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We propose a simple and effective method of computing the tunnel current in scanning tunnel 
spectroscopy. The method reduces the problem of computing the tunnel current to that of 
determining the spectrum of the quasistationary state; it accounts also for the reaction of the tip to 
the spectrum of the crystal states on the surface. The method is illustrated by a number of simple 
examples in the context of the tight-binding method. 

The discovery of tunnel microscopy1 has provided 
science and technology with a most powerful tool for the 
study, at the atomic level, of the electron structure of the 
surface of a semiconductor or a metal. This method is based 
on a precise measurement of the tunnel current between a 
conducting crystal and a metallic tip. The sensitivity of mod- 
ern instruments permits a direct study of the arrangement of 
the atom on the surface of a body. In addition, the variation 
of tunnel current with that ofthe voltage between the tip and 
the sample, and upon displacement of the tip, yields in prin- 
ciple extensive information on the electronic structure of a 
crystal. 

Despite the abundance of experimental results for many 
greatly varying systems, no reliable foundation, based on a 
direct simulation of the experimental situation, exists for a 
theoretical interpretation of these results. The theoretical 
description of tunnel microscopy is made complicated main- 
ly by the fact that the quantity to be calculated is kinetic, the 
tunnel current, whereas the existing calculation methods are 
aimed exclusively at a static electronic structure. In this re- 
spect, tunnel microscopy is in a less favorable situation then 
the atomic-force microscopy2 derived later on its basis. 
Atomic-force microscopy can be directly simulated by using 
only static computations of the energy of a crystalline cluster 
(sample and tip) as a function of its mutual arrangement.3 

Tunnel microscopy is described at present by two essen- 
tially different approaches. One, due to Bardeen,4 is based on 
the notion of tunneling as a consequence of the overlap of the 
wave functions of the electron states of the sample and of the 
tip.' This approach accounts well for the principal, exponen- 
tial dependences at large distance between the tip and sam- 
ple, and can provide in practice only a qualitative descrip- 
tion of the experiment. 

The second, more consistent approach is based on cal- 
culation of the tunneling in the course of scattering, wherein 
an electron incident from the outside on the sample (or tip) 
surface and scattered by it penetrates partially into the tip 
(or sample) and produces there an outgoing wave. Al- 
though this scattering problem can in principle be formulat- 
ed with sufficient rigor in the language of two weakly bound 
crystalline clusters, the need for classifying the wave func- 
tions in terms of incident, reflected, and transmitted waves 
makes the numerical computations extremely complicated. 
This approach is therefore more applicable to analytic inves- 
tigations of simplified model problems6.' than for numerical 
simulation with allowance for the real microscopic structure 
of the sample and of the tip. A major shortcoming of this 

approach is the difficulty of accounting for the contribution 
of the localized surface states which are orthogonal to all 
current-carrying states that extend into the interior of the 
crystal. 

An approach to the calculation of the tunnel current 
when the tunnel coupling between the tip and the crystal is 
not weak, was recently proposed.' Allowance was made 
there for the contribution made to the current by the surface 
states induced by the tip. The idea of this approach, however, 
is close to that of the tunnel-Hamiltonian method. 

We propose here a fundamentally new approach to the 
computation of the tunnel current. Its central idea is to in- 
troduce formally into the Hamiltonian of the system, which 
contains two crystalline clusters-the sample and the tip-a 
drain for the electrons at the tip point located far from the 
sample. The tunnel current is determined by analyzing the 
spectrum of the complex eigenvalues of this Hamiltonian, 
which can be easily diagonalized by standard numerical 
methods. Our approach is universal and makes the problem 
of computing the tunnel current as simple as the computa- 
tion of the electron spectrum of the system. In addition, it 
makes it possible to take rigorously into account the atomic 
structures of the sample and of the tip. We describe below 
the procedure in detail and illustrate it with simple examples 
within the scope of the tight-binding concept. 

DESCRIPTION OF METHOD 

We take first the sample to be a limited crystalline clus- 
ter. The cluster representing the tip will be first assumed to 
be infinite in one direction, so that the electrons incident 
from the crystal on the tip can go off unobstructed to infin- 
ity. The electrons in such a system can be described not only 
by stationary states but also in terms of states called quasi- 
stationary, whose energy E -  iy has a small imaginary 
part--corresponding to an exponential decrease of the wave 
functions with time. At low amplitude of the electron hop- 
over from the sample to the tip, the wave functions of the 
quasistationary states are close to stationary inside the crys- 
tal, and contain in the tip only the flux away from the sam- 
ple. 

The population of the quasistationary states should be 
described by a Fermi distribution with respect to the real 
parts of their energy. If the Fermi level ,us in the sample is 
higher than that in the tip (p , ) ,  the only states that can 
really decay are those in the range p, > E > p, .  Since the 
number of electrons going off per unit time from the sample 
as a result of decay of a separately taken state with damping 
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y is equal to 2y/fi, the total tunnel current is equal to the 
sum 

over the quasistationary states in the indicated energy inter- 
val. 

There is no need to introduce an infinite sample and a 
bounded tip in order to consider the case when the Fermi 
level in the tip is higher than in the sample. The results can be 
obtained in the framework of the scheme described above by 
considering that the equilibrium reached when the chemical 
potent ial~p~ andp, are equal means a mutual cancelation of 
the opposing currents from the sample and from the tip. To 
calculate the current from the tip into the sample at p, <p ,  it 
suffices therefore to interchange the sample and tip Fermi 
levels and use the negative of the resultant current 

ONE-DIMENSIONAL CASE 

We demonstrate the approach using as an example one- 
dimensional problem having, furthermore, an exact analytic 
solution. Consider a one-dimensional chain. Let one orbital 
be centered on each atom. We equate the neighboring-atoms 
overlap integrals to unity, and the proper energy of an isolat- 
ed orbital to zero. The left- and right-hand halves of the 
chain are weakly coupled, with an overlap integral lo. Let us 
calculate the probability of tunneling between the left- and 
right-hand halves. Let a wave of unity amplitude be incident 
from the left infinity. A transmitted wave will pass then 
through the right-hand half, and a reflected wave will be 
added from the left. Only waves with energy in the continu- 
um can go off to infinity. The wave function in the left-hand 
half is the sum of the incident and reflected waves 

R is the reflection coefficient and n is the site number. The 
right-hand half contains only the transmitted wave 

where T(k)  is the transmission coefficient. The distance be- 
tween atoms is set equal to unity. 

The spectrum of a one-dimensional ideal chain has in 
the tight-binding approximation the form 

E ( k )  -2 cos k .  (3)  

If the energy is in the allowed part of the spectrum, we have 

The matching conditions lead in the tight-binding approxi- 
mation to the equations 

Taking (1) and (2) into account, we find that 

(EcPk-- 1) R (E) --toe""k (E) = I -EeZk, 
( 6 )  

-goc~-'kR (E) + (Ee2'*-cJ'k)T (h') =EoeCk. 

Using (3)  and (4)  we obtain the final expressions for the 
transmission and reflection coefficients as functions of the 
energy: 

The total particle flux in the entire zone is 

J = u ( k )  dk /En ,  
0 

where ~ ( k )  = dE( k)/dk is the group velocity, we have (dis- 
regarding spin ) 

The flux is thus proportional to the square of the over- 
lap integral, which is in turn dependent exponentially on the 
distance. 

Under equilibrium conditions in the absence of an ap- 
plied voltage, the total flux is, naturally, zero since the fluxes 
from the left and from the right are equal. 

When a voltage U is applied to the system, one can ob- 
tain the transmission coefficient (we assume for the sake of 
argument that the potentials of the right- and left-hand 
halves are U and zero, respectively). For the transmission 
,coefficient we have 

We assume further that the bands are half-full, and that 
the Fermi level Ef is zero at U = 0. For small lo (in view of 
symmetry it is enough to consider only the case U = 0 )  we 
get for the flux 

The current can be calculated as the rate of decay of the 
quasistationary states. Let us describe this procedure. Con- 
sider two weakly coupled (right- and left-hand) chains of 
finite but sufficiently large size (we call the right-hand one 
the crystal, and the left-hand one the tip). We produce a 
drain on the tip's end that is far from the crystal. For this, we 
add to the diagonal component of the Hamiltonian matrix of 
the system, in the tight-binding approximation, an imagi- 
nary increment to the energy of the orbital of the outermost 
atom of the tip. All the states in the system become then 
quasistationary and decay via the drain on the right-hand 
end of the tip. Owing to the presence of the weak-binding 
"bottleneck" the states in the crystal decay much more slow- 
ly than the states in the tip. This fact separates the weakly 
damped states belonging directly to the crystal. Note that 
separation of the energy imaginary parts pertaining to the 
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FIG. 2. Current-voltage characteristics. Exact analytic (dashed) and nu- 
merical calculation by the method of quasistationary states (solid). 

FIG. 1. Distribution of imaginary parts (transmission coefficient) as a 
function of the real parts of the crystal energy (no voltage is applied). 
Dashed line-with allowance for drain optimization, solid-without 
allowance. 

states of the crystal is possible for any value of the overlap 
integral. 

The imaginary increment to the energy of the orbital 
should be of the order of the bandwidth in the tip. The distri- 
bution of the imaginary spectrum of the crystal as a function 
of the real parts of the energy is shown in Fig. 1 (solid 
curve), which shows dips of the transmission coefficient at 
certain energies. The cause of the dips is that the drain is not 
ideal and also has a finite reflection coefficient. The drain 
must be designed to have a minimum reflection. This can be 
done by producing not one large drain at the outermost 
atom, but a set of gradually increasing drains at several ex- 
treme atoms. The drain sizes can be such that the states re- 
maining in the tip have maximum damping, which is equiva- 
lent to minimum reflection from the drain. 

Such an optimization was effected for an isolated tip 
chain of 20 atoms with a drain at five outermost atoms; the 
drain sizes were such that the imaginary energy increments 
to them ensured an integral damping maximum over all the 
remaining states in the tip. The optimal imaginary incre- 
ments, starting with the atom farthest on the right, were the 
following: 

The given optimal parameters were used next to calcu- 
late the damping of the states in a crystal (in a chain of 100 
atoms). The distribution of the imaginary parts in the crys- 
tal following the optimization are shown in Fig. 1 ;  it can be 
seen that the dips connected with reflection from the drain 
have practically vanished. 

Calculation of the flux from the crystal into the tip over 
all the states (double the sum of the imaginary parts) yields 
J = 0.16 (lo = 0.1 ), which agrees well with the exact result 
[see Eq. (9)  1 .  

All the figures below show in essence the dependences 
of the damping yon the voltage; the current differs only by a 
coefficient 2e/fi (e is the electron charge). Bearing this in 
mind, we shall refer only to the current. The dependences of 
the current on the voltage, calculated for the one-dimension- 
a1 case from analytic expressions and numerically, are 
shown in Fig. 2. 

We proceed now to the three-dimensional case. The tip 
was simulated, as before, by a one-dimensional chain of 20 
atoms with optimized drain sizes. The crystal was simulated 
by a system of a finite number of layers. The overlap inte- 
grals and the interatomic distances in the crystal were cho- 
sen to be the same as in the one-dimensional case. 

We calculated the current-voltage characteristics for 
clusters of 2 X 2, 3 x 3,4 X 4, and 5 X 5 atoms in a plane and 
four layers thick. The tip was located directly above the crys- 
tal atom at a distance of three units, and the only overlap 
taken into account was between the outermost atom of the 
tip and the crystal atom beneath it. The dependence of the 
overlap integral on the distance was chosen in this calcula- 
tion in the form l / d  (Ref. 9).  To assess the convergence of 
the results we performed, with the same parameters, calcula- 
tions for elementary cells measuring 2 X 2,  3 x 3, 4 X 4, and 
5 X 5 with the tip over them; the calculations were repeated 
periodically along the surface. In this calculation of the cur- 
rent we integrated over a plane Brillouin zone over all the 
occupied states. The worst disparity for a 2 x 2 cell did not 
exceed 15%. Figure 3 shows the dependences of the tunnel 
current on the voltage for different cell dimension in the 
plane, and for periodically repeated cells along the surface. 
For a 5 x 5 cell (Fig. 4) the results of the two methods are 
indistinguishable. Analysis of the convergence of the results 
as a function of the crystal thickness shows that starting with 
4-5 layers they become practically independent of the thick- 
ness. 

In addition, we calculated the relief of the tunneling 
current I ( x , y ) ,  at z = 2 and at a voltage U = 4 V on the tip, 
along the [ 1001, [OlO],  and [ 1 101 directions, up to half the 
interatomic distance (see Fig. 5). We chose for this case the 
overlap of the outermost atom of the tip and all the atoms on 
the crystal surface. The dependence of the overlap integrals 
on the distance was chosen in the form e -- 2 ' r  " . The peri- 
odically repeated cell dimension was 5 X 5. 
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FIG. 3. Current-voltage characteristics for crystal clusters of various di- 
mensions in thesurface plane: 1-2 x 2,2-3 X 3,4--4X4,5-5 X 5. Each 
cluster is 4 layers thick. 

The variations of the tunnel current (Fig. 5) are quite 
small. But this is connected with our illustrative model. 
More accurately speaking, the smallness of the current vari- 
ation is due to the use of s-type orbitals in the crystal and in 
the tip for the spectrum construction. Since the overlap inte- 
gral of the orbitals in the tip and in the crystal depends only 
on the mutual distance and is independent of angle, the cur- 
rent variations can be easily estimated analytically. Let us 
find the current variations when the needle is exactly above 
one of the surface atoms and in the case when it is located 
exactly above the center of a surface cell of a crystal (the 
center of a square with coordinates (1/2,1/2) the crystal 
surface-layer atoms at the vertices of the square). The differ- 
ence between the currents in these two cases causes the maxi- 
mum modulation amplitude of the tunnel current. For small 
overlap integrals the tunnel current is proportional to 5 *. It 
is easy to obtain an expression for the current when the tip is 
above a point with coordinate (0,O) exactly above a surface 
atom, recognizing that 5 -- ( e  - 2'r  

" , we get 

FIG. 5. Tunnel-current relief along individual directions in the surface 
plane, cell dimension 5 X 5 in the plane at a crystal thickness 5 layers. 

tion to the tunnel current by the atom-orbital overlap on a 
crystal surface with coordinates ( f 1,0), (0, + 1 ), with the 
orbital of the atom on the end of the tip. The overlaps with 
more remote neighbors is neglected everywhere (this is justi- 
fied by the fast exponential decrease of the overlap integral 
with distance). 

We can similarly obtain the tunnel current when the tip 
is located above a point (1/2, 1/2) of the crystal surface, 
viz., 

I ('I,, '1,)-4{exp[-2 (Yi,)'"-1)1) ]}2=0,04808, 

where account is taken of atoms with coordinates (0,0), 
( 1,0), (0,1), and ( 1, l) .  We obtain this 

which is of the same order as the numerical results. 
We emphasize once more that these small variations are 

connected with the use of s-orbitals in the tip and in the 
crystal. In fact, assume that the crystal spectrum is produced 
by p, or py orbitals which are "dumbbells" parallel to the 
crystal surface. It is easy to verify that in this case the current 
variations are of the order of the current itself. Let the tip be 
located directly above one of the atoms; the contribution of 
this crystal atom to the tunnel is in this case zero (this fol- 
lows from symmetry considerations). Since the overlap inte- 
gral l (s ,p , ,  ) of the s and p,,  orbitals is an odd function of 
the coordinates in the plane, it follows that 
l(s,p,, ) c cos (s;p,, ) (here cos (s;p,, ) is the cosine of the 
angle between the radius drawn from the outermost atom of 
the tip to the given surface atom, and the vector drawn to the 
same atom on the surface from the origin). The estimated 
tunnel current is 

where the first term of the equation corresponds to the over- 
lap integral between the tip atom and the surface atom di- 
rectly beneath it. The second term accounts for the contribu- 

here cos [s;p, ( 1,O) ] corresponds to ap, orbital centered on 
an atom with coordinates (1,O) and on equivalent atoms, 
and (COS~[S;~ ,  (1,O) ] = 1/5). Substitution yields 

FIG. 4. Current-voltage characteristics for 5 X 5 cluster in a plane, 4 lay- 
ers (solid) and 5 layers (dashed) thick. 

Similar calculations can be made when the tip is above a 
surface point with coordinate ( 1/2,1/2). We obtain 
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1/2)={~os2[s; pz(O,O) ]Scos2[s: ~ ~ ( 0 ,  0) 1 
-tcos"s; p,(I, 0) 1 
+cos2 [ s ;  p, ( 1 , O )  1 +cos2 [s; p, (0, 1) I 
+cos2[s; p,(O, 1) jScos2[s; p,( l .  1) 1 
+cos"s; pv(l. l )  j)(exp[-2((glz)"--l) ]I2. 

Recognizing that all the cosines are equal 
[cos2(s;pX (1,O) ) = 1/9 1, we get 

I (' la, 1/z)=8/9e-" ' 7 ' ' .  

The corresponding variation of the values of the tunnel cur- 
rents takes the form 

As follows from the approximate analysis, the current- 
modulation amplitude can be of the same order as the cur- 
rent itself. The directed valence orbitals are typical of cova- 
lent semiconductor compounds, where a strong modulation 
of the tunnel current is in fact observed. 

CONCLUSION 

The method proposed reduces thus the problem of cal- 
culating the critical value to determination of the spectrum 
of the quasistationary states. This problem can be solved by 
the usual methods of band theory. The approach takes into 
account, in natural fashion, of the atomic structure of both 
the crystal surface and the tip. We have demonstrated above 

the validity of the method using a tight-binding example. 
This circumstance, however, is not a constraint, and the ap- 
proach can be used with other methods of calculating a band 
spectrum. From the formal point of view the method used to 
find the spectrum of the tip + crystal system is utterly unim- 
portant. In all cases the problem reduces to construction of a 
Hamiltonian matrix into which the terms with damping are 
next inserted. 

Strictly speaking, in the presence of an external electric 
field it is necessary to solve simultaneously an electrostatic 
problem and the problem of spectrum calculation. This re- 
quirement is not a constraint in our method. It suffices to 
recognize that the potential difference between one end of 
the tip and the outer side of the crystal is given, and deter- 
mine in self-consistent manner the spectrum of such a clus- 
ter. 
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