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A small-radius polaron theory is proposed with allowance for the influence of phonon 
displacements on the interstitial resonance integral. After a canonical transformation, the 
Hamiltonian of such a model is similar to the Hamiltonian of the standard small-polaron theory, 
some generalizations of which permit the use of the methods of the proposed theory. The specific 
results differ radically from the well-known conclusions of the small-polaron theory if the rms 
phonon displacement of the atoms is of the order or larger than the polaron radius. In particular, 
the width of the polaron band increases exponentially with temperature, and the hopping 
conductivity ceases to be of the simple activation type. 

Standard small-radius polaron theory is based on the 
use of the Frohlich Hamiltonian, assuming strong coupling 
of the electrons with the polarization optical phonons. The 
most important fundamental results is here the deduced 
hopping character of the conduction in the low-temperature 
region and the concomitant low mobility p,. The tempera- 
ture dependence of the mobility has an activation character, 
In p ,  a - E,/kT. On the other hand, a dependence of the 
type In p, =AT has been observed in many low-mobility 
materials in a larger temperature i n t e r ~ a l , ~  contrary to 
small-polaron theory. In Ref. 4 (see also Ref. 5)  it was 
shown that a dependence of this type can be obtained if ac- 
count is taken of the effect of lattice displacements on the 
interstitial tunneling, since the overlap of the wave functions 
on neighboring lattice sites depends on the positions of the 
nuclei. 

The present paper is devoted to a small-radius-polaron 
theory in which this effect is taken into account. Such a gen- 
eralization of the theory has made it possible to show that if 
the dimensionless parameter a2 7 is not too small (a ' is 
the radius of the localized state and 7 is the rms thermal 
displacement) the small-polaron model leads to hopping- 
conduction temperature dependence of the type 
In p, a AT - E,/kT, which is observed in experiment in a 
very large number of  material^.^ This dependence of the mo- 
bility is accompanied by feasibility of an exponential growth 
of the polaron-band width with temperature, like exp(BT), 
with B > 0, in the region above the Debye temperature. In 
standard small-polaron theory, on the contrary, the polaron 
bandwidth decreases exponentially in this temperature re- 
gion, in which B < 0. 

1. INITIAL HAMILTONIAN AND CANONICAL 
TRANSFORMATION 

where w,. is the frequency of the phonon branch j with mo- 
mentum q, a,+ [a, is a photon creation (annihilation) oper- 
ator on the site m], 

y(q j )  is the electron-phonon coupling constant, N is the to- 
tal number of sites in the crystal, R, is the radius vector of 
the site m, and J,,, is the resonance integral of the sites m 
and m'. A Hamiltonian in the form ( 1) is used in small- 
polaron t h e ~ r ~ . ~ , ~  To take the influence of the lattice vibra- 
tions on the tunneling into account we introduce the depend- 
ence of J,,, on the atomic displacements. To this end we 
assume an exponential dependence of the resonance integral 
on the distance between sites (generally nonequilibrium) : 

(0) 
I ,  ,,,,, , = J.,,,,,, exp(-aIU,,,-U,,,. I ) ,  

where a is the reciprocal radius of the electron state on the 
site, and Urn is the radius vector of the instantaneous atom 
position. We put next Urn = R, + p, , wherep, is the ther- 
mal deviation of the atom from the equilibrium position R, . 
Assumingp, to be a small quantity, we obtain the following 
form of the resonance integral 

[ (Rm-Rm,) (pm-pV,r) 
Jmm' = I m m '  exp -a 

(R,,-Rm, I 

where I,,. = Jc;. exp{ - a1 R, - R,. I}. 
We now express the phonon displacements in terms of 

the phonon second-quantization operators (see, e.g., Ref. 
6) :  

To describe an electron-phonon system with account where k is the number of the atom in the unit cell, M, is the 
taken of the influence of the lattice vibrations on the quan- mass of this atom, and e is the eigenvector of the phonon 
tum-mechanical percolation from site to site, we use the branch. Since we shall consider below electron transitions 
Frohlich Hamiltonian between only one species of atoms (within one sublattice), 

we shall omit for brevity the subscript k (it corresponds to 
H = hwq7(bqi+bq,+'i,) + I..,,a.,+a, the investigated sublattice). We simultaneously omit also 

91 71, n~' the subscript j numbering the phonon mode, assuming that 
the set q includes both the phonon vector and the mode in- 

+ ~ ~ ~ a m + a m [ u m ( q i ) b a + u m * ( q i ) b a + ] ,  (1)  dex. 
si, m Substituting (3)  into (2)  we obtain an expression for 
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the resonance integral with allowance for phonon displace- 
ments: 

q 

where 

L~,,,. (q)  = (2N)-'h6mms (q) [exp(-iqR,)-exp(-iqRnL.)l ,  (5)  * 
6.., (q) = a(--) e.  (Rm-Rmr) I I Rm-R. 1 .  

Ma9 
(6)  

We call attention to important symmetry relations for v 

I,,,. (q) = vmrm (q) , vmm. (q) = vim, (-q) 7 ( 7 )  

which follow from the relation 

6,,,, (q) = -6,,, (q)?  6n,m.(q)= 6Amr(-q), (8  1 

The initial Hamiltonian of the model considered is thus 
the Frohlich Hamiltonian ( 1 ) with a resonance integral that 
depends on the phonon variables in the form (4) ,  i.e., a mul- 
tiphonon operator. Note also that the form (4)  does not 
depend on the actually chosen simple exponential depend- 
ence of the resonance integral on the distance between sites. 
In particular, if 

where f(x)  is some function, the form (2 )  [and hence als" 
( 4 ) ]  is conserved under the substitution a+d f /dx  at 
X = IR, - R,. 1 .  

It is now convenient to apply to this Hamiltonian the 
polaron canonical t ransf~rmation~.~ 

m 

The result is 

'4 711.q 

- z am'amam~'a,~fiwqu:(q) r.., (q) + HI.  (9)  
q , m f  n t '  

The second term of the right-hand side of (9)  describes the 
polaron shift (the energy gain due to the polaron effect ), and 
the third the attraction between polarons on account of vir- 
tual phonon exchange. This term plays the decisive role in 
the formation of a bound polaron state7.' and in the descrip- 
tion of bipolaron ~uperconductivity.~ 

The contribution H ' in small-polaron theory serves as a 
perturbation, and takes in the model considered the form 
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where 

We separate now from the sum over m ,  the terms with 
m ,  = m and m = m', and consider the operator 

am.+am exp (V,,,~,,am+am+Vmm~, mpam,+am.) 
=%,+am[ ( I-am+am)+amf am exp VnLm~, ,I [ (l-a,.+a,,) 

+am,+am, exp Vm,., ,.] =amv+am exp Vmm,,m. 

We have used here the identities a,+.a,a,ta, = a J a ,  and 
a; a ,  a 2  a,. = 0. Equation ( 10) takes then the form 

where 

Since the phonon operators in last two exponentials of ( 10a) 
commute to a c-number, we can use the operator identity 

exp A eexp ~=exp(A+B) .exp(c/Z), 

A h  

where c = [A,B] is a number. As a result we get the relation 

e rp  {- z [ b q +  (urns-urn*') - b. (urn-u.~) ] 
9 

+z [ r k ,  (q) bq++rmrm(q) b.1). 
'4 

where 

As a result, the Hamiltonian H'  (10a) is reducible to the 
form 

1 
H1 = ~..-a.,+a. exp [ ~ ( ~ r n r n ~ , r n + ~ r n r n ~ , r n ~ )  

mm' 
- L 

Using the expressions (5)  for u and v we get 

x sin q (Rm-Rm, ) 

This quantity is symmetric with respect to the interchange 
m sm' and is positive. When it does not vanish as a result of 
lattice symmetry ( y and S are complex quantities), we shall 
assume that 
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I , , * + I m m .  exp [ ' / 2 ( V m V m , ~ ,  m+Vrn/;nmv, m' ) I , 

and the factor exp [+ ( V,,.,, + V,,.,,. ] will therefore be 
omitted below." 

We change over now in the canonically transformed 
Hamiltonian fi [Eqs. (9)  and ( 13 ) 1 to the one-electron ap- 
proximation, leaving out all the electron-electron correla- 
tions. In this approximation we can, first, leave out of (9) 
the interpolaron attraction (third term of the right-hand 
side). Second, there is no need to take into account the I,,. 
renormalization ( 11 ), i.e., we can replace I,,, by I,,. . In 
addition, by shifting the energy origin we can set equal to 
zero the contribution from the polaron shift in (9)  (second 
term of the right-hand side). After these simplifications the 
Hamiltonian takes the form 

The Hamiltonian ( 14) is outwardly similar to the Ham- 
iltonian in small-polaron theory if the substitution 
r,,. -urn. -u rn  is made. The main difference, due to 
allowance for the influence of the phonon displacements on 
the resonance integral (v#O) is that in this model we have, 
in contrast to the standard theory, T,,, #I?,., , which leads 
to far-reaching consequences and requires a review of all the 
results. 

To conclude this section, we note that the Hamiltonian 
(14) can be used not only for crystalline materials but also 
for disordered systems. Three circumstances must be borne 
in mind here. First, the presence of off-diagonal disorder 
makes the resonance integral a random quantity. Second, 
the onset of diagonal disorder is described by the additional 
contribution 

to the Hamiltonian, where E ,  is the electron energy at the 
site (a  random quantity). This contribution is invariant to 
the polaron canonical transformation, and can therefore be 
added both to H ( 1 ) and to a ( 14). Third and final, if disor- 
der in the phonon subsystem must be taken into account, all 
the summations over q and j must be replaced by summation 
over the quantum numbers of the normal oscillations of the 
phonon sub~ystem.~ 

2. TEMPERATURE DEPENDENCE OF THE POLARON BAND 

The matrix element of the operator Y,,, in ( 12), which 
is diagonal with respect to the phonons, describes the 
phonon renormalization of an unrenormalized electron 
band'-3 

Using the known equality2v3 

where N =  (exp(h /kT)  - 1) - '  is the Planck function, 

we obtain 

The pure imaginary contribution to S,,, describes the phase 
factor of the effective band and vanishes if 

yq.eq-yqep'=y-qeq-fie-q+-O. 

We assume hereafter that this condition is met. Substituting 
now the explicit expressions for urn and v,,. , we get 

The temperature-dependent phonon renormalization of the 
band consists thus of two contributions of opposite sign. The 
positive contribution to S,,. ( a 9) is due to the polaron- 
induced increase of the particle mass and is part of the stan- 
dard theory of small polarons. The second (negative) con- 
tribution is due to the increase of the probability of 
interstitial tunneling with increase of the phonon-oscillation 
amplitude.4 In fact, it is easily seen that this contribution is 

2 2 equal to - a pmm./2, wherep:,, is the rms displacement of 
the atoms, 

z=< [(Rm - Rm,) (pnt -p,n0l2 
(R,,, - Rm,)2 > .  

To prove this relation we must use Eq. ( 3 ) .  This fact means 
that the effects considered in the investigated model are sig- 
nificant only when the rms thermal displacements of the 
atoms are comparable with or are larger than the localiza- 
tion radius of an electronic state on a site (a2p2 2 1). lo On 
the one hand, this limits strongly the number of materials for 
which the generalization considered here is vital, and on the 
other it makes them substantial mainly at high tempera- 
tures, when &, < 2kT, and the phonon oscillations acquire 
a purely classical character. In this temperature region we 
have 
- 2kT 2 1 - eos q (R,, - R,,) [(R!,, - R,,v) eqI2 
&lnl, = - iV Moq2  (Rnl- R?7>,)2 * 

Thus, according to ( 18), at not too large a coupling constant 
y, the width of the polaron band at &, < 2kT increases ex- 
ponentially with temperature like exp(BT), where 

This band broadening is due to the increases of the tunneling 
probability with increase of the atom oscillation amplitude.4 
If, however, 9 > S2, then B < 0 and the polaron band nar- 
rows down with temperature, meaning a heavier polaron 
jacket. 

3. DIAGRAM TECHNIQUE 

Since the Hamiltonian ( 14) of the model considered is 
quite similar to the Hamiltonian of the standard small-po- 
laron theory, a diagram technique can be obtained by a rela- 
tively simple generalization of the small-polaron technique 
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in the site representation.2*3 We shall not repeat here the 
rather cumbersome derivation, and state only the final re- 
sult. 

The diagram consists of n interaction points located on 
a contour in the complex-time plane (see Fig. 1 ). In the one- 
electron approximation all the points are joined successively 
by electron lines that carry a site index m. The interaction 
points are next joined in all possible manners by phonon 
(wavy) lines. Each point i is set in correspondence with a 

factor 

( + i/fi)Irn,,: exp( - Smi,:) , 

where mf (mi ) is the index of the outgoing (incoming) elec- 
tron line at the point, and S,,. is defined by Eq. ( 18). The 
sign + ( - ) is chosen for the lower (upper) part of the 
contour. The phonon bundle joining the points i and k (the 
point k precedes the point ion  the contour, see Fig. 1) is set 
in correspondence with the factor 

It can be verified that the diagrams expressed in this 
form diverge at long times.' Their convergence is restored by 
a subtraction procedure233s" that makes it necessary to 
eliminate from the diagram with all possible phonon bundles 
the diagrams with phonon lines broken in all possible man- 
ners. When dispersion is taken into account, this procedure 
restores the convergence. On the other hand, ladder-type 
summation of the subtracted diagrams lead to a transport 
equation and, in the upshot, to the appearance of a band 
contribution to the electric conductivity. The main diagram, 
however, makes a noise contribution to the mobility. 

The procedure described here naturally coincides at 
S = 0 with the diagram technique of the standard theory of 
small polarons. 

In the presence of a diagonal disorder ( 15) in the sys- 
tem, each point i must be set in correspondence to an addi- 
tional factor 

FIG. 1. Integration contour in complex-variable plane and example of a 
diagram in the site approximation. Only one of three phonori bunches is 
shown in the figure. 

where m l  (mi ) is the index of the electron line outgoing (in- 
coming) from the point; see also Ref. 3. 

4. HOPPING CONDUCTIVITY 

We use now the obtained general relations and diagram 
recipes to calculate the hopping contribution to the electric 
conductivity. According to general electric conduction the- 
ory in the site representation2s3 the hopping contribution p, 
to the mobility can be expressed as 

where X ,  is the component along the x axis (the electric- 
field direction) of the site radius vector R, , and Worn is the 
probability of hopping over from site zero to site m. Relation 
(20) can be easily understood by writing the corresponding 
expression for the diffusion coefficient and using the Ein- 
stein relation. 

In the lowest (second) order with respect to the reso- 
nant integral, the hopping probability is described by the two 
diagrams of Fig. 2. Figure 2a corresponds to the analytic 
expression 

m 

Zmo2 - exp ( - 2 ~ ~ 0 )  J d t  
f i2  

0 

The complex-conjugate diagram 2b differs in that limits of 
integration over t are - CG and 0. We assume below for 
simplicity that the constants y and S are real. 

Confining ourselves to hops between nearest neighbors 
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FIG. 2. Two diagrams describing the polaron hopping probability W,, 
from the zeroth site to the mth. Diagram 2b is thecomplex conjugate of 2a. 

(R, = g, where g is the nearest-neighbor vector), we obtain 
from (20 ) 

where a = (gl is the lattice constant, and Wis the probability 
of hopping between nearest neighbors, given by 

Here I=Ig, is the resonance integral between nearest neigh- 
bors, S=S@,  and 6, r6,,  (q) .  It should be noted here that 
the substitution g-+ - g reverses the sign of a,,,, the proba- 
bility Wis not changed by the substitution S - .  - 6, so that 
the subscript g of 6 can be omitted. Equation (22) is also the 
result of the integration-variable change t + iW2kT- t. The 
appearance of the counterterm - 1 in the curly brackets of 
(22) is due to the subtraction procedure described above, i.e, 
the subtraction from Fig. 2 of diagrams with omitted phonon 
bundle. 

The integration over t in  (22), as is customary in small- 
polaron theory, is by the saddle-point method. The first sad- 
dle point to is located on the imaginary axis, to = ir, with T 

defined by the equation 

Recall that contributions from other saddle points, for 
which Reto#O, are small to the extent that phonon disper- 
sion is present.2s33" Expanding in powers oft in the exponen- 
tial near the point t = i r  accurate to ( t  - i ~ ) ~  and integrat- 
ing, we get 

To obtain a simple temperature dependence of W we 
confine ourselves to the case m q r g  1, which is the case when 
2y6 < $ + S2, i.e., either y ) 8 or 6 y. In this limit we have 
from (23) 

Expanding the argument of the exponential in (24) in pow- 
ers of T up to $ (we put T = 0 in the pre-exponential factor) 
and taking (25) and (18) into account, we get 

1-cos qg 'I* (g -N l ( f i o , , / 2 k T )  (26) 

In the high-temperature limit hq < 2kT, the temperature 
dependence of W takes the form 

where 

Without allowance for the influence of the phonon oscilla- 
tion on the resonance integral, when Sq = 0, we obtain 
E - = 0, EL = Ea, and relation (27) goes over into the 
known results for hopping conductivity of small polarons.1-3 
In the other limiting case of weak coupling to the phonons, 
when yq -0, we obtain E, = 0 and In W a  ~ T / E .  

Equation (27) is the central actual result of the present 
paper. With account taken of (21) and with a current-car- 
rier density independent of temperature, this relation shows 
that the temperature dependence of the hopping conductiv- 
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ity a is given by 

where A is the independent of temperature. An exponential 
dependence of this type was obtained semiphenomenologi- 
cally in Ref. 4, where experimental data for a large number 
of materials were analyzed and compared with a relation of 
type (29). That relation, to be sure, was not written for 
ln(T3'2 a) but for ln(Ta). It was observed as a result that 
(29) describes well the experiments for CdS with In, for 
GaAs with Cr, for As2Te, and for several other glasses, for 
VO,, and also for many other compounds at E, = 0 (i.e., in 
the absence of a polaron well). Equation (29) with E, # O  
can be used for Ti,O,, - , and V,02, - , . Good agreement 
with (29) was recently observed12 with the temperature de- 
pendence of a in the solid solutions Ti, - , Nb, 0,. 

The most complicated in the comparison of theory with 
experiment is the question of the localized-state radius 
which, as already noted, should be very small, not larger 
than the rms displacement 7 of the atoms in thermal oscil- 
lations, see Sec. 2. The values of the state radius a -  ' for 
different materials were deduced in Ref. 4 for different mate- 
rials from the experimental data on a (T) ,  using a relation 
similar to (29). The resultant values of a - ' range from 0.58 
A for Ti,O,, to 3.4 A for SOz. It was assumed in these calcu- 
lations that E -  ' = 2a2/MwZ, where w is the characteristic 
phonon frequency (chosen equal to 10" s -  ' ). This estimate 
is rather arbitrary. In particular, these estimates are as- 
sumed in Ref. 10 to be patently too high. In the proposed 
theory, according to (26) we obtain for weak coupling with 
the phonons, yq -0, 

The second (approximate) equality in this chain was written 
for the quasiclassical high-temperature limit Tim, < 2kT, and 
the last equality for a cubic lattice. In the particular case of a 

Bravais lattice we have e, = 1. Note that in the general case 
E - cannot be expressed in terms of the rms displacementp2, 
since (3)  contains the factor coth(Timq/4kT) and 
coth(Timq/2kT) = 2 M  + 1. In the high-temperature limit, 
however, we have kT/e = 2a2 y, where 7 = for 
R, - R,. = g (see Sec. 2). 

Notwithstanding the good agreement of (29) with the 
experimental data for a large group of materials, the charac- 
ter of electron transport in them can be reliably described 
only after theory is compared with experiment for other ki- 
netic coefficients. These include the temperature depend- 
ence of u at low temperatures, where a transition from hop- 
ping current transport to band transport can be expected for 
crystalline  substance^'-^^'^ or to hops over level near the Fer- 
mi surface for disordered materials (to Mott's law); the fre- 
quency dependence of light absorption, which is character- 
ized in the small-polaron model by the presence of a 
Gaussian peak; the temperature dependence of the Hall mo- 
bility which differs radically from that of the drift mobility; 
the frequency dependence of a in the rf band for disordered 
materials; and the temperature dependence of the thermo- 
electric power. All these kinetic coefficients can be calculat- 
ed by the procedure proposed in the present paper, using 
procedures developed in standard small-radius-polaron the- 
ory. 
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