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We study the spectrum of electronic vibrations in an ideal degenerate cold ( T 4  8, ) 
nonrelativistic plasma. We obtain an expression for Landau damping, which is nonzero in the 
zero-sound range even at T = 0. Under the conditions considered the electronic vibrations 
spectrum has been found to have a terminal point. Expressions for all characteristic wave vectors 
are also derived, namely, fork, (from which Landau damping begins as Jkl increases), fork, (at 
which the maximum frequency is attained), and fork, (corresponding to the terminal point). All 
these values are found to be of the same order of magnitude (of op/v,) and differ only in 
logarithmic factors. 

1. INTRODUCTION at absolute zero collisionless damping can be finite: there is a 
The spectrum of electronic vibrations in a degenerate non- threshold value kl such that for k < k, no damping is ~oss i -  
relativistic ideal plasma is assumed to have been well-studied ble but for k > k~ the damping is finite. 

and the results given in standard textbooks (e.g., see Refs. 1- 
3) are seen as classical. Indeed, the spectrum was calculated 
quite a long time ago. For instance, in the quasiclassical 
range of wave vector values Ik( Vlasov4 found that for 
k &w,/u,, with W, = (4rnq2/m ) ' I 2  the plasma electron fre- 
quency, u, = f i (32n)  lJ3/m the electron velocity at the Fer- 
mi surface, n the electron number density, q the electron 
charge, and m the electron mass, the dispersion of longitudi- 
nal electronic vibrations assumes the form 

while Gol'dman5 found that for wp /uF 4 k 4 m v,/fi, 

which corresponds to the case of zero sound. Later6 the dis- 
persion law for the electronic vibrations of a weakly nonideal 
Fermi gas was rigorously obtained on the basis of the quan- 
tum kinetic equation. Note that in the literature cited here 
the zero-sound region is assumed to extend at least to the 
wave numbers k-p,/fi, with p, = mu, the electron Fermi 
momentum, while damping is linked solely with the thermal 
motion of particles (or their collisions) since [as Eqs. ( 1 ) 
and (2)  show] the phase velocity of the excitations consid- 
ered is always strictly greater than u,. Note also that for zero 
sound in a normal Fermi liquid the possibility of collisionless 
damping at absolute zero was rejected (e.g., see Ref. 7 ) .  

Silin and Ur~ov ' .~  studied the spectrum of longitudinal 
waves in a relativistic degenerate plasma and pointed to the 
qualitative change in the spectrum (including the existence 
of a terminal point) related to the branch points in the dis- 
persion function ~ ( w , k ) ,  but they rejected the possibility of 
collisionless damping of waves near the end of the spectrum. 

In this paper we show that the dispersion law for longi- 
tudinal electronic vibrations of an ideal degenerate plasma 
as T--0 in the short-wave range (k  2 wp /v,) differs consid- 
erably from the law given in textbooks (see Refs. 1-3). The 
first difference is that the dispersion curve does not continue 
to values k -p,/fi in accordance with Eq. (2)  [there is, how- 
ever, a wavelength range where (2) is approximately valid]. 
It has been established that there is a value k, for the wave 
vectors where at k > k, no vibrations are possible. Also, even 

2. THE DIELECTRIC CONSTANT 

Let us consider an almost ideal degenerate cold nonrelativis- 
tic plasma. We allow for a contribution to the dielectric con- 
stant only from the (degenerate) electron component; we 
also assume the ion mass to be infinitely large and ignore the 
effect of ion mass on the electrodynamics. In what follows 
(except Sec. 5) we assume that the electron temperature is 
zero. The weak nonideality of a plasma means that electron 
interaction is weak: 

q2n%<8, ,  

which is equivalent to 

and the nonrelativistic nature of particle motion, uF4c, 
means that in addition to ( 3 )  we have 

When q2/3u, 2 1, we have an electron Fermi liquid (strong 
nonideality; e.g., see Refs. 10-12), while at v, -c the degen- 
erate electron gas becomes relativistic (e.g., see Refs. 13- 
15). In metals inequality (3 ) usually does not hold (as a rule 
q2/3v, c2 .2  in metals). In white dwarfs, where ( 3 )  holds, 
condition (4)  breaks down. Both conditions (3)  and (4)  
may be met in some semiconductors (in germanium, for in- 
stance). 

The evolution of the electron distribution, which in the 
field of the longitudinal wave is assumed spin-independent, 
is described by the following equation for the one-particle 
density matrix p = p(t,r, ,r, ) : 

8 P iti - = (As-A,') P, 
d t 

( 5  

where the Hamiltonian of the electron in the external field of 
longitudinal potential vibrations is spin-independent and 
has the form 

f i2  a= - - VZ-qrp ( t ,  r ) ,  
2m 

( 6 )  

h 

and H,,,  in Eq. (5)  acts on the variable r,,, , respectively. 
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Combining Poisson's equation with Eq. (5  ) , we arrive 
at an expression (derived in Ref. 6) for the linear dielectric 
constant &(o,k) : 

4nqZ 2a3p 
E(O,L)=I +- J-. 1 

fik2 ( 2 r ~ f i ) ~  o- (kv) +iO Dknp 

where n, is the ~nperturbed~electron distribution function, 
and the difference operator D, acts according to the rule 

and in the limit of small k transforms into differentiation: 

bk-+fik. aiap. 

The procedure for finding ~ ( w , k )  specified by (7)  is stan- 
dard and is given in textbooks (e.g., see Ref. 1 ) . 

Note that in deriving (7) we assumed the field of the 
electron wave to be nonquantized; actually, this means that 
we are considering only the case where the number of quanta 
of such waves is high, which in turn allows us to ignore the 
spontaneous processes as compared to stimulated. The ap- 
pearance of an infinitesimal positive imaginary term in the 
denominator of (7)  is related in the usual manner to the 
causality principle (the Landau rule of pole bypass). 

In the case considered, T = 0, the electron distribution 
function has the shape of a step, 

so that (7) can easily be integrated: 

where 

o,=o*fik2/2m, 

In accordance with the Landau rule of pole bypass, we have 

for a negative. 
For further analysis it is expedient to go over to dimen- 

sionless variables 

Then, combining ( 10) and ( 1 1 ), we obtain 

with 

Q,=Q=tK214M, M=P;F/fiop. 

Inequalities (3) and (4)  imply that 

For the imaginary part of the dielectric constant we obtain 
(assuming, for definiteness, that both R and K are positive) 

Thus, the imaginary part of the dielectric constant vanishes 
only when a >  K + K '/4M or when a <  K 2/4M - K (if 
K > 4M). In all other cases it is finite. 

Concluding this section, we note that all the results dis- 
cussed here are well known (a fairly complete study of the 
behavior of E(O,K) at T =  0, including the case where 
v,-c, which means that pair production'3 contributes to 
Im E, has been done by Kosachev and TrubnikovL4). Never- 
theless, nowhere in the literature, to our knowledge, has 
there been a definite calculation for noncollisional attenuat- 
ing of electrical oscillations in the degenerate plasma. 

3. THE DISPERSION LAW 

Let us consider the solution of the equation 

Re e (Q, K) =O, (16) 

without allowing, for the time being, for a small damping of 
the vibrations. For K < 1 and SZ - 1 we have the well-known 
solution ( 1 ) : 

Next, when R 2 1, K k 1, and R - K > K  2/4M, we arrive at 
(2): 

Q=K[1+2 exp (-2-2K2/3) 1. (18) 

These solutions to Eq. ( 16), as noted earlier, are well known. 
The n ( K )  plot that is the solution to Eq. (16) for 

0 (K) > 1 intersects the curve R- = K at a certain point 
K = K,. This point K, is the threshold from which Landau 
damping manifests itself (see below). One can easily estab- 
lish that at the intersectioil point Kl  the curves representing 
a= Q(K) and 62 = K + K '/4M have the same derivatives, 
dWdK = 1 + K1/2M. Thus, the difference K - R- in the 
neighborhood of point K, is o(K - K, ). We note also that K, 
is an inflection point of the function R (K) : the second deriv- 
ative d 'R(K)/dK2 is positive for K<K, ,  negative for 
K >  K,, and vanishes at K = K,. 

Let us find the expression that defines the position of 
point K,. The simplest way to do so is to substitute 
a = K + K 2 / 4 M  into Eq. (16). This leads tog(S1-) = O  
(sincex lnx-+O asx-+O), and for K, we have 

Solving ( 19) yields approximately 

where e = 2.718 ... is the base of natural logarithms, while 
the electron charge is denoted by q. 

Let us find the point K, at which the function Q(K) 
attains its maximum. The point is determined by two equa- 
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tions: 

It ,can easily be shown that Eqs. (21) yield the following 
eciuation: 

whose approximate solution is 

It should be noted, that the condition (21) is not enough for 
the presence of the maximum function fl (K) . We have 

dZQ/dKZ<O, 

and K = K2 point actually is the maximum point. For the 
maximum frequency a,,, that the longitudinal electron 
waves may have we arrive at the following formula: 

K,Z 
QnLOz=Q (K,) = K,+ (2K2+1) (-) = K,. 

4 M  (24) 

As K increases further, the plot of O(K) bends downward: 
the group velocity of the waves becomes negative. At K = K3 
there emerges a singularity corresponding to 

The following equation corresponds to conditions (25): 

The solution to Eq. (26) at fl = a ( K )  is 

A more exact calculation shows that 

This expression is always positive for all admissible val- 
ues of K, [defined by inequality ( 14) 1. The vibration fre- 
quency at K = K3 is 

FIG. 1.  

The plot of Eq. ( 16) then corresponds to a decrease in R 
with K, and as K-0 we find that 

where a-0.84 is the solution to the equation 

One must bear in mind that actually the solution of the (30) 
type for Eq. (16) corresponds to no waves, since on this 
branch Im E 2 1 (see the next section). Figure 1 depicts the 
solution R = R(K) ofEq. (16). 

4. LANDAU DAMPING 

Let us now discuss the wave damping y due to the imaginary 
part of the linear dielectric constant, ( 15). For the upper 
part of the curve in Fig. 1, a+ > K up to values k = k,. At 
the same time it is easy to see that for K < K ,  we have 

K and Im E(R,K) = 0, while for K>K,  we have 
IS1-I < K and Im E(R,K) #O. Thus, only waves with wave 
vectors greater than K, are damped. Calculating the damp- 
ing constant by the formula 

we arrive at the following expression for r near the thresh- 
old (expanding in powers of K - K, < 1) : 

n6Ih ln (4M/e")  In" (4Mle)  K -K ,  r=---- 
2 M lna[6"(K-K,) 1 -. (32) 

The quantity r (32) is negative, which corresponds to 
damping. 

We see that the damping constant r is not an exponen- 
tially small quantity; at the same time near the threshold 
r(1. Equation (32) shows that r increases with K - K, 
slower than linearly but faster than (K - K,) ' + for any 
positive c. 

For wave vectors close to k, the absolute value of I? 
starts to increase rapidly, owing to the fact that the deriva- 
tive of the dielectric constant tends to zero: 
d R e  (n,K)/dfl-+ 0 as K -+ K,. One can estimate the values 
of K at which the damping constant becomes of the order of 
the frequency R(K). Calculations yield Irl -a at 
K = K3 - SK, with S K e  [ln(8M)/8MI2. Heavy damping 
of waves whose wave vectors are in the neighborhood of the 
terminal point of the spectrum makes the statement that 
there is a point K, of "strict termination" of the dispersion 
curve meaningless to a certain extent; the end section of the 
upper branch of the graph of plotted against K in Fig. 1 
should be designated by a dotted line, as is customary for 
large values of 1 y 1. 

The lower part of the curve depicted in Fig. 1 has no 
vibrations since in this case Im E 2 1. Indeed, for the values 
of fl under consideration we have 1 a- 1 < K and R +  < K, 
that is, 
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according to ( 15). Estimating fl (K) in this segment by Eq. 
(30) as fl -- aK, we find that Im E 2 1, and, hence, this 
branch, which is the solution to the equation Re E = 0, cor- 
responds to no vibration mode, in fact. 

The K-dependence of the damping constant r calculat- 
ed for the upper part of the graph of R plotted against K is 
depicted in Fig. 1. 

Let us discuss this result. In Ref. 1 the damping con- 
stant I' for zero sound is said to be strictly zero at T = 0 
since, as Eq. (2) shows, the phase velocity of the wave, w/k, 
is higher than u,, while at T = 0 the particle velocities v are 
lower than v,, with the result that a Cherenkov resonance is 
impossible. However, the very condition for a Cherenkov 
resonance requires refining if we allow for the quantum re- 
coil effect. Indeed, the physical mechanism of Landau 
damping is related to the absorption (or emission) of the 
wave by a particle. The law of conservation of energy for this 
process states that 

with %', = p2/2m for nonrelativistic particles, that is, 

o= (kv) *fik2/2m, (34) 

which corresponds to the poles of the dielectric constant 
~ ( 7 ) .  Thus, for a resonance to occur the phase velocity w/k 
and the particle velocity must not be equal but must differ by 
a (small) quantity +ik/2m. Since according to Eq. (2)  the 
ratio w/k differs from v, by an exponentially small quantity, 
the resonance condition (34) is met starting from a thresh- 
old value k,. Thus, for waves with k > k, Landau damping is 
finite. 

5. SUBSTANTIATION 

The above results require substantiation. We start by exam- 
ining the method of obtaining the dispersion law and wave 
damping based on Eqs. ( 16) and (3 1 ). 

Longitudinal vibrations are described by the equation 

E (o+iy. k) =0, (35) 

where w is the frequency of the propagating wave, and y the 
growth rate (the damping decrement), that is, the field of 
the wave is proportional to exp[ - i(o + iy)t]. The "stan- 
dard" method of solving Eq. (35) assumes that the real part 
of the dielectric constant, the polarizability x E (E - 1 )/47r, 
is much greater than the imaginary part, that is, Im E( 1. 
Then, in the first approximation, the wave is described by the 
purely real solutions o = w(k) of the equation 
Re ~ ( w , k )  = 0, and in the next approximation Eq. (35) as- 
sumes the form 

from which we can arrive at formula (3 1 ) for y by expanding 
the first term in powers of the small quantity y and equating 
the real and imaginary parts of (36) to zero separately. 

But can this method be applied in our case? To answer 
this question we must examine the analytic properties of the 
dielectric constant ~ ( w )  (7) of a degenerate plasma. 

The common procedure for deriving an expression for 
E (w) from Eqs. (5) and (6) yields formula (7) for the di- 
electric constant with a real value of the independent vari- 
able w. The imaginary part of E is linked with bypass of the 

FIG 2. 

poles of (7)  lying on the real axis, w * = k-v, which is car- 
ried out according to the causality principle: in the integra- 
tion with respect to v the points o + /k must be bypassed 
from below. Next, to obtain &(a) for a complex-valued inde- 
pendent variable we continue the function E = ~ ( w )  analyti- 
cally from the real axis, which means the path of integration 
with respect to v must be shifted downward for Imw < 0, so 
that the points w + /k are bypassed from below (Fig. 2). 
(For Imw > 0 the integration is carried out in the complex v 
plane along the real axis, which in this case contains no sin- 
gular points and, therefore, ~ ( w )  is analytic in the upper 
half-plane; e.g., see Refs. 1 and 16.) The singular points of 
~ ( w )  lie in the lower half-plane and correspond to the fact 
that for complex-valued w the point w+/k (or w-/k) coin- 
cides with a singular point of the function n, (this function is 
multiplied by [a, - k-v] -' when we integrate with re- 
spect to v in Eq. (7) ). Indeed, as point w * /k moves toward 
a singular point v, of n,, there is no way in which the path of 
integration can avoid the point w + /k, since it is pinched 
between the points w * /k and v, (e.g., see Ref. 1 ). 

Let us find the singular points of the Fermi distribution 
function 

which tends to (9) as T+ + 0. It can easily be verified that 
the singular points of (37) are poles of the first order that lie 
on a hyperbole intersecting the real axis at points 
+ [2p( T)/m ] 'I2, with the distance between adjacent 

points proportional to temperature T and with the distance 
between far-off neighboring jth and (j + 1 )st poles decreas- 
ing like l/j112 for large j (see Fig. 2).  [The Maxwellian dis- 
tribution function is an entire function, with the result that 
the dielectric constant of a classical Maxwellian plasma, 
& ( a ) ,  is also an entire function, that is, has no singularities 
for finite w.] As T-  + 0, these poles "fill the entire hyper- 
bola." 

Let us now follow the movement in the complex v plane 
of the point (w + iy)/k corresponding to the longitudinal 
wave in the plasma. (Strictly speaking, after integration 
(with an isotropic n, ) over the angles between k and v in (7) 
is performed, the points * w * /k become branch points of 
the respective logarithms In(@, f kv), and for integration 
in the complex v plane (see Fig. 2) to be meaningful we must 
select a single-valued regular branch of the logarithm, to 
which end we cut the complex v plane from point w , /k 
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FIG. 3. 

along a certain curve originating at point w * /k "upward" 
(e.g., along the upward ray of the straight line Re 
v = const), so that point w * /k can be traversed from be- 
low. ) 

For k < k , damping is nil, y = 0, and point w/k lies on 
the real axis in the complex u plane to the right of the points 
of intersection of both hyperbolas (Re 
v + fik/2m), - ( I r n ~ ) ~  = v$ (as T-t + 0) with the real 
axis. At k = k, point w/k coincides with the point of inter- 
section of the right hyperbola with the real axis. Finally, for 
k > k, point (w + iy)/k moves from point v, + Hz /2m to 
the left and downward (Fig. 3).  Expansion in powers of y in 
(36) is admissible if I y 1 is smaller than the radius of conver- 
gence of function E at point w or, in other words, if I y/k I is 
smaller than the distance between point w/k and the nearest 
singular point of function n, * ,,,, , that is (as T- + O), the 
distance between point w/k and the hyperbola 

(Re ~ - B k / 2 m ) ~ - -  ( I m  V ) ~ = V ~ ~ ;  

(the other hyperbola 

(Re ~ + l i k / 2 m ) ~ - - ( I m  V ) ~ = V ~ '  

lies farther from point w/k since, as can easily be verified, 
w(k) > kv, for all values of k up to k = k, (see Fig. 3 ) .  

Thus, for (31 ) to be valid with K > K, [which means 
the validity of (32), too], Jrl must be smaller than I f  1, with 
f = R- - K (c = 0 at the threshold point K,). This condi- 
tion, as can easily be demonstrated, is met in a small neigh- 
borhood of the threshold point for K > K,; indeed, near the 
threshold (for K >  K,) we have 

and, hence, according to ( 3  1 ), the ratio 

and is small for small I f  I (the quantity for small positive 
K - K, behaves 

But then, at a certain K = K4 > K,, the quantities 1 rl and 15 1 
become equal and, hence, formula (3 1 ) ceases to be valid at 
K = K4, earlier than K reaches the value K, and even earlier 
than K reaches K ,  - SK, when I l-1 becomes of the order of 
the vibration frequency R. But on the whole (to within the 
same logarithmic accuracy as above) all these points lie fair- 
ly close to each other; the difference K, - K, is proportional 
to l n - " ' ~  (just as the difference K, - K,, which is also 
proportional to ln-'I2M). Thus, the range where (32) is 
valid is fairly narrow (and, for that matter, so is the range of 
zero sound). 

The study conducted in the present paper refers to the 
case where T = 0. At a low but nonzero temperature the 
additional contribution to Landau damping caused by the 
thermal spread of the distribution of n, is proportional to 
exp( - 1/T) and, hence, becomes negligibly small as 
T - +  + 0. One can fairly easily find the "critical" tempera- 
ture To at which the contribution to the collisionless damp- 
ing y from the thermal spread of the n,  distribution becomes 
commensurate with the value of y at absolute zero. A rough 
estimate yields 

T,-ZF In'" MIM. 

The above results are valid at temperatures much lower than 
To. 

Let us also discuss the applicability of formula ( 3  1 ) and 
the result r = 0 for the threshold point proper, where 
K = K,. As T- + 0, the hyperbola, "the carrier of the sin- 
gular points of function E" (more precisely, one of the two of 
such hyperbolas, situated to the right), moves in the com- 
plex C! plane to the right and intersects the real axis at T = 0 
exactly at point K, + K f /4M (Fig. 4). [The singular points 
of E = E(R)  are branch points, since the points v = o + /k 
of the respective logarithms in the integrand for E are branch 
points. If for these logarithms we cut the complex plane up- 
ward along the straight line Rev = const, as noted earlier, 
the cuts originating at the singular points of the function 
E(R)  must be made downward along the straight line ReR; 
see Fig. 4.)] Thus, the singular points of function E find 
themselves within an arbitrarily small neighborhood of the 
threshold point 

ln (g ( K - K , )  ) ' FIG. 4. 
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as T+ + 0. Hence, we can rigorously define the damping 
constant r of the wave at K = K, and T = 0 as 

lim r (T) 1 K = K , .  

T*+O 

This limit, as could be expected, is zero since simple esti- 
mates suggest that at point K = K, asymptotically 

as T+ + 0. Representation (3 1) is admissible since at low 
temperatures r ( T )  - T/lnT(T, and the distance between 
the real axis and the closest singular point is proportional to 
T; see Fig. 4 (at low temperatures the chemical potential of a 
Fermi gas, 

see Ref. 17). 
It is also easy to see that point R + i r  at a certain 

K > K, corresponding to a wave propagating at absolute zero 
cannot coincide with a singular point of the function E at 
T # 0 (when the hyperbola moves to the left). Indeed (see 
Fig. 4), as noted above, for small positive differences K - K, 
we have 

but at the same time 

Itg -T-'>I,  

Hence, a#/3 (actually, angle /3 is even greater than ~ / 2 ,  
since the first singular point lies to the right of point 
K, + K: /4M), with the result that the singular point of E 

closest to the real axis (and, the more so, the other singular 
points) cannot coincide with the point R + i r  (for K > K, 
and T =  0) .  

When one formulates an initial-value problem in a plas- 
ma, e.g., that of the excitation of a longitudinal wave by 
nonlinear processes of some sort (e.g., decay processes), the 
"end products of the evolution of the system" include not 
only the waves corresponding to the roots R = R(K)  of the 
equation E(R,K) = 0 but also some excitations R = a ( ~ )  
associated with singular points of the function E. At very low 
temperatures T, the contribution from the singular point of E 

nearest the real axis decays more slowly than a longitudinal 
wave, because this singular point is closer than the point 
R + i r  to the real axis in this case. (In the limit T = 0, at 
which singularities appear on the real axis itself, at the points 
R = K + K 2/4M, in the R plane, the associated perturba- 
tions decay more slowly than exponentially (by a power 
law) over time. In the limit t+  + CO, the wave contribution 
is predominant (i.e., decays more slowly than the perturba- 
tions stemming from the singular points of E )  if T satisfies 
the inequality 

( K - K i )  /M<T/8R. 

6. CONCLUSION 

The expression (32) obtained in Sec. 4 is valid for a weakly 
nonideal Fermi gas. However, the general remarks made in 

Sec. 4 that allowing for the purely kinematic effect, quantum 
recoil under emission (absorption), leads to nonzero Lan- 
dau damping are valid for a Fermi liquid where at T = 0 the 
difference between the phase velocity of zero sound and the 
Fermi velocity is also exponentially small.' 

Zero sound has not been observed in experiments. The 
reason may be that the very region where such type of vibra- 
tions exists is fairly narrow, ranging from k-w,/vF to 
k- (w,/vF)ln"2(tfF/+im,). 

Here we have not considered collisional damping of 
waves, y,, , which in the conditions of weak nonideality un- 
der consideration have a higher order of smallness in param- 
eter q2/fivF (namely, - q4) than collisionless Landau damp- 
ing. 

Termination of the longitudinal vibration spectrum 
also occurs in classical plasma, where qualitatively the k- 
dependence ofw is the same as the one depicted in Fig. 1, and 
k3=0.53r; ', with r, the electron Debye radius. In both 
classical and degenerate electron plasma the spectrum ter- 
minates when the wave number k reaches a value of the order 
of the ratio of the plasma frequency to the characteristic 
velocity in the particle distribution (thermal or Fermi, re- 
spectively). The situation is different in a weakly nonideal 
Bose gas of charged particles (the interaction of particles in a 
Bose gas with repulsion can be considered in the perturba- 
tion-theory setting) whose net charge is assumed, as above, 
compensated for by the infinitely heavy fixed "ions." In a 
Bose gas at T = 0 all particles are in a condensate, with the 
result that there can be no characteristic velocity in the parti- 
cle distribution; the dispersion law is 

fi2k4 
o2 (k) =up2 + - 

4m2 

for all k's, and there is no point where the spectrum termin- 
ates, while Landau damping y 0 in the first order in q2 (at 
finite temperatures this is not so). 
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