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A new integral representation is obtained for a nonstationary wave function in the adiabatic 
approximation. This representation is asymptotically exact and imposes no significant 
constraints on the form of the Hamiltonian. A multiphoton ionization model is considered. The 
ionization spectrum reveals a characteristic interference effect connected with the system 
ionization by different parts of the laser pulse. 

The use of perturbation-theory methods or of calcula- 
tions involving expansions in certain complete bases is fre- 
quently quite difficult in investigations of processes in atom- 
ic-molecular systems in strong laser fields. This holds for 
strongly interacting states, when the calculation requires ei- 
ther a large number of basis functions or high orders of per- 
turbation theory. In such cases, however, a strong electro- 
magnetic field can be regarded with good accuracy as 
classical, and we arrive at a nonstationary Schrodinger equa- 
tion with a time dependent Hamiltonian, which can be ap- 
proximately solved by a diverse asymptotic methods. 

If the field frequency is much higher than the character- 
istic atomic frequencies, w $ w,, , an approximate solution 
can be obtained by averaging over fast oscillations of the 
external field. At a frequency w <w,, , however, averaging 
over "fast" intrinsic variables is possible. This approach is 

stituting an exact answer in the model, proposed in Ref. 5, 
with one discrete level against the background of a contin- 
uous spectrum. In principal order in the saddle-point meth- 
od, the integral is equivalent to the "simple" exponential 
asymptotes obtained in Ref. 9. The last section of the paper 
deals with a model describing ionization of an atomic system 
with one discrete level by a low-frequency laser pulse. The 
ionization spectrum exhibits a characteristic interference ef- 
fect connected with the ionization of the system by a differ- 
ent part of the laser pulse. 

2. FORMULATION OF PROBLEM 

Consider a nonstationary Schrodinger equation 
( f i = m = e =  I) :  

a 
H ( o t ) Y  (r, t )  = i -  Y (r, t ) ,  

at 
well known in physics as the adiabatic approximation. The 
solution of the nonstationary Schrodinger equation is sought where w is a small parameter having the meaning of field 

then in the form of an asymptote in terms of the small param- frequency in an atomic system of units. Of fundamental im- 

eter w/w,, . portance to us is the analytic dependence of the Hamiltonian 
H(wt) on the time t. It is known that in this case the solution 

Two physically important processes can be considered, 
$(r,t) is also an analytic function and only in this case will 

excitation and ionization. In the first we deal with transi- 
the entire exposition that follows be valid. 

tions between discrete atomic levels and the problem reduces 
We seek the solution of ( 1 ) in the form 

to calculating the probabilities P,, of the corresponding 
transitions (p and q are the quantum numbers of the initial 
and final states). In the investigation of ionization, the task 
of the theory is to calculate the distribution in the energy 
P(E)  of the emitted electrons. 

The adiabatic approximation for the Hamiltonian H( t)  
with a purely discrete spectrum was considered back in 1928 
by Born and Fock. ' Further development of the calculation 
methods, as well as their application to both model and real 
atomic-molecular systems, is well covered in a monograph 
by Nikitin and UmanskE2 

Finding the distribution in energy P (E)  is a much more 
difficult task and the first results were obtained using adia- 
batic perturbation theory for "below-barrier" transitions to 
a continuous spectrum3 and in the framework of exactly 
solvable  model^,^,^ the general of which is the Demkov- 
Osherov 

These investigations have made it possible to grope for 
principles of a more general asymptotic approach containing 
no substantial restrictions on the form of the Hamiltonian 
H( t ) .  A consistent asymptotic setup was developed by 
Sol~v'ev.~ 

The present paper I derive for the wave function, in the 
adiabatic approximation, a new integral representation con- 

where Cis  a contour in the complex E plane, and f (E)  and 
p(r ,E)  are regarded as analytic continuations over the en- 
tire E plane. The exact meaning of the function p(r,E) and 
the choice of the contour C will be explained below. It is 
assumed in (2)  that p(r ,E)  is given, and that j'(E) is an 
unknown function obtained by substituting the representa- 
tion (2)  of $(r,t) in Eq. ( 1 ). 

The normalization is specified for negative E in a form 
suitable for analytic continuation on the entire E plane: 

In the adiabatic approach ( A n )  we seek f(E) in the 
form of an asymptote as w -0. The crucial role is played in 
this case by the analytic properties of the corresponding 
adiabatic basis. Before starting the solution, we shall recall 
these properties briefly; a more complete exposition can be 
found in Solov'ev's review. lo 
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3. ANALYTIC PROPERTIES OFTHE ADIABATIC TERMS AND 
OF THE ADIABATIC BASIS 

The adiabatic basis and adiabatic terms of our problem 
are taken to be respectively the eigenfunctions and eigenval- 
ues of the "instantaneous" Hamiltonian of the nonstation- 
ary problem: 

where r is a fixed parameter. 
Terms having one and the same symmetry Ep (T) are 

connected by branching points in the complex T plane in 
such a way that they are branches of a single analytic func- 
tion E ' ( r ) ,  where s = 1,2, ... number the irreducible repre- 
sentations of the symmetry group of the Hamiltonian H(T).  
Terms of different symmetry turn out to be interconnected. 
Joining all the sheets r of terms of given symmetry s we ob- 
tain a Riemann surface E '(7) on which it is by definition 
single-valued and analytic. The function E " ( r )  specifies 
the mapping {E (r) :T- E) and correspondingly 
? ( E )  - C r 5 ( ~ ) :  E-TI. 

In addition to the pair of complex-conjugate points con- 
necting two terms, there exist branching points as the term 
emerges to the continuum, where it acquires a width. 

The function r( E) has a branching point on the bound- 
ary of the continuum at E = 0, and also branching points 
connected with the extrema of E(T) .  The latter are in gen- 
eral complex if the term emerges to a continuum. 

The singularities of Ep (7) in the complex r plane are 
connected with singularities of the corresponding adiabatic 
wave functions. It is shown in Ref. 11 that the adiabatic 
wave functions can be represented in the form 

where 

A (;) exp ( - x r )  
XP (r, = -- 

(2nx) 'I' 
[I+O(r-') I ,  

The functions xP (r,r) are bounded for all r ,  and at 
branching points connecting two terms the factors Cp (7) 

have the singularity 

Ep(r )  = E,+const (T-r,)'", Cp(r) C O ~ S ~ ( T - T ~ ) - ' ~ ,  
r-rr <-rT 

( 8 )  
or in terms of E 

It is important to note that these singularities appear only if 
T, and E, are complex. 

4. NONSTATIONARY WAVE FUNCTION IN THE ADIABATIC 
APPROXIMATION 

An asymptotic expression for f(E) as w -0, satisfying 
the initial condition 

In expression ( 1 1 ) E is regarded as a variable of a Riemann 
surface r ( E ) .  

The function r(E) is defined (in accordance with Sec. 
3) as the inverse of E(T) ,  where T = wr is the "slow" time. 

We choose next the particular Riemann surface on one 
of the sheets r of which is located the term En (r) corre- 
sponding to the initial atomic state: E, (7) - E n ,  T- - a. 
In the corresponding adiabatic basis the mapping {E '(7): 
r - E) specifies a function p (r,E) on the Riemann surface E. 
On each sheet E there will be mixed mappings from different 
sheets r, SO that p(r ,E)  can no longer be assigned a definite 
adiabatic state. Thus, for example, in the Demkov-Osherov 
state E(r)  has many sheets, while r(E) has a single sheet, 
and a function p( r ,E)  is specified on one sheet E and repre- 
sents all the adiabatic states pp (r,Ep (r) ). 

To satisfy the physical boundary conditions ( 1 ) we 
choose a contour C such that as t - cc there remains a con- 
tribution from only the saddle point near En .  This contour is 
directed from the saddle point E, along the steepest-descent 
lines to the upper E half-plane (HP).  As t -  + cc the expo- 
nential exp( - iEt) decreases to the lower HP, and as a re- 
sult the contour Cis deformed to the lower HP and hooks all 
the singularities with respect to Eof the integrand. Different 
physical processes will correspond to contributions from 
these singularities. 

The cols (branching points) on the negative E axis give 
the probabilities of populating the limiting atomic states. 
The branching point r(E) (p ( r ,E ) )  on the boundary of the 
continuum E = 0 generates a contribution to the system ion- 
ization. Let us examine this in greater detail. 

We draw a cut along the positive E axis and define the 
argument on its upper bank as follows: 

which corresponds to the radiation condition. 
As t- + CQ the contour C is deformed into the lower 

HP and the contribution to the integral (2 )  from the cut is a 
wave packet of ionized particles; 

d r  ( E )  '" 
~ , . . ( r , t ) = ( 2 n a ) - ~ ~ ~  .I[-] 

0 

X eap [t J r (E') d~ ' - iEt]  rp (r, E) dE. ( 13 
En 

The adiabatic wave function p (r,E) is normalized at E < 0 to 
unity in accordance with (3) .  At E > 0 it describes a particle 
going off to infinity with momentum k = (2E) : 

p a exp (ikr) 

and can be represented in the form [see Eqs. (5) - (7)  1 

was obtained in Ref. 9: 
where C(E) is the analytic continuation of the normaliza- 
tion constant of the bound state to positive E, andx(r ,E)  is 
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the adiabatic wave function normalized to unity flux. Substi- 
tuting (14) in (23) we obtain Y,, (r,t) in the form of an 
expansion in functions of the continuumx(r,E) with a nor- 
malized flux, from which we obtain for the probability distri- 
bution of the particles in energy 

(15) 

This result solves in principle the problem of calculat- 
ing the probabilities in the adiabatic approximation, but is 
easy to see that the asymptote does not hold at the extremum 
points of E(r): 

On the complex E plane this is manifested by the appearance 
of additional cuts near which, generally speaking, it is neces- 
sary to consider a more complicated standard equation. This 
becomes particularly perceptible when E(T) is a function 
with a large number of extrema, as in the problem of interac- 
tion between an atom and a laser emission field. 

This raises the question of obtaining a modified asymp- 
tote free of this shortcoming. This is dealt with in the next 
section of this paper. 

5. MODIFIED ADIABATIC ASYMPTOTE 

We turn again to the representation of q( r , t )  in the 
form (2); inverting the integral with respect to Ewe  obtain 

f (E)= ( 2 n ) '  j e x p ( i ~ t )  :rp(r. E) 1 'Y (r. t))dt. (17) 
D 

Expression ( 17) suggests a new representation of f(E) in the 
form 

f (E)= (2n)-'{ exp(iEt)F(t, E)dt, 
D 

F ( t ,  E)=<cp(r, E)  ( Y  ( r ,  t ) ) .  

The function F(t,E) is initially specified only on the real t 
axis, but we shall use later also its analytic continuation into 
the complex t plane. 

We reduce thus the problem to finding a new unknown 
function F(t,E). To derive an equation for F(t,E) we recog- 
nize that Y(r,t) satisfies the nonstationary Schrodinger 
equation ( 1 ), and then: 

where T = wt is the "slow" time. 
To abbreviate the notation we use hereafter the abbrevi- 

ated designations p(r,E) = p ( E )  and p( r , r )  =p(r). 
We substitute Y (r,t) in (2c) in the form (2) ,  next f(E) 

in the form ( 18), and write the result as a set of two equa- 
tions: 

jj dE'dtt exp[iE1 ( t ' - f )  ] F (tr, El) E'<q (E) I rp (Er )) 

= ~JdE'dt'exp[iE'(tr--t) ]F(tf ,  E')E1(rp(E) I H ( r )  (rp(ET) ), 

The double integration can be represented (just as in the real 
case) either as a successive use of two single integrals over 
the complex planes E and t, or as an integral in C2 over a two- 
dimensional complex manifold. 

Equations (2  1 ) for F (  t,E) must be supplemented by a 
boundary condition that follows directly from the boundary 
conditions for Y (r,t) as t- - co : 

t 

An exact solution of the system (21) for F(t,E) is in 
general a more difficult task than the solution of the initial 
nonstationary Schrodinger equation, but in the asymptotic 
approach we need only guess correctly the form of the 
"strong" dependence of F(t,E) on the small parameter o 
(the "exponential function" and the "preexponential" coef- 
ficient preceding it) and obtain an easy-to-analyze recur- 
rence procedure. 

We change in (21) to the new variables r' = wt ' and 
T = wt: 

J j d ~ ' d z '  exp [ ~ E ' ( T ' - T ) ] P ( ~ ,  0 E ' )E ' (~~(E)  Ip(E1)) 

We shall seek F(T,E) in the form 

~ ( r ,  E) =x(E, r)exp[ - jQ(r ')drJ] , (24) 

where the functions Q, X,, X,, ... are assumed to be smooth. 
Substituting F(T,E) in the form (24) into the system (23) 
we note that the double integrals have a simple two-dimen- 
sional saddle point. The general result for integrals of this 
type is" 

1 rn-0 

(26) 

where k is a large parameter, z = (z1,z2, ..., z n ) ~ 6 " ,  
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dz = dz,  ... dz,, and y is an n-dimensional complex manifold. 
The point zO is obtained from the condition S: ( zO)  = 0, 
detS: ( z O )  # 0. 

In the principal order in k we have 

In our case the conditions on a simple saddle points are 

d - S (t', Er)=O, 
87' 

Substituting S ( 7 , E )  in ( 2 8 )  we get 

The solution of this system for finding T,,, and E,,, is obvi- 
ously single-valued. Let us calculate the determinant in 
( 2 7 )  : 

We have thus proved the existence and uniqueness of a 
simple saddle point. Therefore a solution asymptotic as 
w - 0 in the form ( 2 4 )  always exists for F(7,E) .  

It remains to determine Q ( T )  and X0(E , r )  and verify 
whether the solution satisfies the boundary condition ( 2 2 ) .  
Writing down on the right and on the left the terms to the 
zeroth power of w in the system ( 2 3 )  we obtain 

A solution of this system of functional equations is 

so that in principal order in w the expression for F ( r , E )  
takes, apart from an inessential phase factor, the form 

( 3 4 )  

Substituting ( 3 4 )  in (17) and ( 2 )  we get 

Y (r ,  t ) =  (2no)-' J j e x p { i [  Err -  j E( t r r )d t r ' ]  - i ~ t )  
C D 

0 

Let us check whether the boundary conditions are satis- 
fied. As t- cc the integral in ( 3 6 )  has a simple saddle point 

If the start of the contour (T'  - - cc ) along T' is speci- 
fied on the sheet corresponding to the limiting atomic state 

we obtain in the leading order in w the correct boundary 
condition: 

In addition to the indicated condition on the r contour D, the 
E and 7 contours must be drawn such that when they are 
deformed in the saddle point one can neglect, in principal 
order in w,  the contributions from the remaining singulari- 
ties. 

6. TRANSITIONS AND IONIZATION IN THE MODIFIED 
ADIABATIC APPROXIMATION 

For finite t we can regard the double integral ( 3 6 )  as 
two single ones. We can get rid of the integral over r by 
calculating f ( E )  by the saddle-point method as 0-0. The 
integral over E for finite t, however, cannot be explicitly 
calculated. Only as t- f co is a simple saddle-point pattern 
produced, and it is precisely to this limit that the physical 
formulation of the measurements pattern corresponds (the 
calculation is similar in this sense to the S-matrix formal- 
ism). 

Let us consider the calculation scheme in the limit as 
t- f a. On the negative E axis there are simple two-dimen- 
sional cols that are determined from ( 3 7 )  and correspond to 
population of the limiting atomic states. As t - - cc the ini- 
tial state is formed according to ( 3 8 ) .  As t - + cc we obtain 
contributions from the finite atomic states Em in accordance 
with the contour D and the structure of the Riemann surface 
of the given E ' (7 ) .  The coefficients preceding them yield an 
expression for the leading term of the asymptote, as w -0, of 
the probability amplitude A n ,  of the inelastic transitions. 

In full analogy with the exposition in Sec. 4 ,  the contour 
C is deformed as t - + cc in the lower HP and is linked to 
the cut, defined according to ( 12) ,  along the positive E axis. 
The integral along the cut must be considered separately, for 
a role is played here by the asymptote, with respect to r, of 
the adiabatic wave function at positive energy [See Eq. 
( 1 4 )  1: 

cp = exp ( ikr)  , k= (2E)'".  

Therefore for t+ + C C ,  0-0, and large r where the wave 
packet of the ionized particles is located, the condition ( 3 7 )  
is modified into 
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The treatment of this system is quite clear. Solving it for r, we 
obtain 

This equation shows that the wave packet is made up of par- 
ticles produced at the instant t '  at a finite distance r'- 1, 
when the adiabatic state was characterized by a momentum 
k and turned to be at a distance r a t  the instant t. 

Each point E of the interval along the cut corresponds 
thus to a saddle point in the vicinity of large r, due to ioniza- 
tion of particles with a given energy E, and the entire integral 
over the positive energies, just like Eq. ( lo),  has the meaning 
of a packet of ionized particles: 

For the probability P(E) of the particle distribution in ener- 
gy we obtain by analogy with (15) 

where f(E) has the form (35). The only regions of impor- 
tance in the integral (35) are those in whose vicinity the 
derivative of the exponent with respect to T vanishes: 
E = E(T).  In these regions the matrix element is 
(p(E)  ( ~ ( 7 ) )  = 1, SO that the integral (35) is equivalent, 
with the same w error, to the expression 

f ( ~ ) = ( z n w ) - '  J exp{;[Er - J E ( T ' ) ~ T ' ] }  d r [ 1 + 0 ( ~ ) ] .  
D 

If all the roots of the equation E = E(T) are simple, 
then f(E) is equivalent, with a specified w error, to the sim- 
ple exponential asymptotes: 

d.rh (E) 
f (E) = (2no) - I h  [ i  --]Ih exp {L[ -[Err (E) 

dE 
k. 

0 

special functions). If two simple saddle points are present 
and merge into a double one at a certain E,, then f(E) will be 
asymptotically equivalent to the Airy function (see Ref. 12 ). 

We demonstrate next the application of the equations of 
the modified adiabatic approximation to one model of multi- 
photon ionization. 

7. MULTIPHOTON-IONIZATION MODEL 

The question of the ionization spectrum in the context 
of the adiabatic approximation is presently extensively dis- 
cussed in the literature (see, e.g., Refs. 13 and 14). 

We consider the calculation of the ionization spectrum 
P ( E )  for a model with one discrete level E,(T) (T  = wt), 
when it constitutes a multiperiodic function in T and does 
not go off to the continuum. This model describes multipho- 
ton ionization of an atomic system by a low-frequency laser 
pulse. 

We approximate the central part of the pulse by the 
expression 

where E ," is the energy of the limiting atomic level, and A is 
indicative of the amplitude of the laser pulse. The decrease of 
the pulse can be assumed, for example, to be exponential. 
For the left-and right-hand wings we have respectively 

where y = y,/w, y > 0 and yd characterizes the pulse damp- 
ing rate. For simplicity we have chosen in (46) a symmetric 
approximation. 

The ionization spectrum is given by the general equa- 
tion (41), where f(E) takes the form (42). In our case, at 
E> 0, all the roots of the equation E = E(T) are simple and 
we cannot use the representation (43) for f(E).  The saddle 
points for (43) are of the form 

k=-N,  . . . , N 

for the central part, 

which, after integration by parts, take the form of exponen- 
tial asymptotes of the type ( 1 1 ) : 

for the left-hand wing, and 

The lower limit of integration with respect to r in (43) is 
chosen on the sheet En (7) as T--* + m . 

In the opposite case the integral over T remains (it coin- 
cides sometimes with the integral representation for known 

for the right-hand wing. The saddle points on the real axis 
have no special physical meaning and are due simply to our 
rough approximation of the character of the decrease of the 
pulse wings (non-analytic joining at the points 
T =  +2rN) .  

We deform the contour D over the saddle points in the 
upper T half-plane, where the integrand decreases, and sepa- 
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rate the sums from the left wing, the central part, and the 
right wind: 

2 
'$ ( E l  

x e x p  {i [ E ~ , ' ( E )  - \ E ( T ' )  d ~ ' ]  ] , 
0 

-9 

f,. ( E )  = ( 2 n ~ ) - ' ~  

r b r ( E )  

X e x p  {& [ET< ( E )  - j' E dT1 1) . 
-m 

Using next the expressions for the saddle points ( 4 7 )  and 
carrying out all the necessary calculations, we obtain 

f L  ( E )  = ( 2 n o )  -'"B, ( E )  S ,  ( E )  exp [i@, ( E ) ]  , 
+ m 

E-E," 
B ~ ( E ) = =  { A  [(A)'-*] } ' I  e x p [ - T ( E ) ] ,  

( E - E l w )  In{ E-,"," [ (  E-E,-  ) '  l ] ' i )  
T  ( E )  = + - -  

(0 A 

E-E 

We use the representation (41 ) for P ( E )  : 

The factor J C ( E )  I *  influences only the general form of the 
P ( E )  dependence and we shall not consider it in detail, not- 
ing only that it is possible to choose for it an appropriate 
parametrization both in the case of short-range potentials 
and in the case with long-range Coulomb action.15 

Of greater interest to us is I f ( E )  1 2 .  Using the earlier 
calculations, we have 

R e I f ,  ( E ) f , ( E )  I =  ( Z n ~ ) - ' [ B l ( E ) s j  ( E )  J 2  

XCOS [ - I j E ( T f j d x r  1, 
a- 

The interpretation of these results is quite clear. The 
squares of the moduli take into account the contribution 
made to the ionization by each part of the pulse separately, 
while the crossing germs show the interference of particles 
ionized by different parts of the pulse. 

The author is grateful to E. A. Solov'ev, and D. I. Abra- 
mov for helpful discussions. 
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