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We obtain the orientational dependence of the upper critical field in a plane passing through a 
high-symmetry axis of an exotic rhombohedral or hexagonal superconductor. We show that the 
angular dependence of the upper critical field becomes more nonmonotonic only in a 
rhombohedral exotic superconductor. A distinctive asymmetry of the upper critical field and of 
the fluctuation diamagnetism near the transition point is obtained also for a rhombohedral 
crystal. 

1. INTRODUCTION 

The possible forms of superconductivity were first clas- 
sified in discussions of the unusual properties of supercon- 
ductors with heavy fermi~ns. ' .~  The superconductivity at- 
tracting much attention was that of superconductors known 
to have nontrivial pairing (and called exotic) and described 
in the Ginzburg-Landau theory by a multicomponent order 

. parameter. It appears that the heavy-fermion hexagonal su- 
perconductor UPt, is exotic. This is attested to by many ex- 
perimental data, viz., the polarization anisotropy of the 
transverse-ultrasound absorption,3 the frequency and low- 
temperature dependence of the magnetic-field penetration 
depth,435 and also the phase diagram in the H-T plane, a 
diagram containing several regions with different supercon- 
ducting-state syrnmetrie~.~- '~ It can be deduced from most 
of these experiments that the superconducting gap on the 
Fermi surface is zero on a line located in a plane perpendicu- 
lar to the hexagonal axis (and also at points on the intersec- 
tion of the hexagonal axis with the Fermi surface4). This 
case offers a rare opportunity of uniquely determining the 
number of complex components of the superconductor or- 
der parameter solely from knowledge of the locations of the 
superconducting-gap zeros. 

An important role in the identification of superconduc- 
tors with nontrivial pairing can be assumed by a study of the 
anisotropy of their magnetic properties. Thus, the anisotro- 
py of the upper critical field in tetragonal exotic supercon- 
ductors should become manifest, generally speaking, even if 
the field is in a plane perpendicular to the tetragonal 

There is no such anisotropy in ordinary tetragonal 
superconductors. An unusual anisotropy in the basal plane 
of a tetragonal metal should result also from fluctuation dia- 
magnetism (more accurately, from that part of the induced 
magnetic moment which is nonlinear in the field) in the nor- 
mal phase near the transition into a superconductor with 
nontrivial pairing.I3 The anisotropy of the lower critical 
field in such superconductors can also have distinctive pecu- 
liarities. I 4 3 l 5  

An unusual orientation dependence of the upper criti- 
cal field can occur, generally speaking, not only in a plane 
perpendicular to a high-symmetry axis, but also in a plane 
passing through this axis. Attention was attracted in this 
connection by the measured H,, anisotropy in a plane pass- 
ing through a threefold axis in a Chevrel phase of 
Cu, , Mo,S, with rhombohedral crystal symmetry.16s" The 
resultant anisotropy cannot be described by the usual Ginz- 

burg-Landau theory with anisotropic mass. To explain the 
experimental anisotropy obtained in Ref. 18 it was proposed 
that Cu, , Mo,S, is an exotic superconductor characterized 
in the Ginzburg-Landau theory by a two-component com- 
plex vector as the order parameter. Numerical  calculation^^^ 
yielded the Ginzburg-Landau functional coefficients most 
suitable for reconciling the numerical data with experiment. 

The angular dependence of the upper critical field un- 
der the above condition, however, has no analytic descrip- 
tion. Since "turning off' the rhombohedral distortion of the 
crystal leads to hexagonal symmetry, this situation is also 
closely related to the anisotropy of the upper critical field in 
a plane passing through a sixfold axis in an hexagonal exotic 
superconductor, e.g., in UPt,. This question is dealt with in 
Ref. 19, where the analysis implies that the unusual anisotro- 
py of H,, in general exists already in an hexagonal exotic 
superconductor, meaning that there are grounds for seeking 
a specific Hc2 anisotropy of the "rosette" type in UPt,. The 
relatively small rhombohedral distortion of the Cu, ,Mo,S, 
crystal has according to Ref. 19 practically no effect on the 
H,, anisotropy. It follows from our results, in particular, 
that the above statements of Ref. 19 are incorrect. 

In Sec. 2 of this paper we obtain approximate expres- 
sions that describe in sufficient (perturbation-theory) ap- 
proximation the anisotropy of the upper critical field in hex- 
agonal and rhombohedral superconductors when the field is 
not in a plane passing through a sixfold or threefold axis, 
respectively. We show that anisotropy of the "rosette" type 
exists only in a rhombohedral-symmetry crystal. The reason 
is that for rhombohedral superconductors with nontrivial 
pairing the Ginzburg-Landau functional has second-order 
gradient terms containing products of derivatives of various 
order-parameter components along different crystallo- 
graphic axes in the particular plane [see the terms with coef- 
ficient P, in ( I ) ] .  No such terms are present in the free- 
energy functionals of hexagonal exotic superconductors. A 
characteristic feature of the obtained H,, anisotropy near Tc 
in the case of rhombohedral exotic superconductor is its 
symmetry with respect to reflections of the field direction in 
the two Cartesian planes perpendicular to the initial coordi- 
nate plane in which the magnetic field is located. Since we 
are dealing with the point group D,, and the magnetic field 
is by assumption in one of the three symmetry planes of this 
group, the asymmetry in question is generally speaking quite 
feasible (the two other Cartesian planes are not symmetry 
planes), but is absent from ordinary superconductors near 
Tc. Our analytic results for the anisotropy of the upper criti- 
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cal field are in good agreement with Burlachkov'~'~ calcula- 
tions of the actual Ginzburg-Landau functional coeffi- 
cients. 

In Sec. 3 we determine the specific anisotropy of the 
fluctuational diamagnetism in a rhombohedral supercon- 
ductor with nontrivial pairing. We show that the part, non- 
linear in field, of the induced magnetic moment in the nor- 
mal magnetic field has in the normal phase near T, the same 
specific asymmetry as the upper critical field with respect to 
reflections of the magnetic-field direction. Measurements of 
the anisotropy of the fluctuation diamagnetism in the nor- 
mal phases of Cu,,, Mo,S, in the vicinity of T, may be useful 
for an independent verification of the assumption that the 
pairing in this compound is not trivial. 

2. ANISOTROPY OF THE UPPER CRITICAL FIELD IN 
RHOMBOHEDRAL AND HEXAGONAL EXOTIC 
SUPERCONDUCTORS 

A feature of a rhombohedral superconductor with non- 
trivial pairing is a two-component complex order parameter. 
If the spin-orbit interaction is strong enough, the Ginzburg- 
Landau functional, accurate to second-order invariants, is in 
this case 

Here a = a ( T -  T,), d, = d / d x ,  -2ieA,/c; the z and y 
axes are respectively directed along threefold and twofold 
axes, and the subscripts i and j take on the values x and y. For 
the crystal class D,, it follows from the foregoing that the 
Cartesian x axis lies in a symmetry plane passing through z 
and perpendicular toy. 

From the condition that the sum of the gradient terms 
in ( 1 )  be positive-definite we obtain the following con- 
straints on the coefficients P, ( j = 1-4) :  

Hence, in particular, 

IP3I 1 IP,I I - < - and --- < if Pi<O. 
P,  3 (P IP2) ' "  2I'l 

It is evident from ( 3 )  that the parameters I P, I/P, and 
IP,I/(P,P,) ' I2  can always be regarded as small enough. We 
shall use hereafter perturbation theory in terms of these pa- 
rameters, up to second-order terms inclusive, assuming the 
coefficient P, to be real. Note that in Eq. ( 1 ) only one gradi- 
ent invariant, contained in the square brackets with the coef- 
ficient P,, pertains to rhombohedral symmetry. The remain- 
ing invariants in ( 1 ) have cylindrical symmetry for rotations 
around the z axis. Putting P, = 0 in ( 4 )  we obtain the Ginz- 
burg-Landau free energy for an hexagonal superconductor 
with nontrivial pairing." If, however, P, = P, = 0 expres- 
sion ( 1 ) takes the form of a sum of two perfectly analogous 
independent Ginzburg-Landau functionals for ordinary un- 
iaxial superconductors with anisotropic mass ( PI,, cc m ) . 
Since the orientational dependence of the upper critical field 

and of the fluctuation diamagnetism is well known for ordi- 
nary uniaxial superconductors, it is fairly easy to determine 
these quantities by perturbation theory for nonzero P, and 
P,. Matters become somewhat more complicated for level 
crossing in first-order perturbation theory. 

For a magnetic field B = B(sin a ,  0, cos a )  located in 
the xz plane we choose a vector potential A = (0 ,  A,, O ) ,  
where A, = B ( x  cos a - z sin a ) .  We express the free ener- 
gy in the form 

A 

where H,, is a matrix differential operator, and the subscripts 
i and j take on the two values 1 and 2 [corresponding to the 
subscripts x and y in ( 1 ) 1. 

We change in ( 4 )  to new integration variables 

cos a sin a z =-- x t ------ 2 ,  
D(a) D ! a )  

where 

D ( a )  = (P, cos2 a+P2 sin2 a) ' " .  (6 )  
A 5 is cozvenienknext to represent the operator H,, by tke sum 

H, = H 7' + V,, where the perturbation operator V, in- 
cludes the terms containing the coefficients P, and P,. Using 
in ( 4 )  the new $oordin%tes ( 5 )  we obLain for the unper- 
turbed operator H F' = H 'O'S,,, where H 'O' has the form of 
the usual Hamiltonian for a nonrelativistic isotropic-mass 
charged particles in a magnetic field. Compared with the 
degeneracy multiplicity z f  the Landau levels, the eigenval- 
ues E Lo' of the operator H F' are additionally doubly degen- 
erate. To each level E $' there correspond some two inde- 
pendent combinations of solutions of form q l ,n  = (y:',O) 
and q,,, = (O,ykO'), where 7:' is the wave function of a 
5harged particle on the nth Landau level. The perturbation 
V, lifts just this double degeneracy. Note, however, that for 
any value of the angle a and forzny Landau level there is 
satisfied identically the relation ( V,, ) nn = 0, where the ma- 
Zix el~ments are taken over the functions y:' and 
V,, = V,,. From the standpoint of the electron-term cross- 
ing theory (see, e.g., Ref. 20) it is therefore natural to have 
level crossing at definite field orientations, i.e., the degener- 
acy is not lifted for certain values of the angle a. As a result, 
the standard second-order perturbation-theory equations 
for degenerate levels do not hold in the vicinities of such 
angle values. The correct zeroth-approximation eigenfunc- 
tions are also different in these angle intervals. The pertinent 
vicinities of the two angles a,,, are given here by 

a,=O, PzP, sin a,=-2PiP, cos a,. ( 7 )  

The level-crossing condition satisfied for the angles a,,, 
in first-order perturbation theory is 

Disregarding the term crossing and using the usual per- 
turbation theory for degen~a t e  levels,20 we obtain for the 
eigenvalues of the operator H, to second order in the powers 
of P, and f, 
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(px, ,  a )  = --- 
4 '  l B  P ~ " D  ( a ) h  ( a )  ( a f 1 i 2 )  + g1 ( a ) ~ , , ' .  ( 9 )  

C 

4 1 e 1 B  ~ ~ ' ~ ( a ) f ~ ( a )  (n+I/,) + g2(a)p,r2. ( l o )  En,' (pz, ,  a )  = --- 
C 

The functionsf,,, ( a )  are given by 

cos a  
f l ( a ) =  I+--- (P3 cos a-P4 sin a )  

D L ( a )  

- 
1  

( P j  cos a+P4 sin a )  " 
2PlD2 ( a )  

COS' a  
-- (P3  cos a-P4 sin a )  ', 

23'  ( a )  (11) 

P3 P4 sin a  cos a  
! ' (a)= 1  +--+ 

Pi DL ( a )  

- 1 
(P3  cos a+P, sin a )  

2P,D2 ( a )  

( 1 2 )  

general to rather unwieldy eq~ations, but an explicit calcula- 
tion of the matrix elements ( V, ) ,, from the oscillator wave 
functions 7:' simplifies ( 18 )  substantially. Thus, in the case 
p,. = 0 ,  the perturbed Landau ground level is connected in 
( 1 8 )  only with the n = 2  level. The result for the ground 
energy level with allowance for perturbation is a quadratic 
equation whose solution yields for the upper critical field the 
expression 

- 
P4 sin' a  

[ P 4 (  + 2P,D2 ( a )  

P2P3 sin a cos a  1  - 1 

+ ] - -.,I> ( a ) )  . 
DZ (a )  2  

( 1 9 )  

sinz a , sin a  p3 
s ( a ) = - { [ P P p ,  D~ ( a )  ( l - x ( i +  D2(a) 

We shall not need below explicit expressions for g,,, ( a ) .  It +2p4 cos a  ( 1  + PP3 s:n2 a ) ]  
suffices to note that they satisfy the relation 2PlD ( a )  

All the above results will be needed in the next section to 
calculate the anisotropy of the fluctuation diamagnetism. To 
find the upper critical field, however, it suffices to consider 
only the Landau ground level n = 0 ,  putting alsop,. = 0.  We 
get then from ( 9 )  and ( 10)  

1  1 
H , ,  =-  1"" ma.{-- ---I 

2 1 e 1 P13"D ( a )  f i ( a )  ' f z ( a )  

A more accurate calculation of the orientation depend- 
ence of the upper critical field, with allowance for the lifting 
of the level crossing in second-order perturbation theory, is 
also possible. Let us illustrate the procedure briefly. We are 
interested in the eigenvalues, obtained by perturbation theo- 
ry, of the equation 

In the zeroth approximation we have 

Putting 

we obtain in the usual manner 

( E - E : " ) ~ .  =x [ (Pll)k .cm+(Ci2) .md.] ,  

- c [ P 3  pq2 cos a ( 3  + P1 a 
D2 ( a )  

+ P32+PLZ sin2 a- 
D2 ( a )  P I 3  

~ ( 1 +  Pi cosz a ) [ ( p 3  cos a + ~ ,  sin a) '  
D"a) 

P I  cosZ a  + -- (P3  cos a-P4 sin a ) ' ]  . 
DZ (a )  

The orientation dependence2' of H,, ( a )  that follows 
from ( 19)  and ( 2 0 )  is shown in Fig. 1 (curve 1 ) for the case 
when the coefficients in ( 1 ) satisfy the relations 

suggested in Ref. 18 on the basis of a numerical analysis of 
problem and comparison with experiment. This relation 
agrees well with the numerical results of Ref. 18. The stan- 
dard perturbation-theory expression ( 14)  (dashed curve of 
Fig. 1 ) also describes well the H,, ( a )  angular dependence, 
except at relatively narrow vicinities of the angles a,,, [see 
Eqs. ( 7 )  and ( 8 ) ] .  

( 1 7 )  The equation for the angular dependence H , ( a )  is 
much simpler for an hexagonal superconductor (P, = 0 )  
and we obtain in place of ( 19)  and ( 2 0 )  

laic 
Hc'(a)= 

2  1 a 1 ( a )  

I P 3 I  [ ~ , ' s i n ~ a ( i - & ( i  
2P,D2 ( a )  

? \ 

Since ( V, , ) , ,  = (v , , )  ,, = 0 ,  we must, for the vicinity P,  o o s 2 a ) ) ' +  P Z y 2 a  
~ ' ( a )  ( l + Pi c ~ s ' a ) ~ ] ' ~ } - *  of the angles ( 8 ) ,  consider jointly terms of first and second + 

D Y a )  D2 ( a )  
order of smallness in some of the relations ( 18) .  This leads in ( 2 2 )  
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FIG. 1. Orientation dependence of the lower critical field in units 
of H : ; ' ( a  = 0) [see (29) ] for the values of the coefficients (21). 
Rhombohedra1 superconductor [curve 1-Eq. (19); dashed 
curve-Eq. ( 14) 1. Hexagonal superconductor (P, = 0)-curve 
2 [Eq. (22)l .  

FIG. 2. Asymmetry 6, ( a )  of upper critical field. 
This equation, with the second term in the square root 

neglected, coincides with the result ( 14) of the standard per- 
turbation theory for P4 = 0. If, for example, ( IP31/P2) '/' is has a distinct asymmetry 8 ,  (a) #O, which can be specified 
small, the second term under the square root in (22) is not in the form 
negligible only in the small angle region a 5 ( IP3 I/P,) '". As 
seen from (2) ,  however, there are no general constraints on 6, ( a )  = [ H c 2  ( a )  -Hc2 ( -a)  l /Hc2 ( a ) .  (23) 
the value of I P, I /P2, and the interval of a in which the results 
of (22) differ substantially from those of ( 14) may generally A plot of 6, (a) for the values (2 1 ) of the coefficients P, 

speaking be quite large. For actual values (21 ) of the coeffi- is shown in Fig. 2. Reversal of the sign of the angle a corre- 

cients P2,, we have ( (P,l/P2) '/2--0.29 and the difference sponds to reflection of the field direction in the yz plane. A 
similar asymmetry of Hc, (a) obtains also when the field is between (22) and ( 14) at P4 = 0 is significant in the relative- 

ly narrow angle interval a 5 17". reflected in the xy plane, i.e., when the angle a in ( 19) and 

An important qualitative difference exists between the (20) is replaced by (a - a ) .  

considered Hc2 (a) dependences for a rhombohedral crystal 
[see ( 19) and (20) ] and an hexagonal one [see (22) 1. Ac- 
cording to ( 19) and (20), the upper critical field of a rhom- 
bohedral exotic superconductor passes through four local 
maxima when rotated through 360" in the plane in question. 
Accordingly, curve 1 of Fig. 1 has two local maxima in the 
interval ( - a/2, a/2).  According to (22), however, an 
hexagonal exotic superconductor goes through only two 
such maxima (as do all other superconductors having one 
complex order parameter), and only one maximum is pres- 
ent in the interval ( - a/2, a/2).  The angular dependence 
H,, ( a )  described by Eq. (22) with the coefficients P,,,,, in 
(21 ) is also shown in Fig. 1 (curve 2). It is clear therefore 
that the presence, in a rhombohedral superconductor, of 
definite additional nonmonotonicities (and accordingly of 
additional extrema) in the angular dependence of the upper 
critical field in the plane in question would be incontroverti- 
ble evidence of exotic pairing in this superconductor (in ac- 
cordance with Ref. 18). 

There are, however, no such additional nonmonotonici- 
ties in an hexagonal superconductor no matter what the type 
of pairing.j' The cause of this disagreement with the result 
of Ref. 19 is an error in the calculations of this reference. The 
method proposed there to analyze the anisotropy of H,, (a) 
is based on an exact solution obtained in Refs. 19 and 27 for 
the case a = 0, and is in principle fully valid. But the pertur- 
bation-theory analysis of Eq. (12) of Ref. 19 (which is in 
essence a secular eigenvalue equation) leads to an erroneous 
solution (14) for A,,, ( 6 )  (we are using here the notation 
and the equation numbers of Ref. 19). 

The orientation dependence (19), (20) of the upper 
critical field in an exotic rhombohedral superconductor also 

3. CHARACTERISTIC ASYMMETRY OF FLUCTUATION 
DIAMAGNETISM IN AN EXOTIC RHOMBOHEDRAL 
SUPERCONDUCTOR 

We shall analyze the fluctuation diamagnetism using 
the results (9)-( 13) including first- and second-order cor- 
rections in the framework of ordinary perturbation theory 
for degenerate levels. Since the transformations ( 5 )  change 
the effective volume V' and the magnetic field B ' into 

B1=BP,'"D ( a ) ,  

we obtain for the fluctuation contribution A F  to the free 
energy of the system near Tc at T >  Tc 

The characteristic anisotropy of the fluctuation dia- 
magnetism in rhombohedral exotic superconductors is 
manifest only in the nonlinear dependence of the magnetic 
moment on the applied field (similar to the previously con- 
sideredI3 case of tetragonal superconductors). This leads to 
relative smallness of this effect in weak fields B < Hc2 ( T ) ,  
where ? = 2Tc - T. The employed Ginzburg-Landau theo- 
ry, however, can explain the fluctuation diamagnetism near 
Tc also in strong enough fields B 2 H,, (?) [and even under 
the condition B& H,, (?) I ,  provided the relation 
B<Hc2 (0) is satisfied (under real conditions, H,, (0)  in the 
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last inequality can be preceded by a small numerical fac- 
tor2'). In the Cu,,,Mo6S, Chevrel phase we have Tc = 10.5 
K, Hc2 (0) = 15 T, and (dH,, /dT) ,< = 1.9 T/K (Ref. 29), 
so that the condition H,, (F) 5 B<Hc2 (0) is satisfied in a 
sufficiently wide range of fields and temperatures near T,. 
We shall therefore consider next the case of strong fields 
B > Hc, (n, where the nonlinear effects are large. 

It is convenient to change over in the first and second 
integrals of (25) to new integration variables q,, ,  
- - g(1/2) ,,, (a)p,., where the functions g,,, (a) are defined in 

Eqs. (9)-( 13). Next, following Prange's method,30 we write 
the resultant expression for the free energy in the form 

where 

while the function G(x) is equal to ( - x )  in the interval 
( - 1/2,1/2) and G(x + 1) = G(x).  

Note that in (26) the entire dependence on the magnet- 
ic field and on its orientation in thexzplane is contained only 
in the quantities b,,, in the argument of the function G(x). 
Taking this into account, we arrive at the following expres- 
sion for the components of the induced magnetic moment 

21 e 1 " TB'"D'" (a )  d 
Mz,, = - n ~ ' h p , ' l * p 2 ' h  

Here 

BP," ac 1 
71,s (B, a )  = B=------=- HL:' (&=o), 

Bf i ,~(a)D(a)  ' 41elPi 2 

and H (a = 0) is the upper critical field oriented along the 
z axis in the zeroth perturbation-theory approximation at 
the temperature = 2Tc - T. The function (x)  is defined 
as 

m 

1 
(D (x) = 

8 (x+'/,) '" 32 ,,=l ), (30) 

where 

dn (x) = [ (n+x) 2-'l,1'h, bn (x) = ['I2 (n+x)+'12dn (XI I -". (3 1) 

By analogy with (23 ), let us consider the asymmetry of 
the induced magnetic moment4' 

where M = (M: + M?)",. A plot of S ( a )  is shown in Fig. 
3, for the values (21 ) of the coefficients Pj and for different 
values of the parameterp = B /B, i.e., of the magnetic field. 
The asymmetry is a maximum in the limit B ) Z +  a, where 
the diamagnetic response is nonlinear. 

The analytical solution for S ( a )  in general case is quite 

FIG. 3. Asymmetry 6 (a )  of induced magnetic moment ( l o - '  
scale). Curves 1-4 correspond t o p  = 1,2,4, and 10, respectively 
(B=  B / B ) .  

cumbersome; but it simplifies in the /3 = (B  /B) + a limit, 
when it takes the following form: 

6, (a )  = -P3PkP, sin3 a cos a 

The plot of S ( a )  shown in Fig. 3 for p = 10 is quite 
close to 6, (a) described by (33) with the coefficients (21). 

It follows from (33) that 6, (a) is small because 
(P3P4/P:, ) is small. According to (2)  and (3) its value 
could generally speaking be several times ten percent. For 
the specific values (21 ) of the coefficients P,, however, we 
have (P,P,/P ) E0.03. As a result, as seen from Fig. 3, the 
asymmetry in the considered actual case is small, ~ 0 . 5 %  of 
the total induced magnetic moment. It seems experimentally 
feasible, nonetheless, to use measurements of S ( a )  in the 
field region B > 2 8  to study the type of pairing in 
Cu , , Mo,S,. 

Since we have used in this section standard perturbation 
theory for degenerate level, one might question whether the 
present results [see (33) and Fig. 31 are valid in the vicini- 
ties of the angles a,,,, where level crossing takes place in 
first-order perturbation theory [see (7)  and (8)  1. Recall 
that in Sec. 2 the results obtained by standard perturbation 
theory for the angular dependence of the upper critical field 
and for degenerate levels had to be modified precisely for the 
purpose of describing correctly the behavior of Hc2 (a) near 
the angles a,,, . Incidentally, for the specific values (21) of 
the coefficients P,, when a, = 0" and a,=: 73", these vicinities 
turn out to be quite narrow, as follows from Fig. 1. More- 
over, it is evident from Fig. 3 that the angle interval of great- 
est interest for the asymmetry of the fluctuation diamagnet- 
ism in the case (21) is approximately from 40" to 60"-65", 
which does not contain the immediate vicinity of the angle 
a, = 73' (let alone the vinicity of a, = 0"). 

It should,nevertheless be noted that in the problem of 
fluctuation diamagnetism (in contrast to the problem of the 
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upper critical field) it is actually correct to use standard 
second-order perturbation theory for degenerate levels at ar- 
bitrary field orientations in the considered plane, and par- 
ticularly in the vicinities of the angles a,,, . Expressions (9)  
and (10) are actually incorrect when taken separately for 
the levels E , ,  (p,. , a )  and En,, (i,. , a )  if small second-order 
terms are taken into account near the angles a,,,. It can be 
shown that the sum En,, ( p ,  , a )  + En,, (p,. , a )  agrees with 
the exact expression in which account is taken of the lifting 
of the level crossing in second-order perturbation theory. 
We write next the expressions for Eqs. (9 )  and ( 10) in the 
form 

Here En,, and E,,,, are the correct values of the energy levels 
in second-order perturbation theory, while AE, ,  and AE,,, 
are the deviations from these correct values, which are of 
second order of smallness. According to the foregoing, 
AE , ,  + AE,,, = 0. On the other hand, expanding (25) in 
powers of AE,,, and AE,,, and retaining only the first cor- 
rection (which of second order of smallness in the param- 
eters P, and P,), we obtain in the equation for the correction 
the very sum AE,,, + AE,,, meaning zero. Therefore, in 
second-order perturbation, allowance for the lifting of the 
level crossing does not change the results of the present sec- 
tion for the fluctuation diamagnetism. 

I '  Under the additional assumption, already made in ( 1 ), of approximate 
electron-hole symmetry at the Fermi surface. 

'' In view of the symmetry of H, ( a )  with respect to the inversion oper- 
ation corresponding to a - a + P, it suffices to consider the variation of 
the angle a in the interval ( - ~ / 2 ,  ?r/2). 

"An angle dependence (22) leads only to an insignificant stretch in a 
narrow interval of [a<(lP,I/P2)1'2] angles of H,,/(a) ellipse de- 
scribed in @4,., 14. We do not consider here the influence of antiferro- 
magnetic ordering on the anisotropic properties of the superconducting 
state. It is known that this influence can lead to important consequences 
for UPt, and to certain other superconductors with heavy f e r m i ~ n s . ~ ' - ~ ~  

4' Just as in the problem with the upper critical field, it would be possible 
to consider also the M ( a )  - M(P - a )  asymmetry. 
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