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A method is proposed for calculating the distribution function of the plasma parameters of a high- 
pressure microwave discharge. The method is based on the assumption that the electromagnetic 
field is randomized in the discharge region. A differential equation describing the evolution of the 
distribution function of the plasma parameters is derived in the framework of the model of an 
electromagnetic field fully randomized in phase. 

INTRODUCTION 

The most interesting type of experimentally observed 
microwave discharge is apparently the non-autonomous mi- 
crowave discharge investigated in sufficient detail both 
experimentally and theoretically. "I2 A distinguishing 
feature of a discharge of this type is that the initially homoge- 
neous plasma background produced by an external pre-ion- 
izer evolves during the nonlinear stage into a strongly inho- 
mogeneous spatial structure perceived as a 
three-dimensional stochastic spider web made up of brightly 
glowing plasma filaments separated by dark regions. This 
formation, having a strongly inhomogeneous spatial distri- 
bution of the plasma parameters and hence of the electron 
density, should scatter intensely the heating electromagnetic 
wave and lead to formation of a strongly inhomogeneous 
spatial structure of the microwave field in the discharge re- 
gion. 

The theoretical investigations of discharges of this type 
constitute a broad spectrum of problems, starting with the 
analysis of the linear stage of discharge ev~lution"~ and end- 
ing with various models of nonlinear plasma  formation^.^-'^ 
An investigation of the linear microwave-discharge stage 
has revealed the mechanism responsible for violation of the 
initial homogeneity of the plasma background through de- 
velopment of one of the types of plasma instability in a mi- 
crowave field, namely, ionization-field4277' of ionization-su- 
perheat6 instabilities. The nonlinear stage of the ionization- 
superheat instability was considered in an investigation9 of 
the evolution of a single plasma filament in a heating micro- 
wave field of specified amplitude. It was observed that the 
evolution is explosive and leads to collapse of the filament.9 
Formation of screw solitons was investigated in Ref. 10. An 
evolution problem, whose formulation took quite adequate- 
ly into account the specific features of a molecular-gas plas- 
ma in a microwave field, was considered in Ref. 11. Its for- 
mulation took quite adequate account of the peculiarities of 
heating a molecular-gas plasma in a microwave field, mak- 
ing it possible to distinguish between different characteristic 
stages of the plasma evolution. Self-similar solutions corre- 
sponding to vibrational-translational nonequilibrium plas- 
ma structures in a microwave field were investigated in Ref. 
12 in a one-dimensional formulation. 

The models proposed in the cited papers turned out, 
however, incapable of describing a steady-state microwave 
discharge, in which an important role is played by stochasti- 
zation of the electromagnetic field in the discharge region. 
Therefore, generally speaking, effects connected with sto- 
chastization of the microwave field must be taken into ac- 

count even when determining the evolution of a single plas- 
ma filament. This means consideration of the incidence, on a 
plasma filament, of a random microwave field (i.e., having 
an amplitude that varies randomly with time). 

We discuss below the simplest stochastic model of a 
high-pressure microwave discharge. 

1. FORMULATION OF PROBLEM 

A correct description of the interaction of a microwave 
field with discharge-plasma inhomogeneities requires a si- 
multaneous solution of the equations for the plasma and the 
equations for the field. Let X be a certain state vector de- 
scribing the evolution of a plasma in a microwave field. (The 
state vector can contain all sorts of parameters, such as the 
density, temperature, and directional velocity of the elec- 
trons and of other plasma components, describable by a sys- 
tem of hydrodynamic equations. X can include if necessary 
also the populations of the internal vibrational and other 
degrees of freedom of the molecules, etc.) The system of 
equations defining the evolution of X can in general be writ- 
ten in the form 

where D is the tensor of the diffusion coefficients and of the 
thermal conductivity, F(X,Ea ) = (F, ,  ..., F, ) is the nonlin- 
ear source term that depends both on the plasma parameters 
and on the local field amplitude Ea (r,t): 
E(r,t)  = Eaexp(iwot). It is assumed that all the processes in 
the plasma are slow compared with the characteristic time 
7, = 1/o0 of field variation. The processes taken into ac- 
count in ( 1 ) are each defined by its own characteristic time 
scale r, that is subject to a certain hierarchy 

and a length Li. 
The system ( 1 ) must be supplemented by a field equa- 

tion 

where a is the electric conductivity of the plasma in the mi- 
crowave field.' 

The problem ( 1 )-(2) as formulated is difficult to solve 
even in the steady state, since account must be taken of the 
scattering of the microwave radiation by the essentially in- 
homogeneous spatial structure. However, as shown below, 
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owing to the spatial disorder of the plasma filaments, this 
problem lends itself to a simple enough formulation in the 
context of the theory of stochastic processes. 

1. E~periment ' .~  has shown that in a high-pressure mi- 
crowave discharge the characteristic transverse dimension 
L,, of the produced plasma formations is much larger than 
all the diffusion and heat-conduction lengths L, (L,, %L, ), 
so that the corresponding processes are effective in a narrow 
boundary region G, separating the strongly and weakly ion- 
ized G, and GI phases of the microwave discharge, i.e., 
G,<G, < GI. Recognizing that the main purpose of the in- 
vestigation is to obtain the distribution function P ( X ) ,  we 
can neglect the region G, in the zeroth approximation with 
respect to the small parameter y = G,/G,, since 

i.e., instead of investigating the evolution of the distribution 
of the system ( 1) we consider the evolution of a lumped 
system (with the diffusion and heat-conduction terms omit- 
ted). A valid neglect of the region G, requires satisfaction of 
a condition imposed on the characteristic time rfof displace- 
ment of the interphase boundary: r, &rf = Lf/uf, (where r, 
is the characteristic time of the problem and Lf is the charac- 
teristic scale of the front). In fact, a set of equations such as 
( 1 ), while having several stationary homogeneous solutions, 
has also spatially inhomogeneous solutions in the form of 
traveling fronts of parameter switching from one phase to 
another (see, e.g., Ref. 12), and if the inverse condition 
r, $rf were met the plasma evolution would take place 
mainly in a thin interphase layer rather than in the regions 
GI and G,. In our case the velocity uf is determined by slow 
heat-conduction proces~es '~ and neglect of G, is therefore 
justified. 

Note that neglect of the region G, imposes certain re- 
strictions on the possible characteristic time T, of the prob- 
lem. In fact, by neglecting the region G, we exclude from 
consideration all the equations of motion of the plasma com- 
ponents. Two cases are possible then, r, > rmi or rP < rmi, 
where T,, is the characteristic pressure relaxation time of the 
i-component. 

2. As already mentioned, the presence of inhomogene- 
ities with large plasma parameters leads to intense scattering 
of the microwave radiation and to formation of an inhomo- 
geneous electromagnetic-field structure in the discharge re- 
gion. From this standpoint we can liken the plasma of a high- 
pressure microwave discharge to a system of N spatially 
uncorrelated scatterers. The field at some selected point can 
then be written in the form 

where E, is the amplitude of the heating microwave in the 
absence of scattering. (The solution of Eq. (2)  can be for- 
mally represented by a continual path integral, where Ej and 
pi must be taken to mean the values of these parameters on 
the corresponding path, and N is the number of paths enter- 
ing the chosen point of the volume. Since the scatterers are 
spatially uncorrelated, E, (r,t), and most importantly 
pi (r,t), will be random quantities. Owing to the random 

character of the scattered field, new scatterers (plasma fila- 
ments) will be formed in certain regions where IEl > E,, I 
(E,, is the breakdown field), and conversely, some of the 
scatterers will relax, being located in the field "shadow" re- 
gion. The general picture, however of the microwave dis- 
charge will consist in this case of random creation and anni- 
hilation of plasma filaments, accompanied by a global 
restructuring of the electromagnetic field in the discharge 
region. 

3. The characteristic time scales of the correlations of 
the field-amplitude fluctuations, due to scattering by plasma 
inhomogeneities 

(E;(tl)Ei ( t2 ) )  a a,kE;2(t,)exp( - Itl - t2/ / r ,  1, 
where E; = E, - E,, and T, is the characteristic correlation 
time, will obviously correspond to the characteristic evolu- 
tion time of the electronic plasma density, i.e., it can be 
roughly assumed that T, - T,~,  where T , ~  is a certain average 
evolution time of the electron density (the time T , ~  is too 
short for the electron density, and hence for the field struc- 
ture, to change in the microwave-discharge region). 

We choose the characteristic time of the problem such 
that T,, > T,", in which case the random force E, (r,t) can be 
regarded in the zeroth approximation in the small parameter 
rc/rp as a random process &correlated in time. 

4. For a correct formulation of the problem of determin- 
ing the distribution function, we must know the statistical 
properties of the electromagnetic field in the discharge re- 
gion. In the simplest case, a model that is fully randomized in 
phase and in field direction can be used. (This assumption is 
reasonable, since individual scatterers with L,, have a 
spherically symmetric scattering indicatrix, and as N-. cc 

the field direction should be randomized, i.e., the field inside 
the charge will "forget" the side from which the heating field 
came.) In this approximation we obtain for the function 
G( IE, I), with allowance for the symmetry 

and also with allowance for the circumstance that G2 < GI 
(i.e., it can be assumed that the field penetrates unhindered 
into the region Go, and consequently (1 E, 1') = f jE,/ ,), the 
expression 

The problem is thus completely formulated: we must 
find the distribution function P, ( X )  of the plasma param- 
eters whose evolution obeys the dynamic equations ( 1 ). The 
plasma is acted upon in general by a non-Gaussian random 
force f having a distribution function that is compatible at 
any instant of time. 

We confine ourselves below to the case of one parameter 
(generalization to any case is easy) for a system with a Joule 
heat release 

It will be more convenient here to assume that f = E, j 2  and 
has a distribution function 
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2. DERIVATION OF DIFFERENTIAL EQUATION FOR THE 
DISTRIBUTION FUNCTION P,(X) 

The differential equation for the function P, (X) can be 
obtained by a method described in Klyatskin's book," by 
differentiating P, (X) - (6(X - { ( t ) ) )  with respect to time, 
using the properties of the &function, and taking the non- 
random factor outside the averaging sign, 

To decouple correlations of the type (f(t)R Ifl) we in- 
troduce a certain functional of a random process 

t 

where @ [u] is a characteristic functional of the random pro- 
cessf, and @[u] = (exp{i~&drf(r)u(r))). In the case of the 
correlations of interest to us, 8,, can be represented as t ' -- t 
in the form 

where 0 = ln(@[u] ), 0, [u] = d0/dt. 
With the aid of (5)  and (6)  we can rewrite the correla- 

tion from (4) in the form 

It is recognized in the derivation of (7)  that 

The differential eauation for P. (X) 

written in operator form, is thus an exact consequence of the 
initial dynamic system ( l a )  with allowance for (3a).  To 
make more specific the correlation-containing expression in 
the right-hand side of (8) ,  we must determine the explicit 
forms of the functionals 0, [u] and @ [u]. The functional 
@ [u] can be represented by a functional expansion in the nth 
moments of the random process f 

where (f ,... A , )  = ( l / in )  (S@[v]/Su ,... Sun)  I ,,=,. 
O ( u )  can in turn be written in the form 

t 

where the cumulants K ,  are given by 

Recognizing that 0 = In(@) and introducing f '  = f -Af;, and 

f, = /E,,I2, we obtain (see also Ref. 14) 

Expressions for K,  can be derived also directly from the 
form of the functional @ [u] , by recognizing that 

where@'[u] = (exp(iJdrf ' (T)u(T)  ) )  with (f') = 0. At the 
same time, the expression 

is valid for the random process f '  with (f') = 0, and we arrive 
at (10).  

To specify further expression (9)  we must know the 
correlation characteristics of the process f, using for this 
purpose some model of the random processf. In our case, in 
the zeroth approximation in the small parameter rC/rp,  we 
can regard f as a random process 6-correlated in time. The 
correlations (f; ... f ) taken then the form 

where B,, (7) is determined from the conditions 

(rC is the characteristic correlation time of the random pro- 
cess f '. ) 

Knowing (f") = JdfGV) f n  and (f'") we can obtain 
K ', and hence 0 '[u] . (In particular, B, = 0, B, = + rC f i,  
B, = - 5 (+ l2r; f i, etc. ) It is more convenient, hbwever, to 
obtain an explicit form of the functional 0 ' [u] . Substituting 
( 11) in (9)  and differentiating the results once with respect 
to time we get 

Q;lu] = zc B,, ( r )  un ( r ) ,  Bn(r )=  l*' I . (9a) 
n! in dun v=O 

7, =- 1 

For a 6-correlated process, generally speaking, it suffices to 
know in place of the characteristic functional @ [u] the char- 
acteristic function $ = (exp(iffu) ) = Jdf 'G(f')exp(iflu), 
which is easy to calculate 

Since the characteristic correlation time is finite, we have 
finally 

0,' (v) =T,-' exp (-ifour,) (l-2/,it,fou)-~i (12) 

[Eqs. ( 12) yield for B, the same values as determined from 
( 10) . ]  Using ( 12), we can rewrite (9)  as 

The operator notation in ( 13) must be understood in the 
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sense of a cumulant expansion of (9a) with allowance for 
(12). 

We introduce a new independent variable Z = JdX/ 
a (X)  and a new function Q(X) = P(X)o(X), and then the 
differential equation takes the form 

The solution of the new equation ( 14) for Q(Z)  will also be a 
solution for ( 13), since the normalization is conserved. In 
fact, SzdZQ(Z) = JxdXP(X) = 1. The simplest stationary 
solution, under the condition that there exists at least one 
stationary point ( l a )  when IE, I = I Eel, we obtain in the 
quasiclassical approximation, confining ourselves to K, 
with n<3, 

X 

where p =  - (3/K31{K2/2 - [(K2/2I2 
+ 4 K3(F1) "2]). For the long-wave approximation ( 15) 

to be valid we must have #<p and in addition the contribu- 
tion of the discarded terms with n > 3 must be small enough. 
If the dynamic system has no stationary solutions we must 
consider the evolution problem with initial conditions t = 0 
and Q(Z) =S(Z-Z, ) .  

3. MODEL OF VIBRATIONALLY TRANSLATIONAL 
NONEQUlLlBRlUM STRUCTURES IN A STOCHASTIC 
MICROWAVE FIELD 

We proposed in Ref. 12 for a high-pressure microwave 
discharge a very simple model of vibrationally translational 
nonequilibrium structures describable for times 
rp - l/Ke-'Neb - l o p 6  s-'(the subscripts h and 1 desig- 
nate parameters corresponding to high and low ionizations 
of the microwave discharge, and K '- " is the coefficient of 
the rate of excitation of the vibrational levels by electron 
impact) by the set of equations 

aTv 0-9 - 
C"N, - = Q'-"-Qo =Fa (T,) , 

at 

where Q ' - " and Q '- " stand for the energy dumped by the 
electrons in the vibrational and internal degrees of freedom 
of the molecules, respectively; Ciw, and Ciw, are the excita- 
tion energies of the corresponding levels; N, and N, are the 
densities of the gas molecules and of the electrons; viand v 
are the ionization and recombination frequencies; P is the 
dissociative-electron-sticking coefficient; Y  is the intensity 
of the external preionization source, C " is the vibrational 
heat capacity of the gas, and Qoe-" is the fraction of the 
energy, determined for the background plasma parameters, 
lost by the electrons in collisions with molecules and excita- 
tion of vibrational levels. l2  

The system ( 16) has one, two, or three homogeneous 

stationary solutions, depending on the value of the bifurca- 
tion parameters E of the problem.I2 If the amplitude of the 
heating field is in the range corresponding to the presence of 
several stationary states of the plasma, it is natural to expect 
stratification of the microwave-discharge volume into re- 
gions occupied by phases with different parameters. 

The described approach can yield the distribution func- 
tion P, ( T, ) of the vibrational temperature. For the station- 
ary case we obtain in the long-wave approximation 

where rC - ( l/v') Te = Tel; Tu, is the vibrational parameter in 
the weakly ionized phase; C '  is a normalization factor. 

Knowing the distribution functions P, ( T, ) we can ob- 
tain in the usual manner the average microwave-discharge 
characteristics, including the average microwave power 
W = (a1 E, 1 2, T,E, absorbed per unit volume 

Results of a numerical calculation, using (17), for ex- 
perimental conditions,' i.e., for a volume non-autonomous 
microwave discharge in molecular nitrogen at atmospheric 
pressure, are shown in Figs. 1 and 2. It follows from ( 16) and 
(17) that the average power W absorbed per unit volume, 
and also W /  Wo (where Wo = o,E is the power determined 
from the plasma background parameters), depend parame- 
trically on the intensity Y of the external ionizer and on the 
characteristic correlation time T, of the field. Calculation 
shows that the dependences of Wand W/ Wo on 7, are weak, 
andat lo- '  <rC < 10W9 s theratioA W/W doesnot exceed 
10%. 

As seen from Fig. 2, at Y< 10" cm - 's ' the stochastic 
character of the field in the discharge region has practically 
no effect on the plasma absorptivity, i.e., the background 
remains homogeneous. At Y s  10" cm - 's - I, conversely, 
the ratio W/W, exceeds unity substantially. In the param- 
eter ranges lo3 < Eo < lo4 [V/cm] and loi4 < Y< 10" 
cm-3 s-' the average absorbed power is well approximated 
by the relation 

FIG. 1.  Volume-averaged specific heat power absorbed by the plasma in a 
microwave discharge vs the heating-wave amplitude. I-Y= l o t 4  
c m 3 s 1 ;  2-10"; 3-10)'; 4-10". 
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FIG. 2. Influence of field sfochastization on the absorptivity of a micro- 
wave discharge plasma. I-Y= lOI5 cm -'SKI; 2-10"'; 3-10". 

where W is in W /cm3, Eo in V/cm, and Y in cm - 3s - '. 
We conclude by considering a question connected with 

the spatial correlations of the plasma parameters in the vol- 
ume of a microwave discharge. Obviously, the analysis 
above yields no information whatever about the structure of 
the produced plasma formations. To estimate the character- 
istic dimensions of the plasma inhomogeneities it is neces- 
sary therefore to resort to additional considerations. Gener- 
ally speaking, the spatial correlations of the plasma 
parameters are in fact determined by the diffusion and ther- 
mal-conductivity terms omitted from ( 1 ), so that it is possi- 
ble to estimate the minimum transverse dimension 

2 1/2 L,,, a (Ag TU/oh E ) , of the "seed" of the highly ionized 
phase, whereR, a N, Tg/Mgvg; v, is the thermal-conductiv- 
ity of the gas, vg is the frequency of momentum loss by the 

gas molecules, and T, is the translational temperature of the 
gas.I2 On the other hand, the maximum transverse dimen- 
sion of the gas will obviously be determined by the skin ef- 
fect, i.e., L,,, a Im(w,&;"/C), where E~ is the dielectric 
constant of the highly ionized phase of the plasma and 
&,, = 1 - 4%-o,, /wo. 

One of us (O.S.) thanks I. A. Kossyi who at one time 
called his attention to this form of discharge. The authors 
thank A. A. Rukhadze and the participants of his seminar 
for a helpful discussion of the results. 
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