Becausep, in (32) is understood to be the particle density 
and not the mass density, the mass m appears in the denomi- 
nator of the factor in front of the integral. In the high-tem- 
perature region, for all momentap that satisfy the condition 
p2/2m > yp, we may assume that E(p)  ,--p2/2m. Because it 
is just these momenta that give the primary contribution to 
the integral, we have 

The difference p - p, is, according to Landau, the su- 
perfluid density in the system. We will denote this density by 
pe, thereby differentiating it from the total superfluid den- 
sity p,, which also includes a contribution (negative) from 
thermally excited vortices as well as from rotons and phon- 
ons. In contrast to the density p,, which undergoes a discon- 
tinuity at the temperature of the superfluid transition from 
some finite value to zero, the density p: is a smooth function 
of temperature and does not equal zero even above T,. The 
density p: will reduce to zero at a certain temperature 
T: > T,. Although no phase transition takes place in the 
system at the temperature T:, this temperature is neverthe- 
less a special one. 

The point is that the unbound thermally-excited vorti- 
ces that exist in the system for T> T, and give rise to dissipa- 
tion of a steady-state current retain a certain degree of corre- 
lation in their motion. In particular, if the distance between 
vortices and antivortices is smaller than a certain coherence 
length {+ ( T) (see, e.g., Ref. 20), a vortex and an antivortex 
behave like a bound pair. This fact, and also the fact that the 
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densityp: is nonzero for T >  T, , makes possible the propaga- 
tion of density oscillations of the superfluid component in 
the film at these temperatures, i.e., third sound." Further- 
more, the propagation of third sound is assisted by pinning 
of vortices at defects and at the rough substrate. Thus, at the 
temperature T: new collective effects appear which are 
completely accessible to measurement. 

It is obvious that as the temperature decreases the value 
of p: first becomes nonzero at the bottom of the potential 
well u ( r ) .  Therefore, the equation we use to find T: takes 
the form p:(O, T: ) = 0, which is equivalent to the equation 
p, =p(O,T:). 

If we use Eqs. (3  1 ) and (33) to findp andp, respective- 
ly, then at any point where the equation 
pn  (0, T: ) = p (0, T: ) holds we encounter terms that diverge 
logarithmically, because at these pointsp, = 0. The problem 
here is that in reality neither Eq. (3  1 ) nor Eq. (33 ) can be 
used in a region where p, = 0. As we mentioned above, our 
approach to the description of a weakly interacting Bose gas 
is correct for fi2p,/m) T. Since it is the logarithm ofp, that 
enters into (31) and (33), we can obtain a result that is 
correct to first approximation by replacing the zero value of 
p, by mT/fi2 at the point of where the potential u ( r )  has a 
minimum. Then from the equation p, (0,TS) = p(0, T:) it 
follows that 

Relation (34) specifies p + u, as a function of the tem- 
perature T:. On the other hand, the chemical potential can 
be found in the usual way from the requirement that the total 
number of bosons in the system equal the specified value N. 
Since there is still no superfluid phase in this system at 
T =  T:, it is necessary to find the relation between p + u, 
and Tin the normal phase. This second relation between p 
and T, combined with (34), determines the temperature T: 
we are looking for. 

A major difference between the superfluid and normal 
phases is clearly the fact that p: #O in the superfluid. How- 
ever, they also differ in the small-momentum form of their 
excitation spectra: for the superfluid phase the spectrum is 
phonon-like, i.e., E = cp, where c is the velocity of sound, 
whereas for normal phase we have E = p2/2m for smallp. A 
proper description of the normal phase must take this fact 
into account, which implies that different forms of perturba- 
tion theory must be used above and below Tz. The form 
which describes the superfluid phase was illustrated at the 
beginning of this section, while for T>  T: the interaction 
between bosons can be described within the self-consistent 
field approximation. In this case the self-consistent interac- 
tion potential of the bosons A ( r )  satisfies the following 
equation (compare with Ref. 17) (E, =fi2/2ma2): 

x I d2p 
exp {b [ $ / 2 m - ~  (r) ] } 

The integral over momentum in (35) gives the boson 
density at the point r; therefore, the last term in (35) de- 
scribes the interaction energy of the bosons with the mean 

field. The chemical potentialp is found from the normaliza- 
tion condition 

A solution to Eq. (35) cannot be obtained for arbitrary 
values o fp  and T, so that in general it is impossible to carry 
out the integration in expression (36). However, if we as- 
sume that the inequality In l n ( P , ~ ,  ) % 1 holds (unfortu- 
nately, this "large" parameter of the theory cannot be made 
large under real conditions), it is possible to find an exact 
expression for the chemical potential in the range of tem- 
peratures where p [u ( r )  - p ]  %In In (PC, ) / ln (P~,  ). When 
this latter inequality holds, the solution of (35) is (also as- 
suming that 1 >P[u ( r )  - p ]  ): 

By substituting this expression into the equation for the 
chemical potential, we find that when the applied external 
field is a power-law function of the coordinate x with arbi- 
trary exponent a the answer depends in a significant way on 
the magnitude of a .  For a 5 1 the relation between tempera- 
ture and chemical potential which follows from (36) and 
(37) has the form 

If, however, a X 1 holds, then from (36) and (37) we have 

In (38a) and (38b) we have assumed that 
11 -a l> ln- ' (T / lp l ) .  

Although, strictly speaking, Eqs. (38a) and (38b) are 
correct only when Ip l/T) ln ln (PE, ) / ln (P~,  ), they also 
give answers that are order-of-magnitude correct for 
IpI/T- In 1n(Po&, ) / ln(P,~,  ) as well, i.e., for values ofp/T 
at which a nonzero superfluid density appears in the system, 
as follows from (34). Therefore, by replacing p in (38a), 
(38b) with its value from (341, we obtain the temperature 
T: at which the density p: becomes nonzero at the bottom of 
the potential well. (More precisely, we obtain an order-of- 
magnitude estimate of the difference To - T:. ) From (38a) 
and (38b), and also from the definition of the Bose conden- 
sation temperature To [see (8 ) ]  we find that the difference 
To - Tz is small whenever the quantity In-'(l/Za2) (i.e., 
the degree of diluteness of the Bose gas) is small. It is impor- 
tant to note, however, that for a 5 1 the correction contains 
the small parameter to the first power, while for a X 1 it is 
proportional to the a th  root of the small parameter. This 
circumstance has important implications for the experimen- 
tal measurement of how close T:  is to To in a dilute two- 
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dimensional gas. Because under experimental conditions it 
is difficult to produce values of ln(l/iia2) that exceed a 
hundred, the difference between T, and T :  can be sizable 
[ ( T, - T ; ) / T ,  - 1/31 even for the case of a quadratic po- 
tential (i.e., for a = 2). 

We now note that the condition In( 1/7ia2) > 1 for weak 
nonideality of the Bose gas can be rewritten using ( 12) in the 
form 

This expression contains the depth of the potential well 
u, and the boson density n, in the absence of an external 
field. These quantities are parameters that can be varied in- 
dependently in the experiments in order to fulfill the inequal- 
ity (39). 

As we have noted, no phase transition takes place in the 
system at the temperature T:, because vortices created by 
thermal fluctuations cause a steady-state current to decay 
even for p: #O. The transition temperature to the superfluid 
state (with undamped stationary current) is found from the 
relation Tc = (di2/2m )p, (0, Tc ) in the quasi-uniform ap- 
proximation. However, at the phase transition point the re- 
normalized superfluid density due to vortices p, is the same 
in order of magnitude as the unrenormalized density p:. 
Therefore the value of T, can be found from the relation 
Tc = C [+i2p: (0, T, )/m] , where C is a numerical factor of 
order unity. Using this relation and (38), in which T is re- 
placed by Tc,  it is not difficult to verify that 
Tc = T, - 0 [ l/ln (Po&, ) ] for a< I. Thus, for the two-di- 
mensional dilute Bose gas in a nonuniform external field the 
superfluid transition temperature T, practically coincides 
with the Bose condensation temperature T, of the ideal gas. 

3. VORTICES IN A NONUNIFORM FIELD 

In the previous section we completely neglected the 
possibility that quantized vortices could appear in our for- 
mulation of the thermodynamics of a weakly nonideal Bose 
gas. However, it is well-known that thermally excited vorti- 
ces play an important role in two-dimensional systems at 
sufficiently high temperatures. These vortices determine the 
details of the phase transition that takes a two-dimensional 
Bose system from its normal state to the superfluid state in 
the spatially uniform case. As we mentioned in the introduc- 
tion, this phase transition, the so-called Berezinskii-Koster- 
litz-Thouless (BKT) transition, consists of the dissociation 
of vortex pairs at the temperature T,,,. Below TBKT all 
vortices with opposite circulation are bound in pairs, while 
above T,,, there are unbound vortices in the system which 
also lead to dissipation of the superfluid flow. 

In this section we will clarify how a nonuniform field 
changes the law of interaction between vortices and how this 
is related to the BKT transition. The goal of the calculations 
that follow is to find the energy of an isolated vortex and the 
energy of a system of vortices in the presence of a nonuni- 
form external field. 

The velocity field v, ( r )  created by vortices whose 
centers are located at points r, satisfies the equation 

R 
rot, v. = - 2 n Z  ni8(r-ri) 

rn i 

Here ni can take on the values + 1. 
Equation (40) determines the transverse part of the ve- 

locity v,. Its longitudinal part can be found from the equa- 
tion of continuity, which in the general case is nonlinear in v, 
because the superfluid density p:(r) depends on v, (more 
precisely, on u : ) .  However, the dependence of p: on v, is 
significant only in the neighborhood of the vortex core, 
whose size is on the order of the coherence length 6. The 
length 6 is microscopically small, and in our calculations we 
will assume that the vortex core is pointlike. In fact, the 
assumption of vortex cores with zero size is already implied 
by the presence of S functions on the right-handed side of Eq. 
(40). In what follows we will neglect the dependence ofp: on 
v, . 

From the equation of continuity written in the form 

it is obvious that if we introduce a stream function $(r) such 
that 

the equation of continuity will be satisfied identically. The 
equation for $(r) may be obtained by substituting into (40) 
the expressions for the components of the velocity v, from 
(42). As a result we find 

Let us show that we can choose the condition 
$(r)  l b o u n d a r y  = 0 as a boundary condition for Eq. (43). 

Actually, the definition of $ and relation (42) imply 
that the relation $(r) = const defines a flux line, i.e., a line 
the direction of whose tangent coincides with the direction 
of the current at any point. However, if the current is not to 
intersect the boundary (i.e., there is no component to the 
current normal to the boundary), the boundary curve must 
coincide with one of the flux lines. From this it follows that 
$(r) = const on the boundary. Since the current is the deriv- 
ative of $, without loss of generality we can set this constant 
equal to zero. 

The solution to Eq. (43) is conveniently written in the 
form 

$(r)= J G ~ ,  r t ) ~ ( r l ) ~ ,  (44) 

where G(r,rl) is the Green's function of Eq. (43), i.e., the 
solution to the equation 

1 1 
p G (r, r') - G (r, ) 8 ( r - )  , (45 ) 

P a  P. 

where Q( r )  is the expression standing on the right side of 
(43 1. 

If the Green's function G(r,rl) is known, then it is easy 
to find the energy of a single vortex or a system of vortices. 
The energy of the vortex is a sum of the energy of the vortex 
core E, and the kinetic energy of the superfluid flow con- 
nected with the vortex, i.e., 
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We recall that p: is the superfluid particle density and not 
the mass density; therefore, the mass of a boson stands in 
front ofp:. 

Replacing v, in (46) by its value from (42),  we obtain 
an expression for the kinetic energy [we have omitted the 
mass m in (47 ) 1 

The second term in (47) ,  which involves integration 
along the boundary, reduces to zero because $ = 0 on the 
boundary. Taking into account that $(r) satisfies Eq. (43),  
and also the representation (44)  for $(r) in terms of the 
Green's function G, we can write the first term in (47) in the 
form 

Q ( r ) ~  (r, r') Q(r') dr dr'. 

By substituting the explicit expression for Q(r) from (44) 
into this expression, we finally obtain an expression for the 
energy of a system of vortices: 

The problem is to find the Green's function G(r,rl). Of 
course, the solution to Eq. (45)  [i.e., G(r,rf)]  cannot be 
found for arbitrary dependence ofp: (r)  on r. However, ifp: 
is a slowly varying function of the coordinate r, the Green's 
function can be obtained in a very general form. 

Let us assume first of all that p: = const. Then it is not 
difficult to show that for a film occupying the strip d>x>O 
and + m > y > - w the Green's function that satisfies the 
boundary condition G I ,,,,,,,, = 0 has the form 

p: ch[n (y-yl)/d] -cos[n (x+xl)/d] 
--1n[ 

4n ch [n  iy- y') /dl -cos [n  (2-sf) /dl 
] (50) 

Now let p: be a slowly varying function of x. Let us 
write the Green's function G(r,rf) in the form of a sum 

G(r, r') =Go(r, rl)+Gl(r, r'). (51) 

Here Go is the primary part of the Green's function, while G, 
is a small correction which reduces to zero as the character- 
istic length L, over which p, (r)  varies goes to infinity. In- 
cluding the result (50) and the fact that Go (r,rl) must be a 
symmetric function of its arguments, we may choose for 
Go (r,rl) the expression 

Go (r, r') = - [pa0(r) pS0 (r') I ''l 
4n 

xln [ ch[n (y-y') /dl -cos[n (x+xl)/d] 
ch [n  ( y- y') /dl -cos [n  (x-x') Id] (52)  

By direct substitution of Go (r,rl) into (45 it is easy to verify 
that (52)  satisfies Eq. (45) to first order in the gradient Vp :. 
The function G, is proportional to terms of second order in 

the gradient Vp: and satisfies the equation 

For p: = x - the expression in the square brackets of 
(53) reduces to zero and G, =O. For p; = x - the function 
(52) is an exact solution to Eq. (45). In the general case the 
relation between G, and Go is determined by the squared 
ratio of the length over which Go varies to the length over 
which p: varies. For Ir - r'l <d the characteristic length 
over which Go varies is exactly Ir - r'l. Therefore, when 
L, Z d %  Ir - r f / ,  the correction G, is actually small, and in 
place of the function G in Eq. (49)  for the energy we may 
substitute Go from (52).  

Rather than carrying out this substitution, we turn our 
attention to the fact that for r'-r (i.e., for xf-x and y'-y 
simultaneously) the function Go diverges logarithmically, 
which is similar to what happens in the spatially uniform 
case. However, it is noteworthy that regions with dimen- 
sions on the order of the coherence length 6 must be ex- 
cluded from consideration for the reasons described at the 
beginning of this section. This implies that the points r and 
r + 6, where 4 is an arbitrary vector whose length is on the 
order of the coherence length, are indistinguishable to this 
degree of accuracy. We will therefore replace the Green's 
function G(ri, r i )  entering into (49) with coinciding argu- 
ments by G(ri, ri + 4 ) .  

Carrying out this replacement, and keeping in mind 
that G(r, r') =:Go (r, r'), we find for the energy of the vor- 
tex system 

This expression for the vortex energy in a nonuniform 
field in which the superfluid density p: is a slowly varying 
function of coordinates is the primary result of this section. 
Using this expression, it is easy to obtain the energy of a 
single vortex and a vortex pair with opposite circulations. 

The expression for the energy of a single vortex can be 
immediately simplified if we take into account that d is a 
macroscopic length, while the quantity { is microscopically 
small and, consequently, d /<>) 1.  Therefore, the energy of a 
vortex will be finite either for x / d g  1 or for ( d  - x ) / d g  1, 
i.e., in both cases the sine in the argument of the logarithm is 
small. Thus, the energy of a single vortex is 

For a pair of vortices with opposite circulation 
(n, = - n, ) the expression for the energy depends consid- 
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erably on the quantity ly, - y, I. For ly, - y, I s d  the inter- 
action between them is exponentially small, i.e., 
a exp( - ~ l y ,  - y2 (/d), so that they reduce to two isolated 
vortices whose interaction can be neglected. The energy of 
this pair equals the sum of the energies (55) for each of the 
vortices. 

For (y, - y, ( &d and x, , x, -d /2 the energy of a vor- 
tex pair equals 

We see that in the spatially nonuniform gas the character of 
the dependence of the interaction energy on the distance be- 
tween vortices can differ considerably from this dependence 
in a spatially uniform gas. Let us pause to discuss the reasons 
for this disagreement in more detail. 

In the case wherep: does not depend on the coordinates 
the energy of a pair of vortices with opposite circulations is 
proportional to In [ ( r, - r, I/< ] [see (56) 1. This interac- 
tion law is a consequence of the slow decay of the velocity 
field of a vortex with increasing distance from its core 
(v, a l/lr - ri 1 ) .  This leads to a logarithmic dependence of 
the energy of a single vortex on the size of the container. For 
a pair of vortices with opposite circulations, due to partial 
cancellation of the velocities v, from the different vortices, 
the total velocity field (at distances large compared to the 
size of the vortex pair) falls off more rapidly than r-I. As a 
result the logarithmic dependence of the energy on the size of 
the container is replaced by a logarithmic dependence on the 
size of the vortex pair. This situation changes whenp: begins 
to depend on the position. 

Ifp: is a function of position, this cancellation of the 
velocity v, from vortices with opposite circulation does not 
occur, which is easy to see from expression (42), (44), and 
(52). As a consequence of this, the energy of a vortex pair, 
like the energy of a single vortex, depends logarithmically on 
the container size. The smoother the spatial dependence, the 
smaller is the lack of cancellation of velocities v, and the 
smaller the energy of the vortex pair. Therefore, it is natural 
for the coefficient in front of the logarithm in the first term of 
(56) to depend on the difference in the densities p: at points 
where the vortices are located. Because the energy should 
not depend on the sign of this difference (since positive and 
negative vortices are completely equivalent), it is also natu- 
ral for the difference of the densities to appear raised to an 
even power. Finally, in view of the slowness of the variation 
ofp: this power should be as small as possible, i.e., it should 
equal two. 

Let us now discuss the question of what the BKT transi- 
tion should look like in a system of vortices whose energy is 
given by the expression (54). For this we introduce a con- 
vention regarding the superfluid density p, renormalized by 
vortices. In order to define p, we write the total superfluid 
current j, ( r )  in the form of the sum of the two terms [com- 
pare with (20) ] : 

where the current jIl has zero circulation and is given by the 
expression 

while j, has zero divergence and is the contribution to j, 
from the vortices. From (42) and (44) it follows that 

The superfluid density p, determines the magnitude of 
the total current flowing in the system at a given velocity v,, 
and is found from the relation 

Here S i s  the area of the system, and the average (ni ) equals 

where E, ({n, I),  the energy of the vortices, is a sum of two 
terms: the energy E from (54) and a correction E ' related to 
flow along the flux system 

E ' = - ~ v .  j. dr. (62) 

Including the correction E' by perturbation theory and 
using the fact that for v, = 0 the average (ni)  = 0, we arrive 
after a number of calculations at the following expression for 
the density: 

Here (...), denotes an average in which we set v, = 0. 
In obtaining (63) we have omitted terms that contain the 
derivative dp:(x)/dx in view of the slowness of the coordi- 
nate variation of p:(x). 

In order to proceed further it is necessary to find 
(n,n, ), . This is possible for the case of a dilute gas of vorti- 
ces, i.e., in the situation where the temperature T is small 
compared to the energy of the vortex core Eo-more precise- 
ly, for exp( - Eo/T)  < 1. In this case it is sufficient to in- 
clude only the interaction of vortices at points i and k in 
calculating (nin, ), , while neglecting their interaction with 
the remaining vortices. Taking into account that vortices at 
the points i and k have opposite circulations by virtue of the 
condition of "electrical neutrality" Zni = 0, and using 
expression (56) for the energy of this vortex pair, we obtain 
from (63) 

In writing this expression we have replaced the differ- 
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ence [(p:(x, ) ) ' I2  - P y ( ~ 2  ) ) 1 1 2 ] 2  entering into (56) by 
p;[(xI - x, )/d 12.  This replacement is valid because p: 
varies over distances on the order of d, while the important 
differences x ,  - x, are those that are small compared to x ,  
and x, (for vortices whose centers lie in the central portion 
of the film). 

Rather than carrying out the summation over r in (64), 
let us turn our attention to the following fact. Although we 
previously assumed that the superfluid density p,O varied 
over distances don  the order of the width of the film, we can 
verify that expression (56) for the energy of a vortex pair 
[and together with it expression (64) ] is also correct in si- 
tuations where d is much smaller than the width of the film, 
provided that d is large compared to the average distance 
between vortices. Therefore, in the sum over r we can assume 
that d is large (d% f )  but still finite. 

Let us convert the sum in (64) to an integral 
(Z,,, -+I dr/12,,, ), and take into account that in a self- 
consistent calculation we should replacep: by p, in the expo- 
nent. If d /l-+ a, then the equation we obtain for p, has a 
solution for 17+i~~,/2mT>, 1. The BKT phase transition point 
corresponds to the equal sign in this condition, i.e., 

n fiZps(T~KT) TBKT=-. 
2 m (65) 

If d /( is a finite quantity, while d is large compared to 
the average distance between vortices, then the equation for 
p, also has a solution for T>  TBm. Assuming that this equa- 
tion is satisfied, after integrating over r in (64) (from l to 
co we are led to the equation 

n / 2  

Here r (v) is the gamma function, while 

It is obvious that the integral over 0 converges at the 
upper limit under the condition v < 1/2, which corresponds 
to the following limitation on the temperature: T<+ TBK, . 
The value Tc = 4 T,,, is the upper limit of temperatures for 
which it is meaningful to assign a local superfluid density p, 
to a spatially nonuniform Bose gas. This temperature is 
reached in the limit exp( - 2PE0 ) -0. For finite values of 
exp( - 2PE0 ) the limiting temperature for which p, exists 
is smaller than 4 TBKT, and is determined by the characteris- 
tic scale d over which the nonuniform external field varies. 
However, for any value of d the density p, changes discontin- 
uously at the transition point from some finite value to zero. 
This assertion follows from the fact that on the left side of 
Eq. (66) p, appears in the numerator, while on the right side 
it appears in the denominator. 

Thus, we have shown that for the case where the nonun- 
iform external field varies over distances on the order of the 
size of the system the relation between the superfluid transi- 
tion temperature and the density p, at the transition point is 
given by the Kosterlitz-Thouless relation (65), and in this 
case the transition temperature must in practice be found 

from the equation Tc = d 2 p ,  (0, T, )/2m, as was done in the 
previous section. If, however, the field varies on scales that 
are small compared to the size of the system but large com- 
pared to the distance between vortices, then the relation be- 
tween Tc and p, ( Tc ) is more complicated and can be ob- 
tained from (66). To sum up we are led to an expression of 
Kosterlitz-Thouless type, in which a numerical coefficient of 
order unity will appear in place of the factor 71/2 there. 
Therefore, in both cases the temperature of the superfluid 
transition must be found from an equation of the form 
Tc = Cfi2p, (O,T, )/m, where C- 1. This implies (see the 
previous section) that T, -- To - O( l/ln (fi0&, ) ). 

CONCLUSION 

In Sec. 2 we used the quasi-uniform approximation to 
describe the behavior of a weakly nonideal Bose gas in a 
nonuniform external field. The accuracy of this description 
is sufficient for us to calculate the local characteristics of the 
gas (e.g., the density at a point r ) .  If, however, we return to 
the question of long-range order 5 t h k  system, i.e., to the 
calculation of correlators of type ( A  (r) B ( 0 )  ) as r+ a, then 
we must go beyond the framework of the quasi-uniform ap- 
proximation. In Ref. 22 an approach was developed that led 
to an exact description of the system in a nonuniform field. 
Within the framework of this approach it is possible to solve 
the problem exactly for the case where the applied field is a 
linear function of coordinates. The spectrum and eigenfunc- 
t i p s  of thjs system were found, as well as the correlator 
($ + (x,y) $(x,O) ), and it was established that a nonuniform 
field does not lead to the appearance of a Bose condensate or 
long-range order in a weakly nonideal gas. 

With regard to the absence of a condensate in a nonideal 
gas, what is astonishing is the fact that the superfluid transi- 
tion temperature T, for such a gas in a nonuniform field 
practically coincides with the temperature To for Bose con- 
densation of an ideal gas. The reason for this involves a com- 
bination of two phenomena. For temperatures close to To a 
compression of the Bose gas occurs at the bottom of the po- 
tential well. In an ideal gas this compression occurs as a 
phase transition and is accompanied by Bose condensation. 
In a weakly nonideal gas the interactions prevent unlimited 
compression and Bose condensation; however, the density of 
the gas at the bottom of the well increases significantly over a 
narrow region of temperatures. Although there is no phase 
transition at this stage, there is one in the next stage as the 
compressed fraction of gas becomes superfluid via the BKT 
mechanism. One can say that the statistics and high dilute- 
ness of the gas are responsible for the closeness of Tc and To. 

The importance of both factors is apparent from a com- 
parison of the behavior of a weakly ideal Bose gas in a poten- 
tial well with the behavior of a Fermi gas in the same well. 
Within the framework of the self-consistent field approxi- 
mation it is not difficult to show that in the neighborhood of 
the temperature To when the inequalities 
1 %Po [u(x)  - p ]  % l / ln(f lo~,  hold the density of a Bose 
gas equals 

mT T 
p (x) = - In ------ . 

2nfi2 u ( x )  -p 

while for 1 >Po [p - u(x) 1 %  l/ln(P0&, ) it equals 
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Thus, for a dilute Bose gas in the neighborhood of To 
the density of the gas varies considerably over a narrow in- 
terval of temperatures. In this case, below the temperature 
for Bose condensation of an ideal gas the density remains 
finite only by virtue of the repulsive force (p - m for y -0).  

For the case of a Fermi gas, the Pauli principle ensures a 
finite value of the density for any temperatures, even in the 
absence of an interaction. For a field u( r )  that varies over 
macroscopic distances the density of a two-dimensional 
ideal Fermi gas equals 

The expression on the right side of (70) varies smoothly 
in the neighborhood of the degeneracy temperature of the 
Fermi gas in an external field. Near the potential minimum 
u (r) ,  at temperatures that are low compared to the degener- 
acy temperature (i.e., forP[,u - u ( r ) ]  % 11, the density of 
fermions equals 

Here, by setting r equal to zero we find the maximum 
value of the density of an ideal Fermi gas that is achievable 
by the compressive action of the nonuniform field. For the 
case where u ( r )  has the form ( 3  ) , by making the change of 
variable x to p,LX/(2mu, ) ' I 2  we are led to an effective 
three-dimensional Fermi gas whose chemical potential at 
T=O is easy to find. As a result, we have p(0)  
= ( m / 2 d 2 )  [ (3nCi2 /2m) no u;'~] ' I 3 .  

Using expression (69),  which is also valid for T = 0, 
and substituting in the value of the chemical potential p, 
which at T = 0 equals the quantity (+ yn, ) 2'3u, we find 
that for a quadratic potential u ( r )  the boson density is 
p (0)  = [(muo/2dZ)In(l /a2p(0)  ] I". To within 
a factor of order unity, the ratio of the boson to the fermion 
density equals 

Under the conditions of the experiments this quantity is of 
order unity, and consequently the density of bosons differs 
only weakly from the density of fermions (with the same 
mass). The difference in the densities will increase as the 
exponent a in the power law decreases, where a determines 
the smoothness of variation of the field u(x)  with coordi- 
nates. Thus, we have verified that the degree of diluteness of 
the gas In-'( l/a2E) and the exponent a are the two funda- 
mental parameters that determine the properties of a Bose 
gas in a nonuniform field. 
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