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The melting of two-dimensional lattices is analyzed in the mean-field approximation. The model 
used here incorporates long-wavelength fluctuations of the one-particle distribution function and 
also orientation fluctuations of the two-particle distribution function. The nature of the transition 
depends on the intensity of orientation fluctuations ( a ) ,  the energy of the disclination core (E, ), 
and the relative size of this core ( t ) .  Above a critical value a,, the system melts through two 
continuous transitions. In the first traAsition, dislocation pairs undergo dissociation, and a 
hexatic phase forms. In the second transition, this hexatic phase becomes an ordinary liquid 
through a dissociation of the disclination pairs. The universal relation a:no ( T, ) = 7~/108 holds 
on the line of the latter transition, where no ( T, ) is the density of free dislocations. Under the 
condition a < a,, the system melts through two continuous transitions if the energy of the 
disclination core is above a critical value E :. Ifthe condition E, < E ,* holds instead, the system 
melts through a single first-order transition, in the course of which the disclination complexes 
dissociate. The parameters of the first-order transition depend on E,, t, and a .  

INTRODUCTION 

The nature of melting in a two-dimensional situation 
has recently been the subject of a lively discussion. Halperin, 
Nelson, and Y o ~ n g ~ - ~  have generalized a well-known study 
by Kosterlitz and Thouless' and have shown that a possible 
scenario for the melting of two-dimensional lattices might be 
fundamentally different from that in the case of three dimen- 
sions: The lattice would melt through two continuous transi- 
tions. In the course of the first transition, dislocation pairs 
would dissociate; in the second transition, disclination pairs 
would dissociate. That analysis was carried out on the basis 
of classical elastic theory under the assumption that the dis- 
location cores have a high energy. The theory of dislocation 
melting has found support in several experiments and also in 
the results of numerical simulations of certain two-dimen- 
sional systems."" 

There are, on the other hand, theories'2s13 which show 
that melting occurs through a first-order transition, as in the 
case of three dimensions. These theories agree with many 
numerical simulations (Refs. 14-16, for example). 

Noteworthy in this connection is the study by Dimon et 
al.," who showed, in research on the melting of xenon ad- 
sorbed on graphite, that the melting proceeds as a first-order 
transition at low temperatures and densities, while at high 
values of these properties it proceeds continuously. 

A numerical simulation has revealed the important role 
played by the energy of the dislocation  core:'^'* At low ener- 
gies, one would expect a first-order transition, while at high 
energies one would expect a continuous transition (or 
something close to it).I3 

The difficulties here are difficult to resolve on the basis 
of theories grounded in standard elastic theory.19 Our pur- 
pose in the present paper is to analyze the melting of two- 
dimensional lattices on the basis of a model which incorpo- 
rates not only long-wavelength fluctuations of the 
one-particle distribution function (and which in this regard 
is equivalent to standard elastic theory) but also orientation 
fluctuations of the two-particle distribution function. 

DISLOCATION-DISCLINATION HAMILTONIAN 

A crystal differs from an isotropic liquid in that two 
symmetries are broken: translational and rotational. These 
two symmetries are not independent, since a rotation of one 
part of an ideal crystal with respect to another part disrupts 
not only the orientational order but also the translational 
order. In an ideal crystal a one-particle distribution function 
has the symmetry of the crystal lattice. One can, on the other 
hand, imagine a state of a condensed medium in which there 
is no translational long-range order (i.e., in which the one- 
particle distribution function is constant) but in which there 
are long-range correlations between the directions of the 
"bonds," where a "bond" is to be understood as a vector 
which connects two nearest  neighbor^.^' In this case the iso- 
tropy of the two-particle distribution function, which char- 
acterizes the relative spatial distribution of pairs of particles, 
is di~rupted.~ '  

It is well known that in two dimensions the long-range 
translational order is disrupted by fluctuations, although at 
low temperatures there is a slow, power-law decay of corre- 
l a t i o n ~ . ~ ~ . ~ ~  On the other hand, it follows from Ref. 24 (see 
also Ref. 4) that a state with an orientational long-range 
order, characterized by a disruption of the isotropy of the 
two-particle distribution function, can exist in two dimen- 
sions. 

At sufficiently low temperatures, the local density, pro- 
portional to the one-particle distribution function, can be 
expanded in a Fourier series in reciprocal-lattice vectors 
{GI: 

where the Fourier coefficients p, (r)  vary slowly over dis- 
tances on the order of G - ' and have the amplitude and the 
phase 

PG (r) = I  pG (I)  1 e iGs l ( r f .  
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Here u( r )  is the displacement field. In two dimensions, the 
phase of the order parameter fluctuates the most,23 so we 
will ignore fluctuations in the magnitude. 

In general, the one-particle and two-particle distribu- 
tion functions are not independent, but the two-particle dis- 
tribution function may have an anisotropic part which does 
not vanish even in the case p ( r )  = const. This quantity de- 
scribes a state with an orientational ordering of  bond^.^^,^' 
The probability for finding a particle at the point r under the 
condition that another particle is pinned at the point r, is 
characterized by the conditional two-particle distribution 
function F2 (rlr, ) : 

where F2 (r,r, ) is the two-particle distribution function, and 
Fl (r, ) the one-particle distribution function. In a homoge- 
neous and isotropic liquid we would have F, ( r )  - 1 and 
F2 (r,ro ) = g(  1 r - ro I ). Here g ( r )  is the radial distribution 
function of the liquid. Let us assume that r and r, are nearest 
neighbors: r - r, = a,. When long-range correlations in the 
direction of the "bonds" a,, arise, the isotropy of the two- 
particle distribution function F2 (r,ro ) is then disrupted. We 
denote the anisotropic part of the function F2 (rlr, ) by 
f(rlr, ). The function f(rlr, ) has the symmetry of the local 
surroundings of the molecule ro . In the case of two dimen- 
sions, this function is 

where the angle e, specifies the direction of the vector a,. The 
function f(a, ,r,,e,) can be expanded in a Fourier series: - 

rn=-m 

The Fourier coefficients f, (a,,r, ) are the order parameters 
of the anisotropic phase. They vary slowly with r, and have 
the amplitude and phase 

As in the case of the one-particle distribution function, we 
consider fluctuations in the phase alone. 

The free energy of the system is a functional ofp(r)  and 
f(rlr, ). Taking account of the slow variation in the func- 
tions u( r )  and w(r),  we write the thermodynamic potential 
(Hamiltonian) describing the fluctuations of the order pa- 
rameter in the two-dimensional system for a triangular lat- 
tice as the following expansion: 

+2a d2r(aio)'=F,+F2. (1 

Here di = d /dr , ,  and a repeated index in ( 1 ) implies a sum- 
mation. Assuming periodic boundary conditions, and inte- 
grating by parts, we can put F, in the standard form of the 
free energy of a deformed isotropic solid. In this casep a n d l  
are Lam6 coefficients.I9 All previous t h e ~ r i e s ' - ~ ~ ~ , ' ~ * ~ ~  of 
melting have considered the term Fl alone. 

The angle w ( r  ) in ( 1 ) describes the fluctuations in the 
directions of the bonds associated with a particle at the point 
r. In the continuum approximation this angle is related to 
the displacement field u(r) by26 

where E~ is the antisymmetric matrix: 

Substituting (2) into ( 1 ), we find a Hamiltonian which 
we will use to describe the two-dimensional melting: 

+QJ d2rsije,.ai a,* a ,  ahu. .. 
2 (3)  

In a two-dimensional system with continuous symme- 
try, a phase transition is known to be caused by the appear- 
ance of topological singularities: vortices which disrupt the 
quasi-long-range 0 r d e r . l ~ ~ ~  In a two-dimensional crystal 
there are two types of such defects: dislocations and disclina- 
tions. Dislocations can be thought of as disclination di- 
poles.5,7926 Kosterlitz and Thouless' showed that the ap- 
pearance of free dislocations leads to a melting of a 
two-dimensional lattice to form a liquid which is character- 
ized by a density-density correlation function which falls off 
exponentially with distance (in contrast with the power-law 
decay of this function in a two-dimensional crystal). The 
phase which forms in the case of the dislocation melting, 
however, is characterized by a power-law decay of the corre- 
lations between the directions of the although the 
magnitude of the displacement u of this phase is zero. This 
phase has been called a "hexatic" phase.2p4 The hexatic 
phase becomes an ordinary liquid through a dissociation of 
disclination pairs accompanied by the formation of free dis- 
clinations at a temperature above the dislocation-melting 
point. 

One can, on the other hand, picture the melting as oc- 
curring as a single transition rather than a two-step process. 
In this single transition, free disclinations arise immediately, 
and there is no hexatic phase. 

Let us consider two melting scenarios on the basis of 
Hamiltonian (3) .  For this purpose we distinguish the part of 
(3)  which corresponds to the ensemble of dislocations and 
disclinations. Hamiltonian (3)  can be rewritten as 

1 
F = - 2 ~dzr[2pu., '+hu, ']+2~ d'ra.,~~.. u,, a,um,, (4) 

where uij = f [a,u,  ( r )  + dju,  ( r )  ] is the strain tensor. In 
deriving (4)  we used the relation 

To find an explicit expression for the part of the free energy 
due to dislocations and disclinations, we write the strain ten- 
sor in the form 

where Qij is the strain tensor generated by regular strains 
Q ,  ( r ) ,  and u; reflects the contribution of disclinations and 
dislocations to the strain tensor. 

A dislocation at the point r is characterized by the size 
of the increment in the contour integral of the displacement 
field when a closed loop is traced out around the disloca- 
tion:I9 
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where b(r)  is the dimensionless Burgers vector, a, is the 
period of the triangular lattice, e ,  and e, are basis vectors of 
the lattice, and m and n are integers. 

Correspondingly, a disclination on a triangular lattice 
is characterized by the circumstance that when a closed loop 
containing the disclination is traced out the integral of the 
rotation angle (2)  acquires an increment which is a multiple 
of 27~/6: 

[The contours in (7)  and (8)  are traversed in the counter- 
clockwise direction. ] 

We find equations for the field u ( r )  from (3):  
6t; 
-- - - ( / I  C ~ , I ~ "  7 , ~ s  kV2u,--aV2~, , i l ,a)  7 0 .  
6 4  

This equation can be rewritten in the form 

2 ; = 2 p - a ~ 9  i=h+ av2.  

where the tensor u,, is given by 

Equation (9)  has the form of the equilibrium equation 
of a deformed object, and the symmetric tensor ug is the 
stress tensor. The tensorug takes the standard form19 when 
we allow for the conversion of the Lam6 coefficientsp and A 
into operators ,4 and 2. 

Using (6)  and ( lo) ,  we can decompose the tensor uij 
into regular and singular parts. We write u; in terms of the 
singular part of the stress tensor, 6,. Using ( lo) ,  we find 

The stress tensor can be written in terms of the stress func- 
tion19.26 x ( r ) :  

Using Green's formula, we find from (7 ) and (8)  equa- 
tions for u i  for a dislocation at the point r' and for a disclina- 
tion at the point r", respectively: 

Using these equations along with ( 1 1 ) and ( 12), we find an 
equation for x ( r )  under the condition that there are N dis- 
clinations at the points r, and M dislocations at the points ri: 

T4z (r) = - 

A solution of Eq. ( 15) is 
N 

where a and Care constants, and 8 ( r )  is a singular function 
which contains a &function and its first derivative. This part 
generates a short-range interaction of disclinations and dis- 
locations with each other. The short-range part does not lead 
to the formation of bound states, so we will consider thls 
term no further. 

Substituting (6)  into (4),  we find for F the representa- 
tion 

F= Fr + F", 

where Fr corresponds to the regular part of the strain tensor, 
and F" corresponds to the singular part, which is generated 
by the dislocations and disclinations (one can show that the 
cross terms vanish). Substituting ( 11 ) and ( 12) into (4),  we 
find the singular part of the free energy in terms of the stress 
function x ( r )  : 

Substituting ( 15) and ( 16) into ( 17), we find the energy of 
the system of dislocations and disclinations: 

where E, and Ed are the energies of the disclination cores 
and dislocation cores, respectively, 

The first two terms describe the energy of the interact- 
ing dislocations, while the third describes the interaction of 
dislocations with disclinations. The last two terms describe 
the interaction energy of dislocations. It can be shown that 
the energy of a given configuration of disclination and dislo- 
cation charges is finite only under the conditions 

The last term in Hamiltonian (3)  does not contribute to the 
long-range interaction between dislocations (although it 
does contribute to Ed ). It is not difficult to see that the inter- 
action between dislocations is the same as the dipole-dipole 
disclination interaction (the Burgers vector b is orthogonal 
to the disclination dipole moment vector d: d, = b,, 
d, = - b, , d = b 2) .  AS we k n o ~ , ~ , ' , ~ ~  a dislocation may 
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be thought of as a disclination dipole, so we will use the 
dipole moment d instead of the Burgers vector b in the dis- 
cussion below. Conditions (19) show that there are no free 
disclinations or disclination dipoles (i.e., dislocations) in a 
two-dimensional lattice. 

MELTING OFTWO-DIMENSIONAL LATTICES 

In the low-temperature phase, dislocations can exist 
only as pairs with a zero Burgers vector, while disclinations 
can exist as strongly coupled quadrupole complexes. As the 
temperature is raised, free dislocations may arise, or free 
disclinations may arise at once, according to the melting sce- 
narios outlined above. In the former case, the free disloca- 
tion charges screen the charges of opposite sign, leading to a 
short-range (exponentially decaying) interaction between 
dislocations. The interaction between disclinations is modi- 
fied; while remaining a long-range interaction, it increases 
only as lnr. The system converts into an ordinary liquid after 
the appearance of free disclinations. In the latter case, the 
system becomes a liquid through one transition. As a result 
of the screening, the interaction between disclinations be- 
comes a short-range interaction. 

To describe the dislocation-disclination melting, we use 
a method similar to the well-known Debye-Hiickel method 
in plasma theory. The energy required for the formation of a 
disclination or a dislocation depends on the magnitude of the 
disclination charge, s, or that of the Burgers vector b. We 
consider defects with the lowest energy, namely, disclina- 
tions with s = + 1 and single dislocations on a triangular 
lattice: 

We see that Eq. ( 15) is analogous to the Poisson equa- 
tion in electrostatics, with the functionx(r) serving as elec- 
trostatic potential. Substituting ( 15) into ( 17), and using 
E,, a, b, = a, d m ,  we find 

where 
\. 

Here U ,  is the energy of the system of N disclinations in the 
potential ~ ( r ) ,  and U, is the energy of the M dislocations. 
Assuming that the dislocation density n ( r )  and the disclina- 
tion density m ( r )  are small, we can use the Boltzmann rela- 
tion for the density of defects in the field ~ ( r ) :  

,. 
1z1 (r) =no rxp {-a,pd,,'Ya,~ (r)) , (22) 

m(r)=mo exp { (n/3) psyX(r)) .  (23) 

Herep = l/k, T, and k,  is the Boltzmann constant (in the 
discussion below, k, will be included in the definition of the 
temperature). In deriving (22) and (23) we used (20) and 
(21 ) . Let us use Eqs. (22) and (23) to describe the screening 
of dislocations and disclinations [the presence of six types of 
elementary dislocations on a triangular lattice has been tak- 
en into account explicitly in Eq. (22) 1. 

The equation for the stress function ~ ( r )  in the case in 
which a dislocation d' at the point r' is screened by disloca- 
tions and disclinations is 

8 ,. 
O"(r)= - 46(F+)v) {a,d..'d.,.h (r-rf ) + a , x  d.'dn,n. (r) 

2y+h ,=1 

Here ni ( r )  is given by Eq. (22), and m + and m - are found 
from (23) by setting s = 1 and s = - 1. A corresponding 
equation for the screening of a disclination with s - 1 is 
found from (24) by replacing the first term on the right- 
hand side by (7~/3)S(r - r'). Equation (24) corresponds to 
the Poisson-Boltzmann equation in Debye-Hiickel theory. 

We now linearize the right-hand side of Eq. (24) with 
respect to x ( r )  and take Fourier transforms: 

A solution of this equation is 

The solution for the screening of a disclination can evidently 
be found by replacing id, k, by ( r / 3  )s. 

As was mentioned above, melting may be thought of as 
the appearance of nonzero densities m, and n, . Our problem 
is to construct closed equations for these quantities. We as- 
sume that the gas of dislocations and disclinations is of low 
density. We can then write the following expressions for n, 
and m, with the help of Boltzmann relations: 

mo-(I/A) exp ( P I - 1 , ) .  (25) 

wherep, andp, are the chemical potentials of the disclina- 
tions and dislocations, respectively, and the dimensional fac- 
tor A is equal to the area of the unit cell of the lattice and is 
given by 

~ = a : . 3  '12,. 
The chemical potential of a disclination consists of two 

parts: the energy of the disclination core, E, (this energy 
incorporates nonlinear effects), and the elastic energy of an 
individual disclination, GI : 

pI=- (E,+C,). (27) 

Correspondingly, for a dislocation we write 
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pi=- (Ed+ f ' )  (28) 

(the quantities u, and u2 are analogous to the self-energy of 
a charge in electrostatics). To calculate U ,  and U2, we use 
(20) and (2  1 ). As in electrostatics, these quantities diverge 
in the case of point charges. Dislocations and disclinations 
have finite dimensions (r; and r,, respectively ), so we can 
write the estimates u, -, U ,  (r, ) and e2 --, U, (rt,  ) of the self- 
energies of a disclination and a dislocation. Taking Fourier 
transforms of (20) and (2 1 ) [using ( 17) 1, and substituting 
in the expression for ~ ( k ) ,  we find 

Equations (25)-(30) constitute a closed system of 
equations for determining m, and no (the densities of free 
disclinations and dislocations). This system has a solution 
m, = no = 0, which corresponds to an "unmelted" crystal. 
A general analysis of Eqs. (25)-(30) is rather complicated, 
so we turn to the most important particular cases. 

I. Dislocation melting. We first consider the melting of a 
two-dimensional crystal through the formation of free dislo- 
c a t i o n ~ . ' - ~ , ~ ~  This case corresponds to m, = 0. We evaluate 
the integral in (30) in the approximation no 9 1 [in agree- 
ment with (26) ] : 

where K,(x) is a modified Bessel function. We introduce the 
screening radius 

It can be seen from (3 1 ) that when there are free dislocations 
the interaction between dislocations has a behavior 
exp( - r / l f ) .  At r;/l '< 1 we have 

where Cis Euler's constant. Substituting (32) into (27) and 
(26), we find an equation for l ': 

where 

We obviously have q < 1 for sufficiently large values of Ed. In 
this case we see from Eq. (33) that for T <  T, = K a i / 1 6 ~  we 
have the unique solution r;/l '  = 0, which corresponds to a 
crystalline phase. At T >  T, we have 

The dislocation melting thus occurs at 

The transition temperature is the same as that found in 
Refs. 1-5 and 25. 

2. Hexatic phase. As was pointed out in Ref. 4, as a 
result of dislocation melting the system goes into a state with 
a slow decay of the correlations along the directions of the 
bonds. In other words, the relation 

holds. This state, called the "hexatic phase" in Ref. 4, be- 
comes an ordinary liquid through a Kosterlitz-Thouless 
transition, in the course of which disclination pairs undergo 
dissociation. The phenomenological Hamiltonian 

1 
HA=-K,(T) S # i [ ~ o ( r ) ] ' ,  

2 (36) 

was proposed in Ref. 4 for describing the hexatic phase; the 
quantity KA (T) can be called a "Frank modulus" by analo- 
gy with liquid crystals. Standard  calculation^^.^^.^^ lead to 

A Kosterlitz-Thouless transition occurs at the temperature 
Ti such that v( Ti ) = 4; i.e., 

T,=nK, (Ti) 172. (37) 

Halperin and Nelson4 showed that in the hexatic phase 
the Lam6 coefficients renormalized by free dislocations, pR 
and A,, vanish. Making use of that circumstance, we find 
from (25), (28), and (29) an equation for determining the 
screening radius of free disclination charges: 

(.,it) '=ql (rolt) 7 , z'=n/54aoZno (T) , (38) 

where 

At large energies of the disclination core we have q' < 1. 
In this case, Eq. (38) has a nontrivial solution under the 
condition 

ao2no (T) 2n/108. (39) 

Expression (39) with the equal sign gives the density of dis- 
locations on the (hexatic phase)-(ordinary liquid) transi- 
tion line. Comparing (37) with (39), we find expressions for 
the Frank modulus and the index v: 

2T 27a02no (T) 
KA(T)=. - ., q(T)= (40) 

3aO2n0 (T) n 

We see from (40) that as we approach the melting line 
[n,(T)+O] wehaveK, (T) -+~  andv(T)+O.Thisresult 
corresponds to the existence of an orientational long-range 
order in the two-dimensional crystal. The condition for the 
(hexatic phase)-(ordinary liquid) transition, i.e., condition 
(39), and the expression for the index 7 do not depend on the 
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details of the interaction of the specific system (but they do 
depend on the lattice symmetry). The appearance of a free 
dislocation generates a displacement field u a lnR, which 
disrupts the translational quasi-long-range order. The rota- 
tion angle which arises, however, satisfies w cc 1/R, so the 
orientational quasi-long-range order persists until the den- 
sity of free dislocations reaches the critical value [see (39) ]. 

3. Disclination melting. A crystal can melt not only 
through the two transitions described above but also 
through a single transition, in the course of which disclina- 
tion complexes dissociate, and free disclinations appear in 
the system. Because of the screening, the interaction be- 
tween disclinations becomes a short-range interaction. 
When there is a disclination, the displacement field at large 
distances is of the form u a R lnR, so the phase into which the 
crystal converts is completely disordered. Assuming that 
there are no dislocations in the liquid phase, we find an equa- 
tion for the screening radius 5- from (25), (28), and (29) 
under the condition r, mA'4 4 1 : 

(D (x) =I*-z exp ( - Q / x 2 )  =0, (41 

where 

(a )  

Cis Euler's constant, x = r,/<, t = r,/a, 

Equation (41) always has the solution x = 0, which 
corresponds to a crystalline phase. It is easy to see that a 
nontrivial solution arises under the condition 

From (41) and (42) we find 

Disclination melting thus occurs as a first-order transi- 
tion, and a real solution exists under the condition 9> 0. 
This condition holds if 

Comparing (44) with (34), we find that under the condition 

dislocation pairs undergo dissociation before disclination 
complexes decay. In other words, under the condition a > a, 
the two-dimensional lattice melts through two continuous 
transitions. Qualitatively the same conclusion was reached 
by Alder and W a i n ~ r i g h t , ~ ~  who used the Monte Carlo 
method to find a lattice version of model (3).  Unfortunately, 
the units of measure used in Ref. 27 prevent us from compar- 
ing the critical value of a calculated there with the value 
found for a, in the present study. Alder and Wainwright2' 

FIG. 1. E = 1 6 ~ E  T/Ka; versus g = a / K a 2 .  Solid line-t = 5; dashed 
line-t = 3. 

believe that a melting occurs as a first-order transition under 
the condition a < a,. Their approach, however, did not con- 
sider the energy of a disclination core, E,, or the relative size 
of the core, t, which appear in the coefficients of Eq. (41 ). It 
turns out that the behavior of the system depends strongly 
on these quantities. 

Substituting (43) into (41 ), we find an equation for the 
transition temperature: 

It can be seen from (45) that the transition temperature 
increases with increasing E, and becomes higher than the 
temperature of the dislocation transition (34) at a certain 
E :. Under the condition E, < E :, the melting thus occurs as 
a first-order transition, while under the condition E, > E : it 
occurs as two continuous transitions. Substituting (34) into 
(45), we find an equation for E:. Figure 1 shows 
E = 16nE :/Kai as a function ofg = a/Kag for various val- 
ues oft. 

That the energy of the core of a defect is important in 
determining the type of transition has been pointed out in 
many papers (e.g., Refs. 7 and 18) on simulation of two- 
dimensional melting. Unfortunately, an unambiguous value 
of the energy of a defect core was not found there for a realis- 
tic model of the interacting particles. Various lattice repre- 
sentations of an elastic Hamiltonian [Hamiltonian (3)  with 
a = 01 are ordinarily used for the ~imulat ion.~ Setting t = 3 
in (45) (this is a fairly realistic value for the size of a defect 
corez9 ), and setting a = 0, we find E 21 2.24. Taking the en- 
ergy of a dislocation core to be =2E, we find a fair agree- 
ment with estimates found by s i m ~ l a t i o n . ~ ~ ' ~  

It can be seen from Fig. 1 that there are values of a* at 
which E: vanishes. At a <a* we should probably expect 
that the melting would always occur through two contin- 
uous transitions (the quantity a* is independent of t ) .  

Figure 2 shows E as a function of the relative size of the 
defect core for various values of a. Here there are also values 
of t * at which we have E: = 0, while at t >  t * we would 
expect a two-step melting. Unfortunately, we know of no 
numerical simulations or actual experiments which have 
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FIG. 2. E = 16rE :/Ka: versus t .  Solid line-g = a / K a i  = 0.1; dashed 
line-g = 0. 

been carried out on how melting is affected by the size of a 
defect core. 

CONCLUSION 

Many questions remain open and require further re- 
search. The simplified picture of dislocations and disclina- 
tions drawn by Hamiltonian (3)  must be linked up with de- 
fects in real systems. Serious difficulties arise in attempts to 
determine the energy and size of a defect core. The behavior 
of the system near the point at which the first-order transi- 
tion gives way to two continuous transitions remains un- 
clear. It would be interesting to see a test of universal relation 
(39) for real systems. 

The model which we have been discussing here is a sig- 
nificant simplification of real systems. Nevertheless, we be- 
lieve that it is capable of describing a large number of transi- 
tions which are observed in the course of two-dimensional 
melting. 

I would like to thank E. E. Tareeva for useful discus- 
sions and A. A. Abrikosov for interest in this study. 
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