
Semiclassical theory of electromagnetic processes in a plane wave 
and a constant field 

V. N. Baier, V. M. Katkov, and V. M. Strakhovenko 

Institute ofNuclear Physics, Siberian Branch of the Academy ofsciences of the USSR 
(Submitted 9 April 199 1 ) 
Zh. Eksp. Teor. Fiz. 100,17 13-1723 (December 199 1 ) 

General expressions for the probability of radiation by a relativistic particle are derived in a 
semiclassical theory for the case in which the particle is moving in an external field which is a 
superposition of a locally constant field and a monochromatic plane wave. The wave propagation 
direction is arbitrary. The Compton effect and the two-photon production of a pair of particles in 
an external field are discussed as applications. 

1. INTRODUCTION 

Processes which occur in electromagnetic fields of com- 
plex configuration have attracted considerable interest. One 
such field is a superposition of a plane wave and a constant 
field. Radiative processes are analyzed through the use of the 
solutions (exact or semiclassical) of the wave equations in 
such a field. One should bear in mind that exact solutions are 
available only in the case in which a plane wave is propagat- 
ing along a magnetic field. Solutions of the Klein-Gordon 
and Dirac equations for this case were derived some time ago 
by Redmond,' who also analyzed the classical motion of the 
particle. The Green's functions of scalar and spinor particles 
in a field of this sort were found by Batalin and Fradkin2 by a 
functional-integration method. The mass operator in a field 
with a Redmond configuration was derived by Milstein and 
one of the present authors for scalar3 and spinor4 particles 
by an operator approach. Below we use the corresponding 
wave functions to calculate the matrix elements of a mass 
operator which contain much physical information (radi- 
ation probabilities and level shifts). In particular, we discuss 
radiation effects which occur near cyclotron resonance and 
the scattering of a photon by an electron (the Compton ef- 
fect) in a magnetic field. Several other studies in this area are 
reviewed in Ref. 5. 

The present paper is based on the semiclassical theory 
of radiation and of pair production which has been derived 
by one of the present authom6 In the region of semiclassical 
motion there is no need to work from a solution of the Dirac 
(or Klein-Gordon) equations; it is sufficient to know simply 
the classical trajectories of the particles. We will be discuss- 
ing the strongly relativistic case, y = d m  % 1, in which the 

the case 

F2 = F * F =  0. 

In this case, the electromagnetic field is a nonmonochroma- 
tic plane wave, in which the problem can be solved exactly. 
In Sec. 2'we derive some general equations for the radiation 
probability per unit time. In Sec. 3 we analyze the Compton 
effect in an external field. In Sec. 4 we discuss the production 
of an electron-positron pair. The expressions derived here 
are "snapshots'' of the processes. When the integral proper- 
ties of these processes are to be determined, these snapshots 
should be averaged over the trajectory of the particle or with 
the corresponding distribution function. 

2. GENERAL EXPRESSIONS 

The calculations can be carried out best on the basis of 
the semiclassical theory of radiation and pair production.' 
The radiation probability in this theory is 
( f i  = c = 1, e2 = a  = 1/137) 

a d3k 
dw, = -- IMIz ,  ~ = j  dtR(t)exp[ik1r(t)], ( I )  

(an), o 

where k ' = ~k /E', k = k(w,k) is the Cmomentum of the 
photon, E and m are the energy and mass of the particle, 
E' = E - W ,  ~ ( t )  = ( t , r ( t ) ) ,  t is the time, and r ( t )  is the co- 
ordinate along the classical trajectory of the particle. For 
spinor particles we can write, to within relativistic accuracy 
( l / y = m / & g l ) ,  

velocity of a particle varies only slightly over the formation 1 E 

time of the process. In covariant notation this condition is R=rp,+ (A+ioB)rpi, A = - ; ( I  + --;) e'a, 
2 & 

where Fpv is the electromagnetic field tensor of the field in 
which the particle is moving (Fpv = FZxv + fpv, where FfXvis 
the erternal field, and fpv  is the field of the wave), 
F:, = +E,,,~F"~, andpv is the momentum of the particle. If 
we also require that the variation in the external field F,, 
over the formation length be small, the problem reduces to 
one of processes in a uniform external field F,, and the field 
of a plane wave f which is propagating in an arbitrary direc- 
tion. For definiteness, we assume that this wave is mono- 
chromatic. The expressions derived in this paper are exact in 

where v = v(t)  is the classical velocity of the particle, pAi, is 
a two-component spinor which describes the polarization of 
the particle, and e is the polarization vector of the photon. 

After integration over photon emission angle and sum- 
mation over the polarizations of the final particles, expres- 
sions ( 1 ) and (2 )  can be written in a form convenient for 
calculations, in which all cancellations of the leading terms 
have already been carried out (see Ref. 7, for example, for 
the case 6 = 0) :  
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d o ,  i a  dt d~ E E' i o  
- = -1 1-[4+ (7 + ,) (A,-A,)' + --EN] 
d o  8ny2 T-iO E 

where t,,, = t + ~ / 2 ,  and p ( t )  = E V ( ~ )  is the momentum of 
the particle. Obviously, the quantity A ( t )  is unaffected by 
the substitution p ( t )  + p ( t )  + pa, where pa is the time-inde- 
pendent momentum. To pursue the analysis we need explicit 
expressions for the momentum p ( t )  and for the vector A ( t )  
as functions of the time in a field with the configuration un- 
der consideration here. We will carry out specific calcula- 
tions in the frame of reference in which the monochromatic 
plane wave, with a wave vector q = q(qo ,q ) ,  is propagating 
in the direction n = q/qo,  opposite the electron. One can 
always find a relativistic frame of reference ( y > 1 ) in which 
the condition q, <E holds. This is a necessary condition if we 
wish to treat the plane wave as classical. Solving the equa- 
tions of motion of the particle in the electromagnetic field, 
we find, to within the prescribed accuracy, 

pl (t)lm=Qt+E ( t )  , g ( t )  =%, sin(vt+rpo) +E, cos (vt+rpo), 
e 

Q = - F,, F,=E-n(nE)+ [Hn], v=2q0, 
m 

Here E and H are the electric and magnetic fields, both inde- 
pendent of the time, and the orthogonal vectors 6 , .  charac- 
terize the intensity 6 = (6  : + 6 ) / 2  and polarization of 
the wave. The corresponding Stokes parameters are 

Evaluating the corresponding combinations which appear in 
the expression for the radiation probability ( 3 ) ,  we find 

V T  
A,-A,=QT+~ sin - q ( t ) ,  

2 

2 a 3  

+EOz[r + - (cos v r - I )  + -cos 2(vt+cp0) 
vZT 

2 
, x (sin V T  + - (cosvr-1) ) I ,  

v T 

V T  
(Az-A,)z=QZ~2+4Pq ( t )  T sin - 

2 

We make the replacements 
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and we assume 

2eF,& 4qoE 2 q ~  = s. 
- 216, vlo = 7 " - - Qlox--  

m3 m mZ ( 7 )  

As a result, we find the following expression for the photon 
emission probability per unit time: 

+ixgm\ exp[ -iurO, (rp, r )  1 .  
0 o u=-  z=-  
E E 

ST  ST  
r n , = ~ ~ ~ ~ + 2 ~ q ( c p ) ~  sin - + Eoz(l-h3 cos 2rp)sin2- 

2 2 '  
( 8 )  

2 
x (sin ST + - s T (cos S T - I ) ) ]  + I .  

The quantities v ( t ) ,  ~ ( t ) ,  and [ ( t )  in this expression are 
determined by the classical trajectory of the particle. If the 
wave period is smaller than or on the order of the formation 
time of the process [which is determined by the characteris- 
tic values of the variable  in the integral in ( 8 )  1, this expres- 
sion must be averaged over the phase of the wave, p. 

To write expression ( 8 )  in invariant form, we introduce 
4-vectors which characterize the wave: 

~ ' ( c p )  =a,@ sin cp+a,vcos cp, 

Here a p ( p )  is the vector potential, and fpvis the electromag- 
netic field tensor of the wave. To relativistic accuracy, the 
combinations which appear in ( 8 ) are 

where d is the spin Cvector, Fpv is the tensor of the static 
electromagnetic field, and the asterisk ( * )  denotes a dual 
tensor. 

Integrating ( 8 )  over x = u / ( l  + u ) ,  we find the total 



probability for radiation per unit time, W,. This probability 
is related in a known way, by a dispersion relation, to the 
correction to the mass of the particle.' Using that relation, 
we find 

m 

In our approximation, the part of this expression which de- 
pends on the electron spin, Amg ( t )  = f ( t )M(t ) ,  deter- 
mines the radiation corrections to the equation of motion of 
the spin: 

If the plane wave is circularly polarized 
( A ,  = 0, A, = f 1 ), the expressions for m, ( p , ~ )  and 
@(p, r )  become 

S.c 2 . 2 E  
m o c r = ~ 2 ~ Z + 2 ~ q ~  sin - + go sin 

2 2 '  
u ST 2 

6mcr=2( 1 + -) h, (tv) [ (xq) ( t - - - sin e) 
2 2 s 

If we set the wave intensity equal to zero (g ; = 0), Eqs. (8)  
and ( 1 1 ) become the expression for the radiation probability 
and the correction to the mass in a constant external field in 
the semiclassical appro~imation.~ In the case x = 0, these 
expressions are the same as the corresponding expressions in 
the field of a monochromatic plane wave.'0s" 

The parameter go characterizes the change induced in 
the momentum of the particle by the wave field in compari- 
son with the mass of the particle over a time on the order of 
the wave oscillation period. At large values lo > 1, the radi- 
ation is formed in a time much shorter than this period 
(T<  l/s). In this case, we can carry out an expansion in the 
quantity ST in Eqs. (8) ,  ( 1  I ) ,  and (12). We find as a result 
that the process is determined by the local value of the field 
intensity with the corresponding value of the parameter X, : 

The radiation is of the same nature in the case go 5: 1, but at 
large values of the parameter p = x/s (p > I ) .  Under the 
condition p < 1 (6; 5: 1 ), the momentum transferred by the 
static field over the wave oscillation period is much smaller 
than the mass of the particle (T- l/s, XT< I) ,  and corre- 
sponding expansions must be carried out in XT. Retaining 
the leading terms of this expansion, we find the corrections 
to the probability for the process in a plane wave which re- 
sult from the constant field. 

3. COMPTON EFFECT IN A STATIC FIELD 

In the case go 1, we can expand the exponential factor 
in expression (8)  in the parameter 5- (7) and ultimately re- 
tain terms a 6;. The zeroth terms in the expansion in go in 
Eq. (8 )  then give us the probability for radiation in a con- 
stant field F,,,, and the corrections a g: describe Compton 
scattering in this field. Let us examine this Compton scatter- 
ing in more detail. 

Making use of the relationship between the electric and 
magnetic fields in the wave, on the one hand, and the wave 
energy, on the other, we express the parameter g i  in terms of 
the photon density and frequency: 

We also note that the term proportional to (i in the radi- 
ation probability in ( 8 ) , 

is related to the cross section for the Compton effect by 

As a result we find the following expression for the cross 
section for Compton scattering in a constant external field: 

do, 4a2 d~ e - i p ( r ,  -=- - 4i 
dx m2siJ T - i ~  

{ (I+px2r2)F + -- ~ p ~ ~ A . z g ~ ( z )  s3 

where 

z2 z2 
g, (z)=I + - + (- - I) cos z-z sin z ,  

4 4 
z sin z 

g,(z)=l-cosz -- 2 ' 

A,=l+h, cos Zrp,, 

and pl is the angle between x and g,. Setting A,,, = 0 in 
(16) and (17), we find the cross section for the Compton 
effect for the case of unpolarized initial photons. The inte- 
grand in ( 16) has no singularities as T+O, so the integral has 
its usual meaning. In deriving the asymptotic behavior in the 
case of a weak field, however, it is convenient to use a con- 
tour representation of ( 16). 

The overall effect of the external field on the Compton 
scattering is determined by the value of the parameter 
p = XIS. For p < 1 the external field is unable to cause any 
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substantial change in the motion of the charged particles 
over the time scales of the process, T- l/qo: 

Even if the condition p 4 1 holds, near the maximum of 
the spectral distribution, at u z s ,  the effect of the external 
field becomes important when S = 1 - u/s is sufficiently 
small. The reason is that the value u = s corresponds to 
Compton backscattering, and a photon with a frequency w 
near the extreme value ES/(S + 1) is formed over a time 

The field-dependent term in the phasep(r) in ( 17) can then 
be ignored only if 

The parameter  IS-^'^ thus serves as a measure of the effect 
of the external field on the spectrum of the Compton scatter- 
ing near the limiting frequency. If the parameter p is small 
(p 4 1 ), but S is also, so we have S the leading term in 
( 16) simplifies substantially: 

Using tabulated integrals,I2 we find 

We see from the last expression that the field "smears out" 
the limiting frequency in the region u > s, replacing it by an 
exponential decay at a )  1. At u = s, the height of the spec- 
tral curve is a third of the maximum value in the absence of a 
field, and it is independent of the strength of the external 
field. In the region u < s, with a 1, the field has only a slight 
effect on the Compton scattering. This conclusion agrees 
with the qualitative analysis above. 

Since 

the external field basically causes only a redistribution of the 
spectral probability for the process, leaving its overall value 
unchanged, in this frequency region. Correspondingly, in 
evaluating the corrections to the total cross section we can 
carry out an expansion in xr in ( 16) at all values of x.  We 

retain the first terms of the expansion in p and xr and we 
evaluate the integral over r by means of the theory of resi- 
dues. It is then an elementary matter to evaluate the integral 
over x .  As a result we find the following expression for the 
cross section for the Compton effect with field corrections: 

Herez= 1 +s,  L = I n ( l  +s) ,A3 and A, are thedegree of 
linear polarization and the degree of circular polarization, 
respectively, of the initial photon, and is the polarization 
of the initial electron. Withx = 0, expression (22) becomes 
the cross section for the polarized Compton effect (see, for 
example, Refs. 10 and 11 ). The corrections to the Klein- 
Nishina formula for unpolarized photons were found in Ref. 
13. They agree with (22) if we set A, = A, = 0 in the latter. 

In the other limiting case, in which the photon forma- 
tion length in the constant field, 

is much shorter than the wavelength I = l/qo, the field of 
the wave can be assumed to remain constant over this dis- 
tance. This situation corresponds to an expansion in powers 
ofs r in  (8)  and (12): 

The probability for the process is determined by the expres- 
sions for magnetobremsstrahlung in the resultant field, 
( 13 ) . For unpolarized electrons this probability is 

rn 

The condition for the applicability of expression (24), in 
accordance with (23), is that the value of the parameter p, 
be large: 

If the wave intensity is sufficiently small (lo <p) in this 
case, we can carry out an expansion in the wave field in (24), 
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and we can switch to the cross section for the Compton pro- 
cess in accordance with ( 14) and ( 15). As a result we find, 
for example, the following expression for the unpolarized 
Compton effect: 

In deriving (25) we used recurrence relations for the Bessel 
functions. With the help of these functions, we can write the 
total cross section for Compton scattering as 

In the casex < 1, values u -X 4 1 contribute to the integral in 
(26), and the cross section itself is 

FIG. 1. 

where 9 ( x )  = 1 if x > 0 or 9 ( x )  = 0 if x < 0. 
Let us consider the case A < 1. In other words, we con- 

sider the situation outside the kinematic region of pair pro- 
duction in the absence of a field, with an exponential sup- 
pression of the one-photon process in the constant field 
( x  4 1). Using (20), (21), and (29), we find the following 
expression for the cross section for the two-photon process: 

Under the condition X >  1, values u - 1 contribute, and 
we can use the asymptotic expressions for the Bessel func- 
tions at small values of their argument (z g 1 ) . In this case 
we find 

-=- 
doll I-.' J dy 2.3'" Kll, ( z ) d z ,  

b, It can be seen from (28) that in the casex, 1, ~ $ 1  the ex- 
pansion parameter is the quantity s/x''~, in agreement with 
(23). 

4. PHOTOPRODUCTION OF AN ELECTRON-POSITRON PAIR 

The spectral probability for pair production is found 
from the radiation probability through the replacements 
E - +  - E, W +  - W, z-+ - Z, a2du-+ - E ' ~ E  (Refs. 9 and 11, 
for example). In this case we find 

Integrating by parts in (30), we find the total cross section 
under the condition A < 1: 

In the limiting cases z, 9 1 and z, 9 1 we have, respectively, 

nr.2 A'" 
oT7 w - - e - z o  , zo>I, 

6 ~ 0 s ' ~  
5 

oll = (6x)1h($)'1aI'(T). 

According to the analysis above, in the case x g A the field 
has a strong effect on pair production by two photons only 
near the threshold, with cosh2yzA. In this case the cross 
section for the two-photon process is 

It follows from (31) and (32) that near the threshold 
( A 4  1) the quantity p , / ~ " ~  has a scaling form which de- 
pends on only z, , i.e., on only a certain combination of A and 
x. This function is plotted in Fig. 1. If the channel for the 
two-photon process is open (A - 12 I ) ,  the corrections to 
the total cross section are small in proportion to (%/A) '. 

In the other limit x 9 A, the differential cross section for 
two-photon pair production can be found from (25) with the 
help of the replacements specified above. In this case the 
total cross section can be written 
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For x $1, we can use the asymptotic expression for K,,, (A)  
at small values of its argument in the integral over v. As a 
result we find 

CONCLUSION 

The results derived above are based on two important 
assumptions: that the transverse motion of the particle is 
relativistic and that the field F,, is uniform over the forma- 
tion length of the processes which we have been discussing. 
Under these assumptions, the expressions derived depend on 
the local values of the coordinate, the velocity, and the spin 
of the particle. Radiation effects can thus be incorporated in 
the equations of motion. It therefore becomes possible, in 
particular, to determine the characteristics of the radiation 
emitted by a particle throughout its motion in the field. 

We wish to thank A. I. Mil'shteln for valuable discus- 
sions. 
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