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A dispersion relation is derived for the drift-tearing mode in a plane plasma slab for the case in 
which the magnetic fields of the excited modes cause a diffusion of magnetic field lines across 
ruptured magnetic surfaces. The growth rate of the instability increases with the magnetic-field 
diffusion coefficient. As a result, there is explosive growth of the mode. 

1. INTRODUCTION 

Effective plasma confinement in laboratory magnetic 
confinement devices and also in natural magnetoplasma for- 
mations observed in space is often achieved due to magnetic 
shear. This shear makes the plasma stable with respect to 
large-scale MHD instabilities. On the other hand, shearing 
of the magnetic field lines is associated with the flow of elec- 
tric current along the magnetic field lines, so there is danger 
that the current in such configurations can develop a pinch 
instability. This instability has come to be known as the "dis- 
ruptive" or "tearing-mode" in~tability."~ The change which 
occurs in the topology of the magnetic field due to the pinch 
effect is a consequence of the breaking of magnetic field lines 
and their reconnection around the current involved in the 
pinch. The reconnection of magnetic field lines in the course 
of the tearing-mode instability results in heating of the plas- 
ma and acceleration of charged particles, at the cost of some 
dissipation of magnetic field energy. For this reason, the 
tearing-mode instability is invoked not only to explain the 
plasma dynamics in tokamaks3 (the most promising con- 
finement devices for fusion plasmas) but also to construct 
theoretical models for plasma heating in the loop-shaped 
magnetic structures of the solar corona4.' and for the trans- 
port of particles and energy of the solar wind in the magneto- 
spheres of the earth and other  planet^.^ 

Of fundamental importance to all these problems is the 
quantitative description of the macroscopic consequences of 
the onset of the tearing-mode instability, e.g., the plasma 
heating, the transport of particles and heat, the acceleration 
of particles, and the restructuring of the magnetic field. 
Finding such a description requires in turn a description of 
the nonlinear stage of the instability, including the various 
features of the initial magnetic field configuration. In partic- 
ular, in a magnetic field with sheared field lines the electro- 
magnetic tearing mode is linearly coupled with the drift 
mode of an inhomogeneous Two important ef- 
fects arise as a result; they should be taken into consideration 
in the derivation of a nonlinear theory for this drift-tearing 
mode. First, if the shear of the magnetic field lines is suffi- 
ciently pronounced, the tearing mode stabilizes, as the result 
of an expenditure of energy on drift-mode excitations. Sec- 
ond, the longitudinal electric field (i.e., that along the mag- 
netic field) of the drift-tearing mode is nonzero in a spatially 
bounded region where the interaction with plasma particles 
occurs. The reason is that outside this region the conductiv- 
ity of the hot, collisionless plasma is very high, and the sole- 
noidal electric field of the tearing mode is canceled by the 

electrostatic field of the drift mode, as the result of a free flow 
of charge. 

In the derivation of a nonlinear theory for the drift- 
tearing mode, the greatest progress has been achieved for the 
magnetic field configuration which prevails in tokamak to- 
roidal magnetic confinement devices. The reason is the re- 
quirement that the perturbations be periodic as functions of 
the toroidal and poloidal angles. When the finite size of the 
Larmor radius of the particles in comparison with the major 
and minor radii of the torus is taken into account, it turns out 
that the drift-tearing mode can be excited only for a finite set 
of discrete values of the toroidal acd poloidal components of 
the wave vector. The resonant Cerenkov interaction of a 
mode with plasma particles occurs only near discretely 
spaced resonant surfaces, on which the phase velocity of the 
mode along the magnetic field is comparable to the particle 
thermal velocities. As long as the magnetic islands which 
form near the currents involved in pinching on these discre- 
tely spaced surfaces do not overlap, the development of each 
of the tearing modes which are excited can be treated as 
being independent of the other modes. In other words, the 
single-mode approximation can be used in this case. This 
approximation is of much assistance in simplifying the de- 
scription of the nonlinear stage of the instability. 

~a lcu la t ions~  on the interaction of the plasma particles 
with the finite-amplitude drift-tearing mode have shown 
that the mode amplitude reaches saturation in the stage in 
which the magnetic islands formed as a result of the tearing- 
mode instability fill the entire space where the longitudinal 
electric field of the mode differ significantly from zero. The 
reason is that once they go into magnetic islands the particles 
cease to interact with the wave. Interestingly, in the case in 
which the linearly drift-tearing instability is stabilized by a 
large magnetic shear there can be a hard excitation of the 
drift-tearing mode.9 

In order to analyze the nonlinear stage of the drift-tear- 
ing instability in plasma formations in space with dimen- 
sions many orders of magnitude greater than the Larmor 
radius of the plasma particles, we need to develop a funda- 
mentally new approach. The reason is that the number of 
modes excited in such formations is very large, and the dis- 
tance between the discretely spaced resonant magnetic sur- 
faces is very small. In this situation the magnetic islands 
which form near resonant surfaces overlap even while the 
amplitudes of the excited modes are still very small. Accord- 
ing to the theory of Ref. 10, this overlap leads to a random 
walk of the magnetic field lines from one magnetic surface to 
another; i.e., it leads to breaking of these field lines. 
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The behavior of the magnetic field lines may also be- 
come random as the result of the natural evolution of an 
initially ordered configuration. For example, the turbulent 
motion of the plasma at the bases of the loop-shaped magnet- 
ic structures in the solar corona (this motion is associated 
with thermal convection of plasma in the surface layer of the 
sun) entangles the magnetic field lines to the extent that 
their behavior can be thought of as random. 

Analysis of the development of the tearing-mode insta- 
bility in magnetic configurations with random field lines re- 
quires consideration of two fundamentally new physical ef- 
fects: the decrease in the duration of the interaction of the 
particles with the excited mode, because the particles leave 
the vicinity of the resonant magnetic surface as they move 
along the field lines undergoing a random walk, and the dif- 
fusion of the longitudinal electric field of the drift-tearing 
mode across the magnetic surfaces. 

Below we show that, as the amplitude of the drift-tear- 
ing modes increases, the efficiency of their interaction with 
the particles falls off, because of racid spatial diffusion of the 
particles out of the region of the Cerenkov resonance with 
the excited mode. The mode growth rate increases. As a re- 
sult, the development of the drift-tearing instability becomes 
explosive. 

2. BASIC EQUATIONS 

We analyze the drift-tearing instability of a plasma in a 
magnetic field with ruptured magnetic surfaces for the case 
in which the surfaces are planar: 

The small x component of the magnetic field 
(B,, (Boy < B,, ) fluctuates in space and can be represented 
by a Fourier series with components having random phases: 

Fluctuations of this sort may be caused by imperfections of 
the sources of the external magnetic field and also by the 
onset of the drift-tearing instability of the plasma configura- 
tion with the magnetic field ( 1 ) in which we have adopted. 
In the former case, the stability problem can be solved in the 
linear approximation, so it is this case which we consider in 
the present section of this paper. In the Conclusion to this 
paper, we will return to a self-consistent calculation of how 
the modes which grow as a result of the plasma instability 
affect the motion of the particles in the magnetic field ( 1 ). 

As we have already mentioned, in the model of an infi- 
nite plasma slab the magnetic islands which form near mag- 
netic surfaces overlap even while the amplitudes of the Four- 
ier harmonics of the fluctuations are very small, as a result of 
the spatially fluctuating x component of the magnetic field. 
The displacement of magnetic field lines across the unper- 
turbed magnetic surfaces is a diffusion with the properties 

The angle brackets here mean an average over random dis- 
placements, and the diffusion coefficient of the magnetic 
field lines is found from the expression 

where s is the coordinate along the given field line, and kll  (x)  
is the longitudinal component of the wave vector. In our 
model of a magnetic field with sheared field lines, this longi- 
tudinal component depends on the displacement across the 
magnetic surfaces. Assuming that the displacement is small, 
we can expand the function kl l  (x)  in small random displace- 
ments from the given magnetic surface, with the coordinate 
x = x(O), and we can carry out the averaging in expression 
(4) explicitly. As a result we find11912 

To describe the drift-tearing instability in the magnetic 
field configuration ( 1 ), with planar magnetic surfaces, we 
use the drift approximation. In this case the complete system 
of equations includes the linearized drift kinetic equation for 
the particle distribution function, 

Maxwell's equations for the longitudinal component of the 
vector potential, 

and the equation of plasma quasineutrality, 

Here f,,. (x,ull ) is the equilibrium distribution of the particles 
of species j in the unperturbed plasma, flj (r,uI, ,t) is the per- 
turbation of the particle distribution function caused by the 
drift-tearing mode in the plasma, and p, and A ,  are the 
perturbations of the scalar and vector potentials, to which 
we assign the coordinate and time dependence 

c p ~  (r, t )  =cpl ( x )  exp (-iot+ik,y+lk,z) , 
( 9 )  

A, (r, t )  =A, (x)exp (-iot+ik,q+ik,z) 

We assume that the unperturbed particle distribution is 
Maxwellian, shifted along the u, axis by an amount equal to 
the current velocity of the given component, ujz: 

where n (x)  is the density of the inhomogeneous plasma, T, 
is the uniform temperature of the particles of species j, m, is 
the mass of the particles, and ujil = u,,B,z/Eo. The profile of 
the current density in the plasma is related to the profile of 
they component of the magnetic field by Maxwell's equation 
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We find a solution of the kinetic equation ( 6 )  for the 
particles by integrating along the drift trajectories of the par- 
ticles. These trajectories are straight lines in the plane of a 
magnetic surface [y(t) = y + ul, tBoy /Bo; z( t )  = z 
+ ~ 1 ,  tBoz/Bo ) 1. In addition, we incorporate random walk 

of the particles across the magnetic surfaces in this integra- 
tion. As a result we find 

0 

where wq = ej Bo/m,c is the cyclotron frequency of the par- 
ticles of species j, k, = [kB, ], /Bo is the component of the 
wave vector of the drift-tearing mode transverse with respect 
to the magnetic field, and kll (x)  = (kyBoy (x)  + k,Boz )/Bo 
is the longitudinal component of this vector. A point worth 
particular mention here is that the electrostatic potential 
p, (x)  of the drift-tearing mode has spatial fine structure 
near the resonant surface [kl l  ( X , )  = 01, so the integration 
of the terms which contain the electric potential is carried 
out with allowance for the random walk of the particles 
across the ruptured surfaces. In addition, in the limit in 
which these surfaces are highly ruptured, we need to consid- 
er the effect of the random walk of the particles on the inte- 
gral of the terms containing the longitudinal component of 
the wave vector. For this reason, the quasineutral-plasma 
equation (8) ,  which determines the structure of the electro- 
static potential, takes different forms in the cases of slight 
and extensive ruptures of the magnetic surfaces (more on 
this below). 

The longitudinal component of the vector potential 
A I I I  (x)  has a smoother structure, with far larger length 
scales. Consequently, its value near the resonant magnetic 
surface can be assumed constant. Far from the resonant sur- 
face, its profile is determined by Maxwell's equation (7).  In 
evaluating the right side of this equation we should note that 
the first term in the integrand ( 12), which is proportional to 
the longitudinal electric field of the mode, vanishes far from 
the resonant surface, i.e., at kil (x)  %m/uTj. The integral of 
the second term can be evaluated easily if we ignore the slight 
random walk of the particles across the magnetic surfaces. 
This integral describes an adiabatic perturbation of the par- 
ticle distribution function: 

Substituting this expression into ( 7 ) ,  and using ( 11 ), we 
find the well-known equation for the profile of the perturba- 
tion of the vector potential far from the resonant ~ur face : '~ '~  

Once we have found the profile of the scalar potential near 
the resonant surface (the inner region) from Eqs. ( 8 ) and 
( 14), and once we have found the vector potential far from it 
(the outer region), we can derive a dispersion relation for 

the drift-tearing mode from Eq. (7).  This relation takes the 
form of the condition for the matching of the solutions in the 
inner and outer  region^:^,'^ 

c'7 c'7 

The left side of this equation is the jump in the derivatives of 
the solution of Eq. ( 14) at the resonant surface: 

X&+P 

The right side of ( 15) is the surface density of the perturbed 
current, which is localized near the resonant surface. 

3. EVOLUTION OFTHE INSTABILITY IN THE 
APPROXIMATION OF WEAK MAGNETIC DIFFUSION 

The equations constructed in the preceding section of 
this paper to describe the development of the tearing-mode 
instability in a plane plasma slab with ruptured magnetic 
surfaces have an important feature: the current and charge 
densities in the plasma depend nonlocally on the electric 
field of the tearing mode which is excited [see, for example, 
expression ( 12) for the particle distribution function]. The 
meaning here is that the equations which we derived are 
generally integral equations. In the limit in which the diffu- 
sion of the magnetic field lines is weak, however, so that the 
displacement of the particles from the given magnetic sur- 
face over one oscillation period of the electric field of the 
mode is much smaller than the length scale of the spatial 
variation of the electric field, we can reduce these equations 
to differential equations by expanding in the small displace- 
ments of the particles from the magnetic surface. Specifical- 
ly, we write the amplitude of the electric potential of the 
mode as a function of the particle displacement as an expan- 
sion in which we retain small terms of up to second order 
inclusively: 

where x( t )  = x + Z ( t ) ,  f ( 0 )  = 0, and f (t) is a small ran- 
dom displacement from the magnetic surface with coordi- 
nate x. Under the assumption that the time scale of the ran- 
dom movements in the course of the diffusion of the particles 
is much smaller than the mode oscillation period, we can 
average (17) with the help of ( 3 )  and rewrite it in the form 

Substituting this equation into ( 12) for the perturba- 
tion of the particle distribution function, and integrating 
along the drift trajectories of the particles, we find 

where w,j = (k,cT,/ejnBo)dn/dx is the drift frequency of 
plasma component j. We are assuming here that the length 
scale 6,  of the variations in the electric potential is much 

1004 Sov. Phys. JETP 73 (6), December 1991 A. A. Galeev 1004 



smaller than the distance to the resonant surface, Ix - X, 1, 
so we have ignored the weak dependence of the longitudinal 
component of the mode wave vector on the particle displace- 
ment across the magnetic surface. 

As in Refs. 7 and 8, we are interested primarily in the 
electric potential Cistribution between regions in which the 
mode undergoes Cerenkov interaction with electrons and 
ions: 

where k = dkll (x)/dx, and vv = (T,/mj) "'. The longitu- 
dinal phase velocity of the mode lies in the interval between 
the ion and electron thermal velocities: 

where the mode frequency is w z w,, (more on this below). 
Integrating over velocity in quasineutrality equation 

( 8) and expanding in the corresponding small parameters 
(kll uTi/w< 1, w/kl, uTe < 1 ), we can rewrite this equation as 

T c,' + ( 1 + L 7  T.)o.. 12: -- 

where c, = ( TJm, ) ' I 2 .  We have added the last term on the 
left side of Eq. (22) for convenience in comparison with 
Refs. 7 and 8. This term incorporates the finite ion Larmor 
radius-an effect which we ignored in calculating the cor- 
rection to the particle distribution function with the help of 
the drift equation (6) .  

To avoid unnecessary complications in the solution of 
this equation, we restrict the discussion here to the case in 
which the diffusion of the magnetic field lines is not too 
weak, so the length scale S, of the potential variations is 
large: 

where p, = U,,-/W,- is the Larmor radius of the particles of 
species j. Since we have S, =pi (L,/L, ) )pi, where 
L, = Ik,/k ii I - (Bo/Bo, )L, and L, = n/ldn/dxl, the pa- 
rameter interval (23) always exists. As a result, along with 
the corrections for the finite ion Larmor radius we can ig- 
nore the electron contribution on both sides of Eq. (22). 
Expanding the longitudinal component of the wave vector in 
the small distance to the resonant surface 
kll (x) = k ii (X - X, ), we can put Eq. (22) in the well-stud- 
ied form (reviewed, for example, in Ref. 13) 

where 

means that there is an exponential decay of the longitudinal 
electric field far from the resonant surface when we choose 
the following root of Eq. (25 ) : 

We can now write explicit conditions under which the 
diffusion of magnetic field lines is weak-the conditions un- 
der which we derived expression ( 19) for the perturbation of 
the particle distribution function. In the latter derivation we 
assumed that the mean square displacements of the ions and 
electrons in the course of their random walk along the mag- 
netic field lines were small in comparison with the length 
scale of the variations of the electric potential. Under the 
assumption that the integral over the particle trajectories is 
truncated at different times for the ions (ti - l/w) and for 
the electrons ( t ,  - l /kll  vll ), we write the condition under 
which the displacements are small as follows: 

We have also assumed that the longitudinal phase velocity of 
the mode is higher than the ion thermal velocity: 

It turns out that all these inequalities reduce to the single 
inequality: 

Equation (7)-Maxwell's equation for the longitudinal 
component of the vector potential-must be written out ex- 
plicitly in order to derive a dispersion relation for the drift- 
tearing mode. To do this, we use the same transformations as 
were used in writing the quasineutrality equation. As a result 
we find 

0-0 ino --L(I 0 
+ - - f o r ( $ ) ) ]  n I ~ I I  I 

Here, in contrast with Eq. (22) for the electric potential, we 
have retained the contribution of the resonant electrons to 
the perturbation of the longitudinal current near the reso- 
nant magnetic surface ( Ix - X, 1 5 S, ) . That surface is not 
included in the range of definition of the electric potential, 
(20). We can thus find the dispersion relation ( 15) for the 
drift-tearing mode by integrating both sides of Eq. (30) over 
the vicinity of the resonant magnetic surface, Ix - X ,  I < Si. 
Using Eq. (22) to transform the right side of Eq. (3  1 ), we 
find 

The solution of this equation,' 
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Carrying out the integration with the help of (26), we re- 
write this expression as 

where 

Under the condition S, < S,, which we used in deriving the 
basic equations of this section, i.e., Eqs. (22) and (3  1 ) , the 
solution of the dispersion relation is 

in 
X exp( - sign w..,) . 

The first term in the expression for the instability growth 
rate describes the well-known tearing-mode instability or a 
spontaneous pinch of a distributed current. The first sub- 
term of the second term is also known from Refs. 7 and 8. It 
describes saturation of the tearing-mode instability as a re- 
sult of the effect of the longitudinal motion of the ions on the 
distribution of the longitudinal electric field of the tearing 
mode. 

Since the dimensions of most of the magnetic configura- 
tions with current sheets observed in space are many orders 
ofmagnitude greater than the plasma length scales (the Lar- 
mor radius of the particles, pi, and their inertial lengths 
dm,, 1, the first term on the right side of Eq. (34) is negligi- 
ble in comparison with the second. Consequently, if there is 
no rupture of the magnetic surfaces (D  = O), the growth of 
the tearing mode is stopped. If, however, the magnetic sur- 
faces are easily ruptured, nonuniform distribution of the 
electrons and ions across the resonant magnetic surface 
leads to diffusion of these particles. By virtue of current con- 
tinuity, the faster diffusion of electrons sets up an additional 
longitudinal electric current, which is higher than the ion 
current and opposite in direction. The electron contribution 
to the dispersion relation is thus greater than the ion contri- 
bution, and it is furthermore destabilizing. As a result, the 
current pinch results not from a drawing of energy from the 
magnetic field but from a spatial redistribution of the cur- 
rent due to pressure forces. 

4. INSTABILITY IN THE CASE OF A PRONOUNCED 
DIFFUSION OF MAGNETIC FIELD LINES 

As we showed in the preceding section of this paper, if 
the inequalities (28) and (30) are violated, i.e., if 

then random displacements of the particles across the rup- 
tured magnetic surfaces are comparable to or greater than 
the length scale of the variations in the electric potential of 
the drift-tearing mode which is excited. In this case, the plas- 
ma quasineutrality equation (8 ) can be transformed into the 
following integral equation for the electric potential q ( x )  

with the help of expression ( 12) for the perturbation of the 
particle distribution function: 

+ ~ V I I [  ( ~ / ~ ) A , I I  (X.)-k, , '~( l )q,  [ ~ ( t )  1 - (w.l/c)A,ll (X,)]) 
1 

In contrast with the procedure of the preceding section 
of this paper, in the integration over the trajectories we took 
account of the change in the longitudinal component of the 
wave vector (along the trajectory) of the particles, using an 
expansion of the form 

The coordinatex of the particles along the trajectory is given 
by 

z ( t )  =Z+B ( t )  (38) 

where 3 = x - X,, and I ( t )  is the random displacement of 
the particles across the magnetic surface I ( 0 )  = 0. 

We see that there are three time scales in Eq. (37). 
1 ) The time over which the particles diffuse out of the 

region in which the longitudinal electric field is nonzero and 
in which the particles interact with the mode, i.e., 
T, =:Si/Dv,. 

2)  The time taken by thermal particles to traverse the 
characteristic length on which the electric potential of the 
mode varies in the direction along the magnetic field, 
T2 =: l/k ~ S , V ~ .  

3) The oscillation period of the electric field of the 
mode, 7, =: 1/m. 

Under the conditions (35), these times fall in the fol- 
lowing order: 

Consequently, the integration along the trajectory of the 
terms of the integrand in (36) which contain the potential 
p, or the longitudinal electric field is truncated at the diffu- 
sion time scale 7, . It follows that the electron contribution to 
the quasineutrality equation is small in comparison with the 
ion contribution, and we will ignore it. In addition, the 
change in the wave phase over the time scale of the particle 
diffusion is small, and we can expand the exponential func- 
tion in Eq. (36), retaining only the even terms. As a result, 
Eq. (36) becomes 

m 1 

We seek a solution of this equation in the form 
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where the coefficients F ( p ,  2 )  depend on 2  as a parameter. 
To simplify the time integration, we take an average of the 
integrand, making use of relations which follow from the 
properties ( 3 )  of the random hnction % ( t )  : 

(xZ ( t )  )=Dl v l l t l ,  ( 4 2 )  

(exp [--E"t) ] >=exp [ -p f  '-pDIv, t ]  ( 1 - 2 p f 2 ) ] ,  ( 4 3 )  

< Z ( t ) e x p  [ - 2 p 1 % ( t ) ]  >=-2pfDI v l l t /  e ~ p ( 2 p ~ f ~ D 1 1 ; ~ t ] ) ,  ( 4 4 )  
1 

As a result, the integration over the trajectories can be car- 
ried out explicitly, and Eq. (41  ) becomes 

where 

We have eliminated the logarithmic divergence of the last 
integral in the limit v,, -0 by incorporating the oscillations 
in the electric potential at the frequency w. 

The solution of Eq. ( 4 6 )  is obvious: 

F ( p ,  2 )  =A,,,  ( X , )  exp [-xp2/2+2?tp3f 2 / 3 ] .  ( 4 8 )  

Substituting ( 4 8 )  into (41  ), we easily see that the Iongitudi- 
nal electric field falls off exponentially with distance from 
the resonant surface, over a length scale 8, - 1x1 'I4. The ex- 
pressions for the length scale 8, of the region in which the 
longitudinal electric field of the mode is nonzero are parame- 
trically the same in the cases of weak and strong diffusion of 
the magnetic field lines [compare ( 2 5 )  and ( 4 7 )  1. 

The dispersion relation ( 15) for the drift-tearing mode 
can be put in the following form with the help of the expres- 
sion (12): 

f r n  0 

+ v,,[~A,,,(X.)-ck,,'~(t)~[~(t)l I -v,,o.jA,II(X*)) 
f 

Xexp [- iol+ik, 'v , ,  x(i')dtt ] d l  d v ,  dr .  ( 4 9 )  
0 

The first term in the integrand is small in comparison with 
the others, and we will ignore it. The integral of the second 
term over the trajectories is evaluated with the help of ( 4 2 ) -  
( 4 5 ) .  In integrating the third term over the trajectories we 
can ignore small displacements of the particles from the 
magnetic surface. As a result, the dispersion relation ( 4 9 )  
becomes 

Ih  O., -(f) o ~ k l l f ~ v T e  

Changing the order of integration in the first term on the 
right, and then changing the integration path in the complex 
p  plane, we rewrite this equation as the dependence of the 
frequency on the wave vector: 

n"D exp[3ni sign o.,/8] 
a =  

6Ib 1 n lahJ?z( t /J  ('I&, 3/4, 3/4) 1 kll'l 

where , F, (a,p,z) is the confluent hypergeometric function. 
As in the preceding section of this paper, the second term in 
square brackets, which describes the growth of the perturba- 
tions at the expense of the decrease in magnetic field energy, 
can be ignored. As before, the current pinch stems from the 
work performed by plasma pressure forces. 

5. EXPLOSIVE DEVELOPMENTOFTHE INSTABILITY 

Up to this point we have been assuming that this diffu- 
sion of the magnetic field lines which ruptures the magnetic 
surfaces itself results from fluctuations generated in the x  
component of the magnetic field by the external source. That 
assumption has made it possible to analyze the stability in 
linear perturbation theory. Actually, these fluctuations of 
the magnetic field result from the onset of the tearing-mode 
instability, and their intensity can exceed that of the fluctu- 
ations of the external magnetic field. In this case, the disper- 
sion relations ( 3 4 )  and ( 5  1 ) can be put in the form of nonlin- 
ear equations for the intensity of the tearing modes. In 
particular, in the case of a pronounced diffusion of the mag- 
netic field lines, we can reduce Eq. ( 5  1 ) to the following 
form, where we are using expression ( 4 7 )  for x, and where 
we are noting that the diffusion near the resonant surface is 
dominated by the tearing modes for which the longitudinal 
component of the wave vector lies within the broadening of 
the spatial resonance, i.e., lkll ( x )  I 5 ( k  i2D) 'I3 [see expres- 
sion ( 5 ) ] :  

where 

n" sin (3n18) (2n)'la 
a m  6 ' h r z ( t / 4 ) t F 1  (I /&,  3/4 ,  3 /4 )  

The summation in ( 5 2 )  is over those wave vectors which 
satisfy the condition 1 k,, ( x )  I < ( k i2D) I/'. 

Solving this equation, we find that the intensity of the 
excited modes increases faster than exponentially with the 
time, i.e., explosively: 
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where 

y ~ a l o . ~  1 ' " )  k,,'(v*v,,S4 

6. CONCLUSION 

We have thus shown that even when the oscillations of 
the magnetic field of the tearing mode have a very low inten- 
sity, which satisfies the condition (23),  the tearing-mode 
instability goes into a regime of explosive growth. As a re- 
sult, despite the very small growth rate of the linear tearing- 
mode instability, this instability can explain the mechanism 
for the explosive releases of energy which are observed in 
current-carrying plasma configurations. A good example is 
the unexpectedly rapid brightening of isolated loop-shaped 
structures in the solar corona, which evidently results from 
the onset of an instability of a magnetic field configuration of 
this sort. The explosive tearing-mode instability can explain 
not only the rapid release of energy but also the observedI5 
formation of a set of filamentary structures inside these 
loops, as a result of current pinching. A discussion of the 
various applications of the theory derived here goes beyond 
the scope of the present paper, however. 
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