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The dynamics of packets of intense electromagnetic fields in inhomogeneous plasmas with linear 
and parabolic density barriers and an ion-acoustic nonlinearity is analyzed. Dynamic phase- 
conjugate states of the field which are frequency-tunable may exist. In a plasma with a linear 
density barrier, states of this sort correspond to reflection, while in a plasma with a parabolic 
barrier they correspond to reflection and transmission, separated by a regime in which the packets 
are "pulled up" to the crest of the barrier. The behavior of the depth to which the field penetrates 
into the dense, supercritical plasma in this pulling regime is analyzed; the thermal losses are taken 
into account. Most of the energy may be absorbed near the crest of the barrier. 

1. INTRODUCTION -- d2a a=O, p=2 ,  
In the theoretical work on the propagation of nonlinear dt2 

waves, a substantial effort is being made to find various 
mechanisms for the penetration of rf waves into the supercri- 
tical regions of inhomogeneous plasma media and for the 
penetration of these waves through such media.'-9 In partic- 
ular, for rf fields describable by the nonlinezr Schrodinger 
equation one such mechanism may involve the existence of 
frequency-tunable dynamic 

In the present paper we find a new class of dynamic 
phase-conjugate states of intense electromagnet~c fields in 
inhomogeneous plasmas with linear and parabolic density 
profiles and with an ion-acoustic nonlinearity. For a plasma 
with a linear density profile, conjugate states are found 
which correspond to a reflection from dense layers wlth the 
properties of the packets before and after the reflection dif- 
fering in the sign of the phase. We will clarify the existence of 
this class of states in a model problem of the evolution of a 1D 
wave field q,(z,t), which is describable in dimensionless vari- 
ables by the Schrodinger equation in a medium with a linear 
or parabolic density profile and with an ion-acoustic nonlin- 
earity: 

By,  dZy, -2i - + - - ny,+ (-~)~cp=O, 
at axZ 

we can reduce Eqs. ( 1 ) to the system of equations 

where S,, is the Kronecker delta. 
In media with a linear density profile (p  = 1 ), the solu- 

tion a = - t of Eq. (2)  corresponds to a reflection of the 
packets from the dense layers. The time t = 0 in this case 
corresponds to the crossing of the turning point by the center 
of the packet. In media with a parabolic density barrier 
( p  = 2 ) ,  the velocity of the packet satisfies Eq. ( 3  ) . One of 
the independent solutions of this equation, a ,  = cosht, cor- 
responds to transmission of the packets through the barrier, 
while another, a, = sinht, corresponds to reflection of the 
packets from the barrier. In the former case, the time t = 0 
corresponds to the passage of the crest of the barrier by the 
center of the packet, while in the latter case it corresponds to 
the crossing of the turning point. 

In reflection regimes, with a ( t )  = - a ( - t ) ,  Eqs. (4)  
The valuesp = 1 and 2 correspond to inhomogeneous media are invariant under the simultaneous replacements 
with, respectively, linear and parabolic density profiles. 
Transforming the independent variables, t+-t, @+w, ( 5  

g=z - j  a(t)dt, tr=t 

and the unknown function, 

so for the wave packets (4), which can be described by the 
real functions @(c,O) = @*(c,O) at the time at which the 
center of the packet passes the reflection point, there exist 
conjugate solutions: 

Q ( 5 ,  t ) = @ ' ( E ,  - t ) ,  n(E, t)=n(E, - t ) .  

and assuming that the velocity of the motion, a ( t ) ,  is given In this case the properties of the packets before and after the 

by reflection differ in the sign of the phase. We call those solu- 
tions of ( 4 )  which satisfy (6)  "conjugate" solutions. 

da -+ l=0, p = i ,  ( 2 )  In the transmission regime, with a ( t )  = a (  - t) ,  Eqs. 
dt (4) are invariznt under the simultaneous replacements 
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where the field @* is the complex conjugate of @. It follows 
that for the wave packets in (4) whose field @ and density n 
satisfy the relations 

@(g, O)=@*(-E, O), n(E, O)=n(-El 01, (8 

when the center of the packet passes the crest of the barrier 
[relations (8)  are satisfied, in particular, by even real func- 
tions], there may exist solutions 

which relate the amplitude A of the field @ = Aei" and the 
perturbations of the packet density n before and after the 
barrier by the specular relation A( - 6, - t )  = A((,t), 
n ( - {, - t )  = n ({,t) : The leading edges of the envelope of 
the packet and the perturbations of the density of the packet 
in front of the barrier correspond to the trailing edges be- 
yond the barrier. The phases x of the packets, before and 
after the barrier are related in this case by the mirror-conju- 
gate relation x ({, t )  = - x ( - 6, - t )  . We call solutions of 
(4)  which satisfy (9)  "mirror-conjugate" solutions. 

In this paper we consider dynamic states of packets of 
intense electromagnetic fields in plasmas with an ion-acous- 
tic nonlinearity and with a density irregularity in the form of 
a linear or parabolic barrier. We begin with a study of the 
equations of motion of the packets. In a plasma with a linear 
density barrier, we find reflection regimes which correspond 
to conjugate dynamic states. In a plasma with a parabolic 
density barrier, we find (depending on the initial condi- 
tions) reflection and transmission regimes, which are sepa- 
rated by a regime in which the packets of intense electromag- 
netic field are "pulled up" to the crest of the barrier and 
"slide down" from it. We show that dynamic states may be 
excited by an electromagnetic pulse incident on the plasma 
from vacuum. We then take up the evolution of the packets 
as they move along the barrier. We study both mirror-conju- 
gate and conjugate dynamic states, which are realized in the 
regimes of, respectively, transmission of the packets through 
the density barrier and reflection of the packets from this 
barrier. In analyzing the evolution of the packets when they 
are pulled up to the crest of the barrier, which separates the 
regimes of reflection and transmission, we allow for thermal 
losses. We show that packets of intense electromagnetic field 
may be absorbed near the crest of a parabolic barrier in dense 
plasma layers. 

2. BASIC EQUATIONS 

We consider a self-consistent 1D field of intense electro- 
magnetic waves in a plasma slab with an ion-acoustic nonlin- 
earity. We assume that the wave vectors of the electromag- 
netic waves are collinear with the plasma gradient. We 
represent the electric field E(z,t) of the electromagnetic 
waves as a wave packet with a frequency w ( t )  which varies 
slowly in time: 

E (2, t )  =Eo (z, t )  exp { i  S o ( t ) d t )  . 

We consider plasma density perturbations N, which are 
caused by the electromagnetic field. We assume that the 
length scale L, of the variations in these perturbations is 
small in comparison with the length scale L of the variations 

in the unperturbed plasma. We then find the following sys- 
tem of equations for the field envelope E, (z,t) and for the 
density perturbation N, (Ref. 10): 

where 

4ne2N (z, t )  
up2 (2, t) = , N(z,t)=N(z)+N.(z,t) ,  

me 

N(z) is the unperturbed value of the plasma density, c is the 
velocity of light, c, is the velocity of ion acoustic waves, and 
T, is the electron temperature. We assume that the profile of 
the unperturbed plasma N(z) density is 

wherep = 1, 2. We introduce the dimensionless variables 

where 

We transform the unknown function (below, we omit the 
subscript H) : 

Equations ( 7 )  and (8)  then become 

where G = c/(c,a). In Eqs. (12) and (13), we switch to a 
coordinate system which is moving at a varying velocity 
V ( t ) :  

t 

We write the solution of these new equations in the form 

Ignoring terms of order V 2  in the relation found from ( 12) 
in this manner, ignoring the term with the second derivative 
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with respect to the time from (13), and integrating over ( 
from - w to g in the relation found from ( 13), under the 
conditions n(g- - CO,  t)-0 and p(g- - CO,  t)-0, 
(these conditions correspond to nonlinear wave packets 
which are localized along the 6 scale), we find 

dz (t) x 2o - w (t)-) - 2a2z (t) 6p4+d&,I\} q = O ,  [ t d t  

Here 
t 

is the coordinate of the center of the wave packet (( = 0)  in 
the laboratory coordinate system, and 
w, ( t )  = [ l  - ( - z ) ~ ] " ~  is the value of the unperturbed 
plasma frequency at the center of the wave packet. We seek a 
solution of ( 14), ( 15) under the condition that the packet 
frequency w(t) and its velocity V(t) = dz(t)/dt satisfy 

P 
w"t) - up2 ( t )  = - , 

az 
( 16a) 

and either 

in the case p = 1 or 

in the casep = 2. Herep is an arbitrary constant. In this case 
the change 

in the unknown function puts the equation for the envelope 
of the packet in the form 

Equations (17) and (15) describe the envelope @ and the 
perturbation of the density n for electromagnetic wave pack- 
ets whose frequency w ( t )  is determined by ( 16). 

Withp = 1, the equations of motion ( 16) are invariant 
under the replacement o f t  by - t. It follows that for z( t )  
there exist solutions which are even in the time t and which 

correspond to a reflection of the electromagnetic field pack- 
ets from a plasma with a linear density profile. 

Withp = 2, equations of motion ( 16) are invariant un- 
der the simultaneous replacement of t by - t and of z by 
+ z. It follows that for z ( t )  there exist solutions which are 

even and odd in the time t = 0. These solutions correspond 
to reflection of the electromagnetic field packets from the 
parabolic density barrier and transmission of the packets 
through the barrier, respectively. In each case the packet 
frequency w(t)  is even in the time t: 

o (t) =w (-t) . (18) 

In the regime in which the packets are transmitted 
through the density barrier, for which the packet velocity 
V( t)  is an even function, V (  - t)  = V(t), Eqs. ( 14) and 
( 16) are invariant under the following simultaneous re- 
placements in (7)  : the replacement of t  by - t, of (by - g, 
and of @ by a*. It follows that for the wave packets in ( 15) 
and ( 17) whose field @ and density n satisfy relations (8)  at 
the time the center of the packet passes the crest of the bar- 
rier there may exist mirror-conjugate dynamic states as in 
(9) .  

When the packets are reflected from the barrier, and the 
packet velocity V(t) is an odd function 
[ V(t) = - V( - t)  ] with respect to the time ( t  = 0)  at 
which the center of the packet crosses the turning point, Eqs. 
( 15) and ( 17) are invariant under the following simulta- 
neous replacements in (5): the replacement of t  by - t and 
the replacement of @ by @*. In this case, conjugate solutions 
(6)  exist for the wave fields ( 15) and ( 17), which are de- 
scribed by real functions at the time t = 0. We will first ana- 
lyze the equations of motion of the packets in ( 16); then we 
will take up the evolution of the properties of the packets as 
they move through the density barrier. 

3. EQUATIONS OF MOTION OFTHE PACKETS 

1. Plasma with a linear density barrier (p= I). In this 
case, the equations of motion of the packets in ( 16) have the 
first integral 

where wf = 1 + I9,O = p/a2,  and z, is the coordinate of the 
turning point. Figure 1 shows the phase plane for ( 19). Part 
a corresponds to valuesp > 0, and part b t op  u. 0. The hatch- 
ing along the z axis represents the plasma region. In the for- 
mer case (p  > 0)  the wave packet moves in the region 
- l<z<z,, reaching the plasma boundary with velocity 

and frequency w, = 19 I/'. In the latter case (Fig. la) ,  the 
wave packet moves inside the plasma and does not reach the 
boundaries of the plasma: 1 < - w i  gzgz,. 

2. Plasma with a parabolic density barrier. In this case 
(p  = 2), the equations of motion ( 16) of the packets have 
the integral 
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I t  i I I  
FIG. 1. Phase plane of Eq. ( 19), which describes the motion of packets of 
intense electromagnetic field in a plasma with a linear density barrier. a- 
p > O ;  b--p <o. FIG. 2. Phase plane of Eq. (20), which describes the motion of packets of 

intense electromagnetic field in a plasma with a parabolic density profile. 
a-p > 0; b--p < 0. 

Figure 2 shows the phase plane for (20). Part a corresponds 
to valuesp > 0, and part b to valuesp < 0. The curves 1 corre- 
spond to transmission of the packets through the density 
barrier. The curves 3 correspond to reflection. The separa- 
trices 2, which separate these two regimes of motion, de- 
scribe pulling of the electromagnetic field packets up to the 
crest of the barrier and "sliding down" from the crest. Let us 
examine these regimes of motion in more detail. 

The transmission of the packets through the density 
barrier corresponds to (20) with C = wk V k  , where Vm is 
the packet velocity when the center of the packet, 6 = 0, 
crosses the crest of the barrier. When the packet reaches the 
boundaries of the plasma layer, z = + 1 (Fig. 2a), its veloc- 
ity at these points satisfies 

aZ+V,,,2(1+0) Vp2(*1)= - 
0 

(21 

The frequency w, of the packet at the boundary of the plas- 
ma layer is 0 When an electromagnetic pulse of frequen- 
cy w, is incident from vacuum on a plasma slab with a para- 
bolic density barrier, nonlinear wave packets will evidently 
be excited in the plasma. The velocity of these packets at the 
boundary of the plasma will be equal to the velocity of light. 
If the packet velocity near the crest of the barrier is suffi- 
ciently high, Vm % a / @ ,  , Eq. (20) can be integrated in 
terms of elementary functions. Under the condition 
z(0) = 0, which corresponds to crossing of the crest of the 
barrier by the center of the packet at the time t = 0, and 
under the condition V,,, >) a / w m  , for example, the solution of 
(20) is 

The time t, at which the packets slide down from the crest of 
the barrier is defined as the time at which the packet reaches 
the boundary of the barrier: z(t, ) = om. Using (22), we 
thus find t, = TO, /4Vm.  The time t, decreases with increas- 
ing velocity of the packet at the crest, t, - V ;  I .  The time t, 
at which the packets of electromagnetic field cross the bar- 
rier is twice the sliding time, 2ts. 

Vanishing of the packet velocity at the crest of the bar- 
rier ( Vm = 0) corresponds to a value of zero for the param- 
eter Cin (20). In this case the trajectory of the packet in the 
phase plane of (20) is the separatrix 2 (Fig. 2),  on which the 
velocities V, and the coordinatesz of the center of the packet 
are related by 

At the plasma boundaries (z  = f 1 ) in the case p > 0, the 
packet velocity is given by (21) with Vm = 0. The value of 
V f  ( +_ 1 ) decreases with increasing 0. The part of the separ- 
atrix with the negative slope, i / z  i 0, corresponds to pulling 
of the packets to the barrier and stopping of the packets at 
the crest of the barrier. The region with i / z  > 0 corresponds 
to sliding of the packet down from the crest. From (20) we 
see that pulling of the packets up to the crest corresponds to 
the equation 
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where 7 = z/w,. 
In the case V< V, the wave packet is reflected from the 

density barrier. Corresponding to this regime of motion in 
the phase plane of (20) are curves 3, for which we have 
C = - a2z;, where z, is the coordinate of the turning point 
found from the condition that the packet velocity vanish: 
V(z, ) = 0. For z, we thus find 

where Vo is the packet velocity at the point 2,. The depth to 
which the packets penetrate into the dense plasma layers 
thus increases with increasing velocity V,. 

4. CHANGES IN THE PROPERTIES OF THE PACKETS 

We turn now to an analysis of the evolution of the prop- 
erties of the electromagnetic-field packets described by Eqs. 
( 15) and ( 17). In view of the finite time spent by the packets 
in moving through the density barrier in these regimes, and 
under the assumption that the damping is weak, we can use 
the dissipationless approximation to analyze the mirror- 
conjugate and conjugate states of the packets, which are re- 
alized when the packets are transmitted through and reflect- 
ed from the density barrier, respectively. In the pulling 
regime, the packet reaches the crest of the barrier after an 
infinitely long time, so dissipation of the electromagnetic 
field must be taken into account. 

We first analyze the evolution of the properties of the 
packets in the transmission and reflection regimes in a plas- 
ma without thermal losses. We consider both mirror-conju- 
gate and conjugate states of the electromagnetic field. We 
will then analyze the changes in the packet properties in the 
pulling regime in the case with thermal losses, which result 
from collisions of plasma particles. 

4.1. Conjugate and mirror-conjugate states of the elec- 
tromagneticjield. We are interested in mirror-conjugate and 
conjugate solutions of ( 15), ( 17), which are realized in the 
transmission and reflection regimes, respectively. The mir- 
ror-conjugate solutions are described at the time t = 0 (at 
which the center of the packet passes the crest of the barrier) 
by functions which satisfy relations (8).  The conjugate solu- 
tions which are realized in the case of reflection from the 
barrier are described at the time t = 0 (at which the center of 
the packet crosses the reflection point) by real functions. 

Equations ( 15) and ( 17) have been analyzed by nu- 
merical methods on the time interval O<t<t,, where t, is the 
time at which the packet slides down from the crest of the 
barrier in the transmission regime or the time at which the 
packet slides down from the turning point in the reflection 
regime. The distributions of the density and the field for t < 0 
for these states can be found from the distributions of the 
density and the field for t >  0 with the help of (9)  for the 
mirror-conjugate states or with the help of (6)  for the conju- 
gate states. 

The field distribution @((, 0)  is specified as an isolated 
Gaussian pulse 

whose velocity V(0) and frequency w(0) are determined by 
the relations 

in the transmission case and by the relations 

in the reflection case. The density distribution n((,O) is 
found from (15) along with (26) and (27). In particular, if 
the packet velocity near the crest of the barrier is sufficiently 
low, V4 G - I ,  we can ignore the term with the time deriva- 
tive in ( 15). For wave packets which are localized in f we 
find 

n--o ( t )  1 @ 1'. (28) 

Equations ( 15) and ( 17) were solved numerically for the 
values L, = 1 and G = 1 and for various values of the packet 
amplitude a, and the packet velocity V(0). The nature of 
the evolution of the packets depends strongly on the relation 
between V,,, and G - I .  Figure 3 shows distributions of the 
envelope A and of the density perturbation n of wave packets 

= Ae'p versus ( at various times for Qo = 3 and G = 1 in 
the transmission regime. The velocity of the packet at the 
crest of the barrier is V, = 0.6 < G - ' here. The curves 1 
correspond to the envelope A, and the curves 2 to the density 
n. The time t, at which the packet velocity is equal to the ion 
acoustic velocity, V(t,) = G - ', is 1.0 for the value of V, 
which we chose. 

As the packet moves near the crest of the barrier for 
V < G - ' (this value corresponds to the time interval t < t, ), 
for a given value ofL, there exists a critical value a,: Above 
this value, waveguide propagation of the wave packet oc- 
curs. In other words, the properties of the packet oscillate 
around slowly varying average values (Fig. 3a, b).  If 
a, > @, holds, the size of the wave packets increases in this 

FIG. 3. The envelope A (curve 1 )  and the perturbation of the density n 
(curve 2 )  of wave packets Q = AeIr versus & at various times t in the 
regime in which the packets are transmitted through a parabolic density 
barrier. The wave packet @(g,O) is specified as a Gaussian pulse as in (25) 
with @, = 3, Lo = 1, and a velocity V, = 0.6 c G - ' at the time at which 
thecenter of the packet passes the crest of the barrier ( t  = 0). a-The time 
t = 0; b-t = 0.23; C-t = 1.16; d-t = 1.86. 
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time interval. Near the crest of the barrier, the evolution 
preserves the shape of the pulse. With increasing distance 
from the packet to the crest of the barrier, distortions of the 
pulse shape become important (Fig. 3c). At t z t,, the pack- 
et velocity is close to the velocity of ion acoustic waves, so the 
latter waves are excited. It follows from the calculated re- 
sults that the ion acoustic waves are excited on the time in- 
terval defined by the inequality 

1 ( v (t) - -1 G 0.3. 
G2 

After an ion acoustic wave has been excited, it lags behind 
the core of the packet. As a result of recoil, the core of the 
packet acquires an additional acceleration (Fig. 3d). In ad- 
dition, for t > t, the core of the packet spreads out. 

Without going into a detailed analysis of the evolution 
of packets in the regime of conjugate states, we would like to 
point out that the dynamics of the packet in this case is qual- 
itatively similar to that observed in the regime of mirror- 
conjugate states for V(0) ( 1/G. 

It should also be noted that for conjugate states in a 
plasma with a linear density barrier, and at velocities 
V(t) ( l/G, which correspond to velocities of nonlinear 
wave packets which are low in comparison with the velocity 
of ion acoustic waves, an exact description of these states is 
possible as well as an approximate nonaberrational descrip- 
tion. In this case, Eq. ( 14) for the envelope @, with a local 
nonlinearity of the ponderomotive type [see (28) 1, has the 
form of the nonlinear Schrodinger equation in a homoge- 
neous medium: 

One solution of this equation is the well-known soliton 

The solution for the electric field amplitude in this case is 

and is a generalization of the solution derived by Chen7 to 
the case in which there is a significant variation in the soliton 
carrier frequency o ( t)  . 

4.2. Evolution ofpackets in the pulling regime. Equation 
(24) corresponds to pulling of the electromagnetic-field 
packets to the crest of the density barrier. As the center of the 
packet approaches the crest, its velocity tends toward zero. 
This tendency means that thermal losses must be taken into 
account for field packets near the crest of the barrier. In a 
plasma with a parabolic density profile and thermal losses 
due to particle collisions, the equation for the envelope @ of 
the field packets becomes 

Here 

p N o '  (cm-') . T,-'(K). 

Multiplying (29) by @*, subtracting the complex con- 
jugate of the result from the result, and integrating over { 
from - m to + co , we find the following relation for wave 
packets which are localized in { [a({- + m ,t) -01: 

Here 

is the energy of the wave packet. In (30), we switch from the 
variable t to the variable coordinate of the center of the wave 
packet, 7. As a result we find from (30), with (241, 

n 

W (*)= W. exp {-aqom4 j (1-q2)' dq) . (31) 
np 1 

It follows from (31) that as the packet moves far from the 
crest (in the case (7 - 1 I < 1) the absorption of electromag-' 
netic field energy is insignificant. As the packet approaches 
the crest ( 7  -0), the absorption rate increases substantially. 
It can thus be concluded that electromagnetic field energy 
can be absorbed in dense plasma layers near the crest of the 
density barrier. In the case 7, = 1, for example-this case 
corresponds to excitation of the packet at the plasma-vacu- 
urn interface-the solution of (30) is 

We define the packet penetration depth 7, by 
W(vd) = Woe-'. 

In particular, at values 7, ( 1, which correspond to an 
absorption of electromagnetic field energy near the barrier 
crest, the field penetration depth found from (32) is 

This expression is valid if ago; ) 1. 
Let us specify the range of applicability of this analysis. 

It is legitimate to ignore the thermal losses in the reflection 
and transmission regimes if tab, (the time scale of the absorp- 
tion of electromagnetic field energy) is greater than the time 
taken by the packet frequency w(t) to return to its initial 
value a,.  The value of the packet energy at the time to at 
which the frequency o(t) returns to its initial value 
w, = W( - to ) is, according to (32), 

w(t,)= *(--to)exp{ -azp [ j ~ ~ ( t ) d t  + j 02(t)dt]] . 
-b 0 

(33) 

The time t = 0 corresponds to the time at which the center of 
the packet passes the barrier crest in the transmission regime 
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or to the time at which the reflection point is passed in the 
reflection regime. Expression (33) can be put in the follow- 
ing form if we make the replacement t- - t in  the first inte- 
gral and make use of (24) : 

to 

w(t0)= ~(-t,)exp{-2cr'p. J o ' ( t ) d t } .  (34) 
0 

For the case in which packets pass through the density bar- 
rier with a fairly high velocity V, % ( w ,  ) ''', we find from 
(34) and (20) 

We define the absorption time t,,, as the time over which the 
energy of the electromagnetic field decreases by a factor of e 
from its initial value. From (35) we thus find that the inter- 
val of initial coordinates 17, of the center of the packet in 
which the time 2t0 over which the packet returns to its initial 
value 70 is greater than the absorption time tabs is 

For motion of the packet out of the region with 17, zz 1 it 
is legitimate to ignore the thermal losses under the condition 

[here we are using (36) ] 

We note in conclusion that this analysis of the nonlinear 
dynamics of electromagnetic-field packets in inhomogen- 
eous plasmas leads to the conclusion that intense electro- 
magnetic fields can penetrate into and pass through dense 
plasma slabs. 
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