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The bremsstrahlung of a monoenergetic beam of charged particles which are classically fast and 
which do not interact with each other is analyzed for the case in which these particles undergo 
repeated elastic collisions with randomly distributed atoms of a medium, A systematic kinetic 
analysis of the radiation process in the medium yields the spectral density of the bremsstrahlung 
emitted by these particles. The spectrum found here differs from that in the case of an isolated 
radiator, which has been studied previously, in being very nonmonotonic and in having at least 
one extremum. The value of the radiation energy at the extremum, the position of this extremum, 
and its width all depend on parameters which characterize the initial beam of radiating particles 
and the scattering medium. A detailed study is made of the radiation by a collimated 
monoenergetic beam of charged particles and also of the bremsstrahlung of a highly anisotropic 
point source of ultrarelativistic radiators. 

1. INTRODUCTION 

The bremsstrahlung of a classically fast charged parti- 
cle in a scattering medium was first studied by Landau and 
Pomeranch~k. '*~ They derived expressions for the spectral 
energy density of the bremsstrahlung. They pointed out that 
the bremsstrahlung intensity was suppressed at low frequen- 
cies by repeated elastic collisions of the carriers with the 
atoms of the medium (the Landau-Pomeranchuk effect). 
Migda13 derived a quantitative theory for the bremsstrah- 
lung of such a particle by averaging the spectrum of the radi- 
ation energy over all possible carrier trajectories in an amor- 
phous medium. The method proposed by Migda13 for 
calculating the spectrum of the bremsstrahlung of a classi- 
cally fast particle in a medium was developed further"' in 
research on how the dispersion properties of the scattering 
m e d i ~ m , ~ . ~  its boundaries,' and inelastic processes which 
occur in the medium6,' affect the frequency distribution of 
the bremsstrahlung. 

However, only the radiation of an individual particle 
was studied in Refs. 1-7. In many cases (Refs. 8 and 9, for 
example), the source of the bremsstrahlung as fast carriers 
move through a scattering medium is a set of radiating parti- 
cles. In addition, there is general physical interest in a study 
of the bremsstrahlung of a system of charged particles in a 
medium, since in this case an interference mechanism as well 
as the collisional mechanism shapes the radiation spectrum. 
As a result, the frequency distribution of the bremsstrahlung 
and the dependence of the bremsstrahlung intensity on the 
thickness of the medium and on parameters characterizing 
the scattering of the particles in the medium are markedly 
different from those in the case of an individual radiator. 

In the present paper we examine the bremsstrahlung of 
a system of monoenergetic, classically fast charged particles 
which do not interact with each other but which do undergo 
repeated elastic scattering by randomly positioned atoms of 
the medium. We derive the spectrum of the bremsstrahlung 
of such particles through a systematic kinetic analysis of the 
radiation process in the medium. The spectrum found differs 
from that in the case of a individual in being very 
nonmonotonic and in having at least one extremum, which 
results from interference of the waves emitted by the individ- 

ual particles. In the limit of very low frequencies, the brems- 
strahlung of a system of noninteracting carriers in a medium 
is formed under conditions corresponding to complete co- 
herence of the individual radiators, while in the extreme 
short-wave part of the spectrum the bremsstrahlung intensi- 
ty is proportional to the number of particles. 

We analyze in detail the radiation by a collimated beam 
of charged particles with a 6-function momentum distribu- 
tion and also the bremsstrahlung of a highly anisotropic 
point source of ultrarelativistic radiators. We show that in 
these cases, even if there are no spatially distributed radi- 
ation sources along the bremsstrahlung propagation direc- 
tion, the bremsstrahlung spectrum of the system of particles 
in the medium always has a maximum, and this maximum is 
unique. The value of the radiation energy at this maximum 
and also the shape of this maximum depend strongly on the 
characteristics of the scattering medium and also on param- 
eters which specify the initial beam of ultrarelativistic parti- 
cles. 

2. STATEMENT OF THE PROBLEM; TWO-TIME 
DISTRIBUTION FUNCTION IN THE kREPRESENTATlON 

Let's study the system of charged ultrarelativistic 
( E > m )  particles which do not interact with each other 
(E)o) is a radiation frequency; E, m, and e are the energy 
mass and the charge of each particles. These particles enter a 
homogeneous, semi-infinitive, amorphous scattering media. 
In the initial period t = 0, particles are located in the points 
r,,, r,,, ..., r,, and are of the velocity of v,,, v,,, ..., v,, , equal 
to v, = [ l  - ( m / ~ ) ~ ] , " ~  and they are directed under the 
I Ap ( 4 1, p = 1, ..., N angle to the e, vector (vector of the 
inward normal to the boundary of the medium). 

The spectral energy density radiated by these particles 
is" 

dE,  -- - 9'0' j dQ. j d t ,  exp ( - id , )  df, exp (iwt,) 
do  4nZIr,v=l 

where Nis the number of particles, k is the wave vector of the 
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radiation field, dR, is an element of solid angle in the direc- where 
tion n = k/k, k = w, and j!-Jk,t) is a matrix element of the L 

current of the transition between the states i and f in the v(g)= u(g)exp( - - ig~~) ,  
momentum representation. The integration in ( 1 ) is over x-4 

the time spent by the particle in the medium. 
If we ignore the interaction between particles, the func- 

tion jf-f(k,t) is proportional to the Fourier component of 
the one-particle density matrix pF(r, ,r;' ;Rl ,R, ,..., R, ), 
which depends on the coordinates of particle p and also on 
the radius vectors R, , R2 ,..., R, . The latter specify the posi- 
tions of the scattering centers in the medium (L is the num- 
ber of scatterers). 

To calculate the spectral energy density d~,/dw of the 
bremsstrahlung which would be observed in the medium, we 
should average expression ( 1 ) over all possible carrier tra- 
jectories in the scattering m e d i ~ m . ~  To do this we need to 
find the expectation value (over all R, ,R,,...,R, ) of a bilin- 
ear combination of the density matrices 
pp(rp,r;;R1 ,R2 ,..., R,) andpv(r,,r:; R , ,  R, ,..., R,). Mul- 
tiplying the equations of motion for the operators 
f(r,,r;;R1 ,..., RL ) and pV(r,,r:;R, ,..., R, ) from the right 
and left by the matrices pV(r,,r:,,R ,,..., R,) and 
f ( r ,  ,r;;R, ,..., RL 1, respectively, and then summing the Le- 
sults, we find the following equations for the operator 9, 
which is the product ofp, and pv: 

The Fmiltonian 2, acts on the variables r,, the Hamilto- 
nian H p v  acts on the variables r,, and r,, and we have 
r = t, - t, and t = t,. In the problem of the radiation by a 
charged particle, the quantity T is the time scale of the pho- 
ton formation (the coherence time), and t is the time at 
which the photon is emitted.3 A 

We expand the operator 9 in (2)  in a complete set of 
plane waves u i  .exp (ipr ) (p  is the momentum of the particle, 
andil is the spin variable'' ), and we take an average over the 
positions of the scatterers in the medium in the resulting 
equations. Ignoring the "mixing" of the spin components of 
the wave functions caused by a scattering center (this simpli- 
fication is legitimate for ultrarelativistic particles" ), we 
then find the following expressions for FPIPZP3P4 (t,t + T), the 
coefficients in the expansion of the operator 9 (we are omit- 
ting the spinor indices) : 

U(g) is a Fourier component of the potential of the scatter- 
ing center, Ep is the energy of a particle with a momentum p, 
and the angle brackets mean an average over the positions of 
the scatterers. 

Equations (3)  and (4)  constitute systems of integrodif- 
ferential equations which are not closed with respect to the 
unknown function (Fp1p2p3p4 (t,t + r ) ) ,  which depends on 
two time variables. The latter circumstance makes a calcula- 
tion of the correlation function on the right sides of Eqs. (3 )  
and (4) and also the derivation of (FPIP2P3P4(f,f + 7) )  far 
more complicated than in the case of ordinary one-time 
problems of kinetic theory.', However, by virtue of the very 
formulation of the problem of the emission by a charged 
particle in a medium, the times t and T satisfy the inequality 
r 4 t: The photon must manage to be emitted during the time 
the particle spends in the medium. To first order in the pa- 
rameter r / t< l we can then ignore the dependence of the 
function (Fp1p2p,p4 (t,t + 7) )  on the variable r in Eq. (4),  
since the time scale of the variation in (FPIPZPIP4 (t,t + r ) )  
specified by this equation is of order t%  r ,  while the deriva- 
tives of the function (Fp1p2p3p4 (t,t + r ) )  with respect to the 
variable t are fairly smooth functions of t by virtue of the 
homogeneity of the medium. 

Setting T = 0 in (4), we can then successively construct 
equations12 for the functions of the type 

( V( g)Fp, * +8.P2.P3.P4 ( t )  ) which appear on the right side of (4).  
Substituting the solutions of the latter equations into (4),  
with r = 0, and using the standard rules'' for splitting up 
the correlation functions of the type 

(V(g1) V(gi)FP,P,P,,(t) )=(FP*,P,P,(t) )( V(g1) V ( g 2 )  ), 

which arise in the process, we find an equation for 
(FP,P2P3P4 ( t )  ). Proceeding in the same way, we find an equa- 
tion for the function (FPIP2P3P4 (t,t + T) ) from (3)  (but in 
this case with ~ $ 0 ) .  Expanding the collision integrals in the 
equations found for (FP1P2P3P4 ( t ) )  and (FPIp2P3P4 (t,t + TI) in 
the small momentum transfer g and also in o/E4 1-this is a 
legitimate step in the case of ultrarelativistic, classically fast 
particles-we find the following equations for the functions 
(FpIP2P3P4 ( t)  ) and (FPIP2P3P4 ( t,t + T) ) [a detailed derivation 
of Eqs. ( 5 ) and ( 6 ) is given in the Appendix] : 

Here F, (v,,v,,t,r) is the two-time distribution function in 

I 

(FPIP2P3P4 (t,t + T))  by making the change of variables 
+ v F ~ P P + P ‘  7 F P t P * P , P - t  

= p, + k/2, p3., = p, k/2. This distribution func- 
(4)  tion completely determines the kinetics of the radiation pro- 

952 Sov. Phys. JETP 73 (6), December 1991 A. V. Koshelkin 952 



cess in the medium. The quantities v,, v,, p,, and p, are the 
velocities and momenta of particles ,u and v; q is the mean 
square value of the multiple-scattering angle per unit path 
length;I3 and q and I; are angular vectors which satisfy 

Here e, is the unit vector along the inward normal to the 
boundary of the medium. 

Expanding the scalar products kv, and kv, on the left 
sides of (5) and (6) in the small quantities 1q1, 151, lok 191 
[0, is an angular vector associated with the radiation angle 
8, and the wave vector k by equations like (7)  (with 
v, - k) 1, we find the following expression for the function 
Fk (v,,v,,~,T) from Eqs. (5)  and (6)  : 

F k  (q, 6, t, 2 ) s  (nqt)-') d2q1 dZql'G, (q-q", T) 

X T ~  (q', q'-qff+C) 
x exp {-ivotk(q-6) -ikvot (qf'-6) (q'-'12 ($I-6) 1 
- (qll-q')z (qt) - I  

- (i/2) (q"-ql) (q-6) k ~ ~ t - q k ~ ~ ~ ~ t ~  (q"-C)2)/48. (8) 

Here pk ( x , y )  is the Fourier component of the particle distri- 
bution function at the time of entrance into the medium 
( t  = r = O), and Gk (77 - v",T) is the Green's function of 
Eq. (6),  given by 

G k  (q-q", r )  
a 

=- '(1-q")' -2 thz (ek-qu)2 
n sh a r  e x p {  q t h a r  q 2 

We then find the following result for the expectation 
value (over the positions of the scattering centers) of the 
bilinear combination of matrix elements of the transition 
current in the expression for the bremsstrahlung energy den- 
sity in the medium: 

where Fk (q,I;,t,r) is determined by (7)-(9). 

3. SPECTRAL ENERGY DISTRIBUTION OF THE 
BREMSSTRAHLUNG OF A SYSTEM OF NONINTERACTING, 
CLASSICALLY FAST CHARGED PARTICLES IN A 
SCATTERING MEDIUM 

We assume that the system of classically fast charged 
particles consists of N carriers which at the time t = 0 are in 
the plane coinciding with the boundary of the medium and 
have the coordinates r,,, r,, ,..., r,,; (r,, ), = (r,,), 
= ... = (r,,), = 0. The velocities of the particles and the 

time at which they enter the medium are 

We can then write the following expression for the func- 
tion pk (A,, A, ), which determines the state of the system 
of particles at the time t = T = 0: 

cpk (A,, A,) =6 (11-8,) 6 (6-A,) exp (ikd,,), d,v=ro,-rov. 
(11) 

Substituting the expectation value found for the bilinear 
combination of matrix elements of the transition current 
[see ( 10) ] into ( 1 ), and integrating over the variables q and 
I; in the resulting expression [allowing for (8), (9),  and 
( 11 ) 1, we then find the following expression for the spectral 
energy distribution of the bremsstrahlung which would be 
observed in the medium, d&,/dw = (dEw/dw) : 

qto2 vot 
- - ( d  + - b ) +iod,Av 

4 2 1 

where ?c = - '(q/w) y = qw2/4a(d,, + v,tb,, 12, 
(= m/E, b,, =A, - A,, a = ( ioq~, /2)"~,  k = w, a,, is 
the Kronecker delta, and T is the total time spent by the 
particles in the medium (the thickness of the layer of the 
medium) ." 

Let us analyze the frequency distribution given by ( 12). 
In the extreme long-wavelength part of the spectrum 
(q{ - 4 % ~  +0), we find the following result by setting the 
frequency w equal to zero and by replacing tanh z by unity in 
the integral over the variable z: 

In other words, at sufficiently small values of w, where the 
Landau-Pomeranchuk effect occurs, the bremsstrahlung of 
a system of noninteracting charged particles in the medium 
is formed under conditions of complete coherence of the ra- 
diators (d&,/dw cc N 2 ) ,  and the bremsstrahlung energy 

FIG. 1. Energy spectrum of the bremsstrahlung of a beam of fast charged 
particles with a 6-function momentum distribution in a medium (o is the 
frequency of the radiation). Level I )  The value Y. le2qT/3dg '; level 11) 
the value V2.1e2qT/3dg2. a-oc N2(qw)"'.T; b- 
aZ;+,=,exp( -o{d,,,)(wgd,,,)-"2. 
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does not depend on the relative positions of the particles. 
The reason is that in the limit w -.O the wavelength of the 
radiation is long in comparison with the difference between 
the path lengths of bremsstrahlung photons coming from 
any two individual radiators. 

For very high frequencies, w $ maxCq6 -4; (qT) - I i 2  

X [min (d,,.; u, tb,, ) ] - I), we expand the preexponential 
coefficient and the argument of the exponential function in 
powers of the small quantity z< 1 in the integrals over the 
variable z .  From ( 12) we then find 

We thus see that at sufficiently high values of w the term in 
the spectrum ( 14) which stems from the interference of the 
bremsstrahlung photons emitted by different particles tends 
toward zero with increasing frequency, while the quantity 
d&,/dw becomes equal to ( d ~ , / d w ) ~ ~ ,  i.e., the Bethe- 
Heitler bremsstrahlung energy for N independent radiators. 

Since the second term on the right side of ( 14) is non- 
negative at any w,  it follows from the asymptotic expressions 
in (13) and (14) that the frequency distribution of the 
bremsstrahlung of a system of noninteraction charged parti- 
cles always has at least one extremum (Fig. 1).  This result 
stands in contrast with the result for an individual radia- 
tor,'-3 in which case the bremsstrahlung energy spectrum in 
the medium is a monotonically increasing function of w. In 
the case d,,,A, #O, there is generally more than one extre- 
mum, because the system of ultrarelativistic radiators has a 
nonzero dimension along the radiation propagation direc- 
tion. 

Below we will study in detail the cases in which either 
A, = 0 forp = 1, ..., N (this is the case of a plane, collimated 
beam of emitting particles) or Id,, 1 = 0 for I A, 1 #O, 
p,v = 1, ..., N (this is the case of a highly anisotropic point 
source of ultrarelativistic radiators). These situations have 
been singled out because in the case A, = 0 or Id,, I = 0, 
even if there is no ordinary interference of waves from 
sources which are spatially separated along the radiation 
propagation direction, the bremsstrahlung energy spectrum 
of the system of particles in the medium always has an extre- 
mum because of the transverse coherence of the radiating 
particles ("transverse" with respect to the radiation propa- 
gation direction). 

4. SPECTRUM OFTHE RADIATION EMITTED BY A 
COLLIMATED BEAM OF ULTRARELATIVISTIC CHARGED 
PARTICLES IN A MEDIUM 

Since the initial ( t  = 0)  distances between the beam 
particles, Id,, 1, and the angle at which they are moving 
apart, Jb,, / = A, - A,, and at t = 0 are generally random 
quantities, we need to average expression ( 12) over all possi- 
ble values of the vectors d,, and b,, in order to find the 

spectral energy density of the radiation which would be ob- 
served experimentally. Setting A, = 0,p = 1, ..., N, and find- 
ing the average of d,, over the cross section of the collimated 
beam (we approximate this cross section as a circle of diame- 
ter D), we find 

T - 

where (d~,/dw), is the spectral energy density of the 
bremsstrahlung of an individual radiator in a medium, 
which was found by Migdal.3 

In the low-frequency region, w 5 q6 -4, we set tanhs- 1 
in the last expression, and we use the relations 
t -  T )  ro = E~ [ rq  = (qw) - is the formation time of a 
bremsstrahlung photon under the conditions corresponding 
to the Landau-Pomeranchuk effect2' 1. We find 

where En (s) is the integral exponential function.I4 
From ( 16) we find 

o < rnin{qE-'; (qTDZ)  -"} 
(16a) 

e2 (qo)"T 16e2N (N- l )  
N + 

n (qo)"'onDz 

At frequencies w 5 q6 - 4  the derivative d~,/dw is thus an 
increasing function of w. As the frequency increases, the in- 
terference term in ( 16) increases more slowly as a function 
of the time T than the term responsible for the intrinsic 
bremsstrahlung of the individual radiators. 

In the short-wavelength part of the spectrum, 
w 2 qc - 4, we expand the preexponential coefficient and the 
argument of the exponential function in powers of the small 

FIG. 2. Energy spectrum of the bremsstrahlung of a collimated beam of 
fast charged particles in a medium (w is the frequency of the radiation). 
I--qD6-3) 1; 2 - q ~ 6 - ~ 5 { ( ~ ~ ) - " ' < 1 ;  3 - - q ~ { p 3 < 6 ( q ~ ) - " 2 <  1. 
Levels I, 11) The same as in Fig. 1.  a: a No"'. a': a NZw"2. b: 
N ( N -  l ) w p 2 .  
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quantity s( 1 in the integrals over the variables in expression T rn 

deo de (15). Note that the relations 1- T$ro = re are typical." 
-- = N (+ ) + 

e2e2N ( N - I )  
d o  ,w nxo2 We find 

T m where rg = (7, ),,, = q - If 2, and K, (s) is the modified qoztz -I ds (l-i)s 
Bessel function.15 + )  4a th s + ( ~ + i , ( z ) " ' J  Q dtJ -exp[--] th s 2x  

Using asymptotic expansions of the functions En (s) 
andK,(s) inthecasess)l ands(1 (Refs. 14and 15), we 
find from ( 17) 

qg-4<o< ( q T D 2 )  - ' I z  where T, is the formation time of a bremsstrahlung photon 
2e2qT 32e2 In (2"/zt) ( 18) in the medium, and2 r, (t - T. 

N-- +N ( N - I )  
3nE2 3nDzo2g2 ' In the long-wave part of the spectrum, for w 5; qf - 4  

and r0 = rq = (qw ) - 'I2, we find from ( 19) 
oB max {qg-'; ( D g )  -'). -:I 

The results in ( 17) and ( 18) show that d&,/dw is an 
increasing function of the frequency at w 5; qf -4 ,  and at 
w 2 qf - 4  the derivative d&,/dw decreases with increasing 
w.  It follows that the spectral energy density of the brems- 
strahlung of a collimated beam in a medium has a maximum, 
and this maximum is unique. If qD{ -3$1, then 
om,, -qf -4 ,  and the bremsstrahlung energy dc,/dw at 
wzw,,, is on the same order of magnitude as the "back- 
ground" due to Bethe-Heitler radiation (Fig. 2). In the case 
qDf - 5; g(qT) - 'I2 ( 1, the maximum of the dc, /dm spec- 
trum is again at the frequency w,,, -qf - 4, but in this case 
we have a ratio (d&,/dw),,, /(d~,/dw), z N ( N  is the 
number of radiating particles). If, on the other hand, the 
conditions qDf - gf(qT)  - ' I2 ( 1 hold, the maximum is a 
plateau with a width equal in order of magnitude to 
D -'(qT) -'I2 (Fig. 2), and we have (d&,/dw),,,/ 
(d~,/dw),, zN. 

The reason for the existence of a maximum in the 
bremsstrahlung energy spectrum is the following: As the fre- 
quency w decreases, the particles radiatemorecoherently, so 
d&,/dw increases. As w increases, on the other hand, 
d&,/dw for an individual radiator  increase^.^ These two op- 
posite tendencies in the frequency dependence of d&,/dw 
give rise to the maximum which we have been discussing. 
This result differs from that in the case of an individual radi- 
ator, in which case the spectral energy density of the brems- 
strahlung in the medium is a monotonic function of w. 

5. BREMSSTRAHLUNG ENERGY SPECTRUM OF A HIGHLY 
ANISOTROPIC POINT SOURCE OF ULTRARELATIVISTIC 
RADIATORS IN A MEDIUM 

In (12) we set d,, = 0 (i.e., Id,, 1-4 /Ap - A, 17, ). We 
then take an average over all possible values of the angular 
vectors b,, in a circle of radius X, 4 1 in the resulting expres- 
sion (x, is a characteristic value of the cone vertex angle 
which includes the initial velocities of the particles). We 
then find the following expression for the bremsstrahlung 
energy spectrum of a highly anisotropic point source of radi- 
ators: 

de ,  e2 ( g o )  '"T 12ea = N  + N ( N - I ) - ( + )  ' 
d o  n n ~ ~ ~ o ~  

T 

It follows, in particular, from this expression that for 
o 5 qf -' the spectral energy density of the bremsstrahlung 
in (19) is an increasing function of the frequency. At very 
small values of w (qf - % w -0) the bremistrahlung spec- 
trum in the medium is formed under conditions of a com- 
plete coherence of the radiating particles. 

At sufficiently high frequencies, o 2 qf - 4, on the other 
hand, we find the following expression by expanding the 
preexponential coefficient and the argument of the exponen- 
tial function in powers of the small quantity s( 1 in the inte- 
grand of the integral over the variable s in ( 19) : 

Here rg = q-  ' f 2  is the maximum formation time of a 
bremsstrahlung photon for o 2 qf - 4. 

Using the asymptotic expansion15 of the function 
K, ( z ) ,  we find 

Analysis of (20) and (22) shows that the bremsstrah- 
lung energy spectrum of a highly anisotropic point source of 
ultrarelativistic radiators in a medium always has a maxi- 
mum, and this maximum is unique. If the characteristic cone 
vertex angle ,yo which includes the velocities of the emitting 
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particles is such that the relations qx, T{ -' 
({(qT) - ' I2 ( 1 hold, the maximum is a plateau with a 
width on the order of (x, T)  - ' (qT) - The ratio of 
(d~,/dw) ,,, to (d~,/dw) ., is roughly equal to N. In the 
opposite limit, qx, T{ - ') 1, we find (d&,/dw) ,,, - (d~,/d~)., .  

6. SPECTRAL ENERGY DENSITY OFTHE BREMS- 
STRAHLUNG OF A BEAM OF NONINTERACTING 
ULTRARELATIVISTIC CHARGED PARTICLES IN A MEDIUM 

Let us generalize the results derived above to the case of 
a beam of ultrarelativistic radiators which has a finite size 
I ,  ( T in the direction in which the particles are moving. 

We assume that a beam of fast charged particles, which 
do not interact with each other, starts to enter a scattering' 
medium at t = 0 and continues to enter it for a time t, = I,. 
The particles are initially ( t  = 0 )  at the points with the co- 
ordinates r,, , r,, ,... r,, [ (r,, ), #O) ] and have velocities 
v,, , v,, ,..., v,,, given by Eqs. ( 10a). The energy spectrum of 
the bremsstrahlung of such particles is given by ( 1 ) . Since 
the integration over the variables t, and t, in ( 1 ) is to be 
carried out over the time spent by the particles in the medi- 
um, the component of d&,/dw which comes from the terms 
with p = Y is exactly the same as the energy of the intrinsic 
radiation (p = Y )  of the particles of a beam with a S-func- 
tion momentum distribution [the terms with p = Y in ( 12); 
the times t, and t, refer to the same particle]. To calculate 
the interference terms (p+) in the spectrum ( 1 ), we 
would generally need to allow for the circumstance that 
terms with p # Y are zero except in the case in which both 
particles (particlep and particle Y) have entered the scatter- 
ing medium (we are ignoring effects which are related to the 
time at which the particles enter the medium, since they are 
small quantities, on the order of r/T( 1 ). For a compact 
beam ( I ,  4 T), on the other hand, consideration of the size of 
the beam in the longitudinal direction at the time at which 
the radiating particles enter the medium leads to small cor- 
rections (on the order of I,/T(l) to the energy of the 
bremsstrahlung which these particles emit over the time T 
spent by the particles in the scattering medium. 

With these thoughts in mind, we substitute into ( 1 ) the 
average value of the bilinear combination of current matrix 
elements found above, ( lo),  which is expressed in terms of 
the two-time distribution function F, ( t , ~  ;q,I;), in which we 
have (d,, ), #O, in contrast with the case of a beam with a S- 
function momentum distribution. Integrating over all q and 
I; in the resulting expression, we find the following result for 
the bremsstrahlung energy spectrum of the beam of ultrare- 
lativistic charged particles: 

where 

and (d&,/dw), is the energy of the bremsstrahlung of an 
individual r a d i a t ~ r . ~  

If the characteristic longitudinal dimensions (in the di- 
rection in which the particles are moving) are such that the 
relation min{(d,, ),I) maxfw - ';TI holds [but, of course, 
max{(d,, ),I - I, ( T 1, the terms in the sum on the right 
side of (23) are periodic functions of the frequency w. The 
following inequality holds at any value of w: 

For a sufficiently large beam of radiating particles, the inter- 
ference effects are thus highly suppressed, and the brems- 
strahlung energy spectrum d&,/dw has basically3' the same 
dependence on the frequency w as ( d ~ ,  /dm), in the case of 
an individual r a d i a t ~ r . ~  

In the opposite limit, (d,,),/r(f '(1, expression 
(23) becomes the bremsstrahlung energy spectrum in ( 12), 
for a beam of ultrarelativistic charged particles with a 6- 
function momentum distribution. 

7. CONCLUSION 

We have derived a systematic kinetic theory of the radi- 
ation of a system of monoenergetic, classically fast charged 
particles which do not interact with each other but which are 
elastically scattered repeatedly by randomly placed atoms of 
a medium. We have found the bremsstrahlung spectrum of 
such particles. This spectrum differs from that of an individ- 
ual in being very nonmonotonic and in having at 
least one extremum, which is a consequence of interference 
of the waves emitted by the individual particles. The value of 
the bremsstrahlung at the extremum, the position of the ex- 
tremum, and its width all depend substantially on param- 
eters which specify the initial beam of radiating particles and 
also on the characteristics of the scattering medium. 

We have carried out a detailed study of the radiation 
emitted by a collimated, monoenergetic beam 
(min{w - ',T)) max( d,, ), -0) of fast charged particles 
with a S-function momentum distribution and of the brems- 
strahlung of a highly anisotropic point source of ultrarelati- 
vistic radiators, i.e., the radiation emitted by systems of par- 
ticles in which there is initially no spatial distribution of the 
bremsstrahlung sources along the radiation propagation di- 
rection. It has been shown that in these cases the bremsstrah- 
lung spectrum in the medium always has a maximum, and 
this maximum is unique. If the parameters D and ,yo, which 
characterize the initial (unscattered) beam of radiating par- 
ticles, are such that the conditions qD{ - ({(qT) - < 1 
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and qxo T( - &g(qT) - & 1 hold, the maximum in the 
bremsstrahlung energy spectrum is a plateau, with a width 
which depends strongly on D and x,, for both a collimated 
beam of charged particles and an anisotropic point source of 
ultrarelativistic radiators. The ratio of (d~,/dw),,, to the 
background level [the energy of the Bethe-Heitler radiation, 
(d~,/dw),, = 2Ne2qT/3n-6 2]  is approximately equal to 
N, the number of radiating particles. As the parameters D 
and xo increase x0 [qD( -'S((qT) - I" and 
qxo TJ - S {(qT) - this plateau converts into a 
"strict" maximum. As before, we have 
(d&,/dw),,, /(d&,/dw) ., -,N. If, on the other hand, we 
have both qD{ - % 1 and qx0 T< - ) 1, then the quantities 
(d&,/dw) ,,, and (d&,/dw),, become the same in order of 
magnitude. 

In the opposite limit, of a fairly large beam of radiating 
particles, (d,, ), - I ,  ) max{w - ',TI, interference effects are 
suppressed, and the bremsstrahlung energy spectrum is basi- 
cally the same as the plot of d&,/dw versus w for an individ- 
ual radiator. 

It follows, in particular, that by producing compact 
beams [with a small longitudinal dimension max(d,, ), - I ,  
&w - '1 of charged particles in accelerators, and by varying 
their parameters (N, D, andx, ) , one can achieve a prespeci- 
fied bremsstrahlung energy in the desired frequency inter- 
val. 

The range of applicability of the results derived above is 
limited by the various approximations which have been 
used. The condition E$ m, w is a customary condition in the 
analysis of topics of this type. It holds fairly accurately, for 
example, in cases in which the bremsstrahlung spectrum is 
due to fast charged particles in the cosmic rays.' The upper 
limit w < E on the radiation frequency has no substantial ef- 
fect on the results found here (the presence of at least one 
extremum in the bremsstrahlung spectrum of the system of 
particles in a medium), since for w - E the spectral energy 
density of the bremsstrahlung is an increasing function of the 
frequency, tending toward zero as w - E (Ref. 10). It is legi- 
timate to ignore the interaction between the radiating parti- 
cles during the emission of bremsstrahlung photons in a me- 
dium if the curvature of the particle trajectories caused by 
this interaction is small in comparison with the effect of mul- 
tiple elastic collisions with the atoms of the medium on the 
motion of the particles. Quantitatively, the latter condition 
means 

where (Avg )2  and ( Av, )2 are the squares of the transverse 
velocities (transverse with respect to the initial direction) 
acquired by a particle as a result of multiple scattering in the 
medium and as a result of the interaction with other radiat- 
ing particles, respectively. In addition, T is the thickness of 
the slab of medium, and d is the characteristic distance be- 
tween particles. If the particles undergo Coulomb collisions 
with the atoms of the medium, and the mean square value of 
the multiple-scattering angle per unit path length is 
q = 4rnOz2 (e2/m) log ( 1802 - 'I3 ) , this inequality becomes 

where no is the density of scattering centers, and Ze is the 
charge of each. 

I wish to thank S. P. Andreev for a discussion of ques- 
tions concerning the bremsstrahlung of individual radiators 
in a medium. 

APPENDIX 

Following Ref. 11, we write equations for the functions 
on the right side of (4) (for the case T = 0). We use the 
standard rulesI2 for breaking up the correlation functions of 
the type ( V(g) V(g1)FP,,,,,, (t,t + 7))  which arise in the 
process: 

(V(g) V(~')FP,P,P,P,(L, t t z ) )  
=no I U'(g) 1 26s,-e9 (Fp,psp,p4 ( t ,  t + ~ )  ), 

where no is the number of scattering centers per unit volume. 
Solving the equations which result (Ref. 11, for exam- 

ple) under the initial condition ( V(g)FPIP2P3p4 (0,O)) 
= ( V(g)) (Fplp2p3p4 (0,O)) = 0 (this condition means that 
there are not correlations at the time t = r = 0) ,  we find the 
functions ( V(g)Fpl + g,P2,P3,P4 (t,t) ), ( V(g)FPlP2 - g.p3.p4 ( t ~ ) ) ,  

( V(g)FPlrP2.PI f 8.P4 ('") )' ( V(g)FPI.P2sP3,P4 - (t,t)). Substi- 
tutingthe expressions for the latter functions into the right 
side of Eq. (4) with r = 0, we find 

-(FP,+e,,+e,P,,P,(t+t') ) 

-(Fp,+g,pr.pt.p~+g(t+tl 1) I +exp [if (Ept+Ep,ta-Ep,-Ep,)I 
X (FP,,P,P, (t+t') >+(FP,-&P,,P.+g,P, (t+t') ) 

-(FP,,P,tg,P,+e,P'(t+t') > 
-(Fps,pr,pa+g,p,+a(t+tr) ) I -exp [;t'(~p,+~m-~p,-a-~p4) I . 
X[ (Fpt-as,-,p,,p~(t+tr) >+(Fp,,pr-e,m-&p4(t+tr)) 

-(Fptmp~pl (t+tl) ) 
-(Fp,,p,-g,p,,p,+~(t+t') ) I - exp [ it' (Ep,+Ep,-Ep,-Ep,-g) I 

X I (FP'-g,m.P,,P,-g(t+t') )+(FP, ,Ps ,P , -g ,P , -~( t+t l )  ) 

-(Pp,,m+a,p,p4-g (t+tl) )-(Fp,p,psp4 (t+tl) ) I ) .  (25 

Proceeding in a similar way with the correlation func- 
tions which appear on the right side of Eq. ( 3 ) ,  we find 

Inhomogeneities arise on the right side of (26) because 
of the requirement that the correlation functions of the type 

( V(g)F~l + B.P~ .P~ .P~  ( t ,r)) be continuous as functions of the 
variable T at the time r = 0: 
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Since the time scales of the interaction of a particle with 
a scattering center, T,, are small in comparison with t and T, 
we can extend the integration over the variables t and T in 
(25) and (26) to - a,, and in the zeroth approximation in 
(Fplp2p3p4 ( t  + t ';r + 9')) we can replace the functions 
~,,/r< 1 and ro/t< 1 by (FPIP2P3P4 ( t , ~ ) ) .  Introducing a two- 
time distribution function in the k representation, 

we then find the following result from Eqs. (25 ) and (26) : 

Here 6- (n) is a one-sided 6-function,15 p,,, = p rf k/2, and 
~ 3 , ~  = p' + k/2. 

Equations (27) and (28) describe the kinetics of the 
emission of bremsstrahlung photons in a medium both in the 
definitely classical case (E)w) and in the quantum-me- 
chanical case, with E-w. In this case the function 
Fk (p,p1,t,7) also depends on the spin variables A ,  ,A2, A, and 
A4. 

Taking the classical limit E)w, and expanding the 
functions Fk (p, + g,p2 + g,p3 + g,p4 f g , t ,~ )  on the right 

sides of Eqs. (27) and (28) in the small quantity lgl< I p, ( 
(p, is the momentum of the particle as it enters the medi- 
um), we find the following result in the small-angle diffusion 
approximation:'3 

dFk (v, v', t ,  t) 
- ik (v-v') F k  (v, v', t ,  T )  

d r 

Here v = p/E, v' = pf/E, q = 2n0pi2, I U(g) 1 
xS(E, - Ep + , )g2 is the mean square multiple-scattering 
angle per unit path length,I3 and the angular vectors 77 and 9, 
in which we have v, r v ,  v, v ' ,  are given by (7) .  In deriving 
Eq. (29) we noted that the terms proportional to correlation 
functions of the type (V(g) Fp,p2p,p4 ( t ) )  [see (27) 1 have 
been discarded, since they are small quantities on the order 
of ~ / t  < 1 with respect to the other terms in the equation. 

" The function F, (v,,v,,t,r) is related to the standard two-time distribu- 
tion function12 by a Fourier transformation in the coordinates of the 
particles. In the case p = v the function Fk (v,,v,,t,r) is the Fourier 
component of a conditional probability density. 

2' In deriving ( 12) we made use of the relations t -  T> T, (where T, is the 
time scale for the formation of a bremsstrahlung photon in the medi- 
um), which follows from the very formulation of this problem of the 
radiation by a charged particle in a medium. If o 5 q {  -4 ,  then 
T, = (qw)  -'I2, while if w>q< the quantity 7, is o-'{ 2 .  

3' In general, d & , / d o  is an oscillatory function of the frequency o, but the 
value of the radiation energy at the extremum is small [see (24) ] in 
comparison with the background created by the system of N indepen- 
dent radiators. 
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