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The Brownian diffusion of particles which exhibit a "neighbor-avoidance" tendency in addition 
to the ordinary random walk is analyzed. The avoidance is modeled by an additional external 
force a V(P " )  in the stochastic Langevin equation, where P(t,  x )  is the distribution function 
formed as a result of the random walk, andp is an arbitrary exponent. This addition is IR-specific, 
i.e., alters the infrared asymptotic behavior at long times and at large distances, only ifp > 0. For 
values ofp in the interval 0 < p  < 2/d (where d is the dimensionality ofthe space), the equation 
for the IR asymptotic behavior of P has a normalizable scaling solution Pa,,,, (t,x) 
= t -"p(x2,t -"),with exponentso = 2/(2 - dp)  anda  = do/2. Thissolution corresponds to 
a "dispersal law" (x2) - t ". The scaling function p is also determined unambiguously. Such a 
solution is possible only if the coupling constant has the correct sign, i.e., the sign corresponding 
to a tendency toward neighbor avoidance, rather than to a tendency toward approaching 
neighbors. 

Ordinary Brownian motion is modeled by the very sim- 
ple stochastic Langevin equation 

where xi are the coordinates of the particle undergoing the 
random walk, 77; is a Gaussian random force with (77;) = 0 
and with the correlation function indicated in ( I ) ,  and the 
constant v is the diffusion coefficient. A generalization of 
( 1 ) is the problem 

with the same random force 77 as in ( 1 ) and with some given 
function u,(t,x). From Eq. (2)  follows the well-known 
Fokker-Planck equation for the distribution function P(t,x) 
of the coordinates x at the time t of a particle undergoing a 
random walk: 

This equation is customarily supplemented with the initial 
condition P(0,x) = S(x) ,  which corresponds to the case in 
which all the particles start from the origin of coordinates at 
the time t = 0. From Eq. (3 )  and the initial data we find the 
normalization condition 

The solution of Eq. (3  ) for the very simple problem ( 1 ), 
in a d-dimensional space, is well known: 

P, ( t ,  x) = ( ' t n ~ t ) - ~ / '  exp (- 5) 
This solution is in a scaling form and corresponds to the 
"dispersal law" (x2) at.  The problem (3),  which is nontri- 
vial, has been studied in detail in two versions: the problem 
of a "random random walk" (RRW; a random walk in a 
random medium) and the problem of a "true self-avoiding 
random walk" (TSAW). We are using the conventional ter- 
minology. The TSAW model was proposed in Ref. 2 (see 
also the bibliography in Ref. 3 ) .  In the RRW case the vector 

field ui in (3)  is assumed to be a Gaussian random quantity 
with a given correlation function, and an average is taken 
over it.' In the latter case, ui is assumed to be the gradient of 
a potential which is specified as a (point) S-function on the 
path traced out by the particle (in this case there is perfect 
self-avoidance) or as a S-function which has been smeared 
out (this is the case of a tendency toward self-avoidance). In 
either case, the problem can be reformulated as a quantum 
field model, and then the renormalization-group method 
can be used to study the IR asymptotic behavior, as in the 
theory of critical beha~ io r .~  As a result, a scaling is always 
predicted. The consequence (x2) a t " of this scaling, with a 
nontrivial critical exponent p, is calculated in the form of 
some E expansion (although the legitimacy of this derivation 
is questionable in the case of a TSAW with an exact S-func- 
tion3 ) . 

In a real situation, the stochastic behavior stems from 
collisions with neighbors, and P(t,  x )  describes the distribu- 
tion of the cloud of diffusing particles at time t if these parti- 
cles were all at the origin of coordinates at t = 0. A common 
thread running through all these problems is "autonomy": 
The behavior of an individual particle in the course of its 
random walk is totally unrelated to the presence or absence 
of neighbors (in the most complicated TSAW case, the par- 
ticle "remembers" only its own path). 

It is therefore interesting to look at a problem without 
autonomy, i.e., a problem in which a particle "senses" the 
neighbors around itself. For example, the particle may ex- 
hibit a tendency to approach its neighbors or to move away 
from them. This formulation of the problem is clearly of 
interest from many points of view, extending all the way to 
sociology. 

In this paper we propose and study a very simple model 
of this sort: Eq. (3)  with ui = cd, ( P  " ) ,  where c andp  are 
constants, and P is the same distribution function as is 
formed in the course of a random walk, i.e., the solution of 
(3).  Equation (3)  with such a u; can be rewritten as 

984 Sov. Phys. JETP 73 (6), December 1991 0038-5646191 / 120984-03$03.00 @ 1991 American Institute of Physics 984 



where d E didi  is the Laplacian, and g = cp/( 1 - p ) is a 
coupling constant. 

We are interested in the IR asymptotic behavior (i.e., 
large values oft and x )  of the solution of Eq. ( 6 ) .  In a normal 
situation we would have P-0 in the IR limit (spreading of 
the cloud). In this regime, with p > 0, we can ignore the free 
contribution a 'P in Eq. (6 )  in comparison with the nonlin- 
earity. In the casep < 0, we can do the opposite. In the latter 
case the asymptotic behavior is obviously free. We therefore 
assume p > 0 in the discussion below. We then find the fol- 
lowing simplified equation for the IR asymptotic expression 
Pas,,, of the exact function P: 

A value g > 0 here corresponds to repulsion of particles, and 
g < 0 to an attraction. The same conclusions regarding the 
role of the nonlinearity can be reached through a conven- 
tional analysis of the canonical dimensionalities, precisely as 
in the theory of critical behavior. 

It is natural to seek a solution of Eq. (7 )  in a scaling 
form similar to ( 5 ) : 

This expression corresponds to a dispersal law (x2) a to. 
Substituting (8)  into (7),  we find the equation 

from which we in turn find the relationship 1 + a  
= a( 1 - p)  + 0.  A second relationship between the in- 
dices a = d0/2 can be found by substituting (8)  into the 
normalization condition (4) .  To replace the exact function P 
in (4)  by its asymptotic expression Pas,,, is a legitimate step 
if at large values oft the overwhelming majority of the parti- 
cles are at large values ofx, where the asymptotic expression 
(8)  prevails. For the free solution (5),  this condition always 
holds. Mutual repulsion of the particles should accelerate 
the spreading of the cloud even more, so in this case (g > 0) 
the substitution P- Pa,,,, in the normalization condition 
can be judged legitimate. From the two relationships given 
above, we can determine the exponents a and unambigu- 
ously: 

The natural requirement B >  0 imposes an upper limit on p :  

We will assume below that this condition holds. 
The discussion above is of course valid only if the equa- 

tion for the scaling function which follows from (9)  has a 
solution that falls off rapidly enough in the limit z- cc that 
the normalization integral in (4)  converges at infinity. If 
there is no such solution, the derivation of Eqs. ( 10) is incor- 
rect, since that derivation leaned heavily on the normaliza- 
tion condition (4)  for the function (8) .  

To test the internal self-consistency of the solution with 

the exponents ( l o ) ,  we consider the equation for p which 
follows from (9)  : 

Using the second equality in ( lo ) ,  we can rewrite this equa- 
tion as 

Hence we immediately find the first integral 

where Cis  an arbitrary constant. 
It is not difficult to see that Eq. (13) cannot have a 

normalizable solution for p for any C f 0, so C = 0 is the 
only possible value. The reason is that for C # O  the right side 
of ( 13) is a multiple of the power z d / 2  oc 1x1 - ', which cor- 
responds to a logarithmic divergence of the normalization 
integral in (4)  at infinity. By virtue of the condition which 
we have adopted (normalizability), the function p on the 
left side of ( 13) must fall off more rapidly, so the contribu- 
tion proportional to z - can (and must, in the case C # O )  
be present in the derivative d p  ' p ( ~ ) / d z .  However, the re- 
lation d p  ' -ll(z)/dz a z d /2  implies p a z ' ~  - d'/2'1 - p '  , and 
under inequality ( 1 1 ) this relation means an even slower 
(slower than z d /2 )  decay of p at infinity. For value C $0, 
Eq. ( 13) thus cannot have normalizable solutions for p. We 
are thus obliged to set C = 0. Equation ( 13) with C = 0 can 
be integrated easily: 

where C, is a new integration constant. If inequality ( 11 ) 
holds (and we are assuming that it does), the function ( 14) 
falls off more rapidly than z-"'" at infinity, so the solution 
( 14) with C, > 0 is normalizable. The constant C, is found 
unambiguously from the normalization condition: 

The solution in ( 14) is meaningful only for g > 0, i.e., only if 
there is mutual repulsion between particles. 

We thus see that, with g > 0 and 0 < p  < 2/d, Eq. ( 12) 
for the asymptotic behavior of the distribution function P 
has a unique normalizable solution of the scaling type, with 
the exponents in ( 10) and the scaling function in ( 14). By 
virtue of this uniqueness we can assume that this solution is 
the IR asymptotic expression for the exact distribution func- 
tion which we have been seeking. The sign g > 0 corresponds 
to repulsion between particles, and p > 0 corresponds to the 
condition under which the interaction is IR specific (nonlin- 
earity). The equality ( 11 ) is limited from above by the "re- 
pulsion strength." When this boundary is reached, the func- 
tion in ( 14) becomes unrenormalizable. The solution found 
here corresponds to the dispersal law (x2) cc t " with 0 >  1 
from ( 10). In other words, the dispersal becomes faster (for 
free particles we would have0 = 1 ), as it naturally would in 
the case of mutual repulsion. The question of the asymptotic 

985 Sov. Phys. JETP 73 (6), December 1991 Vasil'ev et a/. 985 



behavior of P in  the case of strong repulsion (p)2/d) or in 64,336 (198611; J. Honkonen, Yu. M. Pis'mak, and A. N. Vasil'ev, J. 
Phys. A 21, 835 (1988). the case lR-specific (g < Oy "O) remains 'D. J. Amit, G. Parisi. and L. Peliti, Phys. Rev. B 21, 1635 (1983). 

Open, since a so1ution cannot be constructed for those cases IS. E. Derkachov, J. Honkonen, and A. N. Vasil'ev, J. Phys. A 23,2479 
by the simple method presented above. (1990). 

4K. G. Wilson and J. B. Kogut, The Renormalization Group and the E 

E. Marinari, G. Parisi, and D. Ruelle, Phys. Rev. Lett. 50, 1223 (1983); Phys* Repts. l2> ( 1974).. 

D. S. Fisher, Phys. Rev. A 30,960 (1984); V. E. Kravtsov, I. V. Lerner, 
and V. I. Yudson, Zh. Eksp. Teor. Fiz. 91,569 ( 1986) [Sov. Phys. JETP Translated by D. Parsons 

986 Sov. Phys. JETP 73 (6), December 1991 Vasil'ev st a/. 986 


