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Two vacuum solutions of the Einstein equations are constructed and investigated and can be 
regarded as candidates for the role of the exterior solution for axially symmetric uniformly 
rotating bodies of prolate and oblate shape, respectively. Both solutions contain two infinite sets 
of arbitrary constants, corresponding to the multipoles of the mass and angular momentum. In 
the absence of rotation and for a particular set ofmultipole moments for the mass the first solution 
goes over into the Zipoy-Voorhees metric, while the second goes over into the known solution 
with a ring singularity. The relationship of the first solution to the van Stockum metric is also 
investigated, and clarifies the interpretation of the latter. 

1. INTRODUCTION 

In the framework of the general theory of relativity the 
question of the form of the gravitational field of rotating 
bodies has not yet been solved. As is well known, the Kerr 
metric, which describes rotating black holes, cannot be the 
exterior solution for a real rotating object. In the present 
paper we find suitable candidates for the role of such a solu- 
tion for the axially symmetric steady-rotation case, both for 
prolate and for oblate rotating bodies. The metric obtained 
contains two infinite sets of arbitrary constants, correspond- 
ing to the multipole moments for the distribution of mass 
and angular momentum. It is clear that this gives the possi- 
bility of joining this metric with any interior solution de- 
scribing a source with a physically acceptable equation of 
state. 

In Secs. 2-7 of this paper we consider the solution for 
prolate bodies. In the absence of rotation and for a particular 
set of multipoles it goes over into the well-known Zipoy- 
Voorhees me t r i~ , ' , ~  sometimes called the y solution: 

An example of the solution of interest to us is found in 
Sec. 3 by means of iterations. The most general case is con- 
sidered in Sec. 6. The properties of the space-time described 
by this solution are investigated in Sec. 5, in which, in partic- 
ular, it is shown that in the region near the rotating singular- 
ity (the source of the gravitational field) closed timelike geo- 
desics are admissible. However, a source of finhe size can 
occupy this region without permitting any violation of cau- 
sality. 

In Sec. 7 we consider the relationship of our solution to 
the van Stockum metric that describes the space-time 
around an infinitely long rotating dust cylinder. Here it is 
shown that the condition 0 <p < 1/2 imposed on the metric 
is not accidental. When this condition is violated, the exteri- 
or solution for the prolate infinitely thin or long rotating 
body either does not exist or else changes its form qualita- 
tively. In the analysis of the van Stockum metric it is also 
shown that two of the three admissible exterior solutions 
[ (60) with (62), and (60) with (63 1, below] correspond to 

the case when, in accordance with the Mach principle, an 
infinitely long and massive source drags the entire space- 
time in such a way that relative rotation is absent. 

In Sec. 8 the approach used in Secs. 2-6 is applied to the 
analysis of the exterior solution for oblate axially symmetric 
rotating bodies. It is shown that the equations for the self- 
consistent solutions in this case differ only slightly from the 
analogous equations obtained in Sec. 6 for the case of prolate 
bodies. However, because of the qualitatively different struc- 
ture of the singularity, in this case perturbation-theory 
methods cannot be applied near the singularity. 

2. PROLATE BODIES. INITIAL CONSIDERATIONS 

In the case of axially symmetric steady rotation the 
space-time metric can be brought to the Lewis-Papapetrou 
form 

The functions v(p,z) and w (p,z) appearing in this metric are 
connected by the relations 

Here the vector operations are performed in a conventional 
auxiliary flat coordinate space with cylindrical coordinates 
p, p, z. If Y and w are known, the function y(p,z) can be 
found (to within a constant determined from the condition 
that there be no conic singularities) from the relations 

We obtain the desired solution with rotation by itera- 
tions from the initial static (w = 0 )  metric (2),  which be- 
longs to the Weyl class. It can be seen from (3)  that Y in this 
case is a harmonic function. Since it should tend to zero far 
from the source (the space is asymptotically flat), this func- 
tion (except for the trivial case Y = 0 )  should have singulari- 
ties. In the analysis of prolate sources of the gravitational 
field an interesting case is that in which this singularity lies 
on the rotation axis p = 0 and has the form of a segment of 
finite length L in coordinate space (point singularities with 
p = 0 correspond to singularities with respect to direction; 
see Ref. 3 ). This does not mean that the singularities in the 
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space-time (2) are also line singularities. They can also be 
point singularities, or can belong to the new type of singular- 
ities (impossible in a space of finite curvature) that is consid- 
ered in Ref. 3. Later, in Ref. 4, such singularities were called 
paradoxical singularities. 

In constructing the solution it is most convenient to use 
the coordinate system of a prolate ellipsoid of revolution (u, 
u, p in coordinate space), setting 

p='lZL cos u sh v, z='12L sin u ch v. (6)  

In this case the singularity corresponds to v = 0. 
The solution of the equation A2v = 0 which satisfies the 

condition that it be asymptotically Galilean and also regular 
on the rotation axis u = f 7~/2 away from the singularity is 

w 

where Pi (x)  and Qi (x)  are Legendre polynomials of the 
first and second kind. The set of numbers a, is determined by 
the distributionp of the line density of the mass of the source 
with respect to z or u in coordinate space, by the relation 

and is related to the set of multipole moments. For v-, co 
each of the terms of the sum (7)  falls off as r -  '- ', where 
P =P2 + z2. 

We separate out the first term on the right-hand side of 
(7)  and set 

T = V O + X ,  v0=2p I n  [th (1112) 1 .  (9)  

Then the metric (2)  takes the form 

where the function {(u, v )  is related to y from (2)  by the 
relation 

and is determined from x (u, v )  w (u, v )  in accordance with 
( 5 ) ,  (9),and (11). F o r x = w  =Owehavec=O,and (10) 
goes over into the metric ( 1 ) investigated in Ref. 3. Depend- 
ing on the value ofp (the constant line density of the mass of 
the source in coordinate space), the singularity v = 0 be- 
longs to different types. For ,u < 0 the space-time ( 1 ) has a 
point singularity, for 0 <,u < 1 it has a line singularity, and 
for ,u > 1 it has a paradoxical singularity. 

In the general case ( lo),  the functions x and w are relat- 
ed by (3) and (4),  which, withallowancefor (9), havein the 
coordinates (6)  the form 

x,,,+x.,,+x,,. cth v-x,, tg u 

=4L-2e2" th41r(v/2) COS-' u sh-' u ( o , , ~+o ,~~ ) ,  (12) 

o,,u+o,cu+o,u (tg u+ Zx,,) +o,,(4p sh-'v-cth v+2x,,,) =O. 

( 1 3 )  

In addition, from the condition that the solution be as- 
ymptotically Galilean we have 

x(u, u )  -0, a)(u, u )  -0. 
C - m  "-. m 

(14) 

Next, we shall seek the solution in the form ( 10) with x and 
w in the form of series: 

Here we take as the initial solution x, = w, = 0, i.e., the met- 
ric (1).  

3. CONSTRUCTION OF THE SIMPLESTGENERALIZATION OF 
THE y METRIC 

We shall study the extension of (1)  by means of the 
perturbation-theory series ( 15). Having set x = 0, after sep- 
aration of the coordinates we obtain from ( 13) 

where F(a,  6, c, x )  is the hypergeometric function, and 
P A ( x )  are associated Legendre functions. The solution ( 17) 
is general, except for the case 2,u = k (where Ik I < n  is an 
integer), which will be considered as a special case in the 
next section. 

Near the singularity u = 0 we have 

Only for p < 1/2 does the right-hand side in ( 12) have a 
lower power of v - ' than does the left-hand side, and Eq. ( 3 )  
is fulfilled in the leading terms. Therefore, further analysis is 
possible only for p < 1/2, since, as we shall see below, the 
numbers p, and y, are related to each other, and only for 
w = 0 is it possible to set y, equal to zero for all n. We recall 
that the case ,u = 1/2 will be considered as a special case. 

Each of the terms on the right-hand side of (17) di- 
verges as v +  m .  However, for 

these divergences cancel, and, by virtue of relations between 
Kummer series,' we obtain 

This is the solution of interest to us. The numbersp, and the 
numbers y, related to them by ( 19) determine a set of multi- 
pole moments w, (u, v). In this section we shall consider the 
case fin = y, = 0 for n > 1, by retaining, from the entire se- 
ries ( 16), only the first term, which is directly related to the 
angular momentum J of the central body: 
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Here we have used the notation C = - y,. 
Starting from this expression and using Eqs. ( 12) and 

( 13) alternately, we can find all the terms of the series ( 15) 
for x and w, and, consequently, the metric ( 10) for the case 
(21). However, here the following problem arises. In the 
process of solving Eq. (12) for tc, this function is deter- 
mined nonuniquely. To a particular solution found we can 
add any number of terms of the series in the right-hand side 
of (7),  with arbitrary coefficients. In this section we shall 
construct one possible solution, characterized by a particu- 
lar set of these coefficients, and leave the treatment of the 
more general case to Sec. 6. Specifically, we shall require that 
in the expressions for tc, terms of the form (7)  are absent, 
i.e., there is no logarithmic divergence as v-0. 

Analogously, in the solving of Eq. (13) the functions 
w, are determined to within the addition of terms (taken 
with arbitrary coefficients) from the expansion ( 16). In this 
section we shall set equal to zero all terms of this kind that 
are not needed in the solution of Eq. (13). The proposed 
choice of coefficients leads to the preservation of the original 
set of numbers a, in (7)  (a ,  = 2p, a, = 0)  ( a  set related to 
the multipole set for the mass of the source), and to a unique 
determination of the angular-momentum multipoles, relat- 
ed top,  by (16), (17), and (19). As a result, the solution 
obtained will also be found uniquely. 

Thus, by substituting the expression (21 ) for w, into the 
right-hand side of ( 12), we obtain an equation for x , :  

xl,"u+xi,w+xi,, cth U-xi," tg u 
=4C2L-Z th'@(~/2)sh-~ v (4 sin2 u.q ( ~ ) ~ + c o s ~  u.q,$), 

(22) 

the solution of which can be sought naturally in the form 

XI=PII  (u) +pi? (u) cos2 u. (23) 

Calculations lead to the expression 

pi, = 4C2L -'{sh2 u th4'"(u/2) - th4"(u/2) 

X[ \ l i -  c 3 i 4  (ell 1*+2p)'j  
+/l rhL  7.-8p rli r-  I(i11-)+(', (ch2 u - 1/31 (24) 

+C,{(ch2 u-'I?) In [ t l l  ( c / 2 )  ] tell u), 
where C, and C, are arbitrary constants. From the condition 
( 14), C, = 0. In addition, we should set C, = 0 in order not 
to change the set of numbers a, in ( 7) .  Analogously, in the 
expression 

we should also set C, = C2 = 0. Forp  <: 0 the expression for 
x, has a power divergence at the singularity u = 0, while v, 
from (9) diverges only logarithmically. Therefore, the 
method that we are considering is applicable only for p > 0. 

We now substitute the expression for K, into ( 13) and 

replace w by w ,  + w,, neglecting the terms x,,, w,,, and 
x,,, a,,, , which will appear later in the equation for w,, and 
obtain an equation for w,. Its solution has the form 

~J~ ,=L, ,  ( 1 1 )  cos2 I L + ~ , -  ( L . )  COS'  U. (26) 

L2?=4C311-2 [I\, ( L ) )  +CflI2 (u) 1 ,  

A\l=V/,(3(ip2-1)~tiL n ~ h -  u ( ~ / 2 ) - s h j  1, Ih-""(/a) 

+4 sh2 v (ch ~ + Z p ) ~ t l 1 + " ( ~ . / 2 )  --:3 ch"v+By ch3  u 

Here, C,, C,, and C, are constants. In order not to compli- 
cate further the expressions obtained, one of these constants 
will be chosen in such a way that A, and A, tend to zero as 
u-+ co. Both these functions, and with them A,,, fall off as 
cosh - I): 

For 

Cl=6 (16p2-1) (9-44p2) (pz-I)-'  (4p2-9)-' (30) 

this expression vanishes and 

This damping power corresponds to the power obtained 
from an analysis of the asymptotic behavior of the equation 
for A,,, which, because of the unwieldiness of its free term, is 
not given here. The appearance of the power r - 4  in (29) is 
due to the contribution of the third term in the series ( 16). 
Therefore, in the analysis in this section, this term should be 
eliminated by imposing the condition (30). We note that the 
values p2 = 1 and p2 = 9/4 are special and will be consid- 
ered below. For other values of p the quantity C, is finite. 

When the expression (28) is analyzed, it follows from 
the condition A,, --,O as v-. co that 

In addition, it follows from the above considerations that we 
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must set equal to zero the coefficient in the expression 

and ensure that 

As a result, we obtain 

Next, one could substitute w = w, + w2 and 
x = x ,  +%,into (12) andseekx,in theform 

having obtained even more-unwieldy expressions forp,, ( u )  , 
etc. This unwieldiness suggests that it is scarcely possible to 
sum the series ( 15 ) for arbitrary p. 

Thus, the solution ( lo),  ( 15) has the form 

E L i k  (v) COSY ZZ. 

k=i 

k= I 

The equations for A,, and p, are obtained from ( 12) and 
(13) by expanding in powers of cos2u (it is convenient to 
change to the variable x = coshv): 

where 

i-l m 

Here, a prime denotes a derivative with respect to u. To de- 
termine the function Q, ( u )  appearing in (36), we must ex- 
pand the expression 

.-I m+i r - i  m 

exp (2 Earn Z p m p n - I )  [ ( am z h . . ' ~ ~ ) ~  

in a series in powers of a and 8. The function that appears in 
this series with the powers a'- ' f l  will be Q, (u). We note 

that, both in Q, and in Is;., from (37), only the already 
determined functionsil, andp, appear. When they are cal- 
culated we must set A, = 0 for k > i  and p, = 0 for 
k > i +  1. 

The solution of Eqs. (36) and (37) is determined to 
within the addition of terms of the form 

The coefficients Ci are uniquely determined from the condi- 
t ions~ ,  - 0 as u - CXJ ( C, ) , from the absence of a logarithmic 
divergence in p, at u = O(C,), and from the conditions 
A, - + O ( X - ~ ~ - ~ )  as v- CXJ (C, and C,). 

In Sec. 6 we obtain the general solution with an arbi- 
trary set of multipoles. But first we shall consider the special 
values of p .  

4.THE SPECIALVALUES OF p 

If 2p = k, where I k / is an integer and I k I Gn, the two 
functions on the right-hand side of (17) coincide. In this 
case, as the solution ( 16) we must take5 

q ,  ( v )  =y, ch-"u.F (n+l+k. n, 2nf2,  ch-' u )  . (40) 

This hypergeometric function reduces to polynomials and 
logarithms: 

( Z n t l ) !  
q n  = yn ch-" u.W (ch-' v) ,  

(n-I)! (n+l ) !  (n-k)! (n+k) !  

It is not difficult to show that for k>2 it diverges at v = 0 in a 
power-law manner, and for p = 1/2 gives 

o o a c o s 2  u .  ( I f 2  chu-2 ch' u.ln(l-ch-I u )  ] (43) 

with a logarithmic divergence at v = 0. For k < 0 there is no 
divergence in q, , but in this case, as always forp < 0, a diver- 
gence appears in 7c ,. Thus, consideration of the special values 
o fp  gives nothing new, and, when examining our solution in 
the entire space-time, including the region near the singular- 
ity, we should confine ourselves to the interval 

5. ANALYSIS OF THE SOLUTION 

The initial solution ( 1 ) was investigated in detail in Ref. 
3. When the condition (44) is fulfilled the singularity u = 0 
is a line singularity. Its mass, determined from the form of 
goo at large u, is equal to 
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In the construction of the solution ( 10) it is important 
to ensure that the series ( 15) converges. To judge from (34) 
and (35), this is possible when the quantity C /L is bound- 
ed-in particular, when C / L  < 1. With this assumption we 
shall consider the properties of the space-time described by 
the metric obtained above. It is not difficult to convince one- 
self that it has no singularities other than u = 0, and the func- 
tion { turns out to be substantially smaller than the second 
term on the right-hand side of ( 1 1 ). 

The expression (23)-( 25) found for x, makes it possi- 
ble to determine, in the first approximation, the correction to 
Eq. (45) due to allowance for rotation: 

This quantity is positive and much smaller than M. The next 
correction, associated with x,, will be smaller in order of 
magnitude by a further factor of C  2L -'. 

The angular momentum of the field source, found from 
w , , is equal to 

The next terms of the expansion of w i  do not contribute to 
this quantity, since we require that, for them, Ail + o ( r -  ) 
as u- co . Thus, for example, in (32) we set equal to zero the 
term that could have had an effect on J. 

The dragging of space-time by the rotating source (the 
singularity v = 0)  falls off both with distance from the 
source and with distance from the center of the singularity in 
the direction of its ends. The latter can be seen from the fact 
that 

Near the singularity, because of this drag, there exists a 
region in which g,, becomes positive, implying the possibil- 
ity that closed timelike geodesics appear, and, consequently, 
that the principle of causality is violated. The boundaries of 
this region in coordinate space have the shape of a spindle 
with its end points at the ends of the singularity. This can be 
seen from the fact that near these ends at p = 0, 
z = z, = + L /2 the surface g,, = 0 satisfies the condition 

The region of violation of causality cannot extend to infinity. 
For C<L and u = 0 the boundary of this region reaches the 
greatest values of the coordinate v: 

The solution constructed is of interest to us as a possible 
exterior solution for prolate, uniformly rotating, axially 
symmetric bodies. The existence of the region of violation of 
causality cannot impede this interpretation, which can be 
preserved by requiring simply that this region be situated 
entirely inside the central body. Here, the minimum length 
that the "equator" of the central body must have for this 
increases with increase of the angular momentum of the 
body. 

6. GENERALIZATION OF THE SOLUTION OBTAINED FOR 
PROLATE BODIES 

We return to the question of the free choice of the set of 
multipoles for x and w, our analysis of which was interrupt- 
ed in the third section. As a first step we shall show that in 
the framework of the scheme (34)-(39) for construction of 
the solution by the method of perturbation theory it is possi- 
ble to introduce just half of these multipoles, i.e., the terms of 
the series (7) and ( 16), (201, taken with arbitrary coeffi- 
cients. Here, in order to avoid repeated introduction of the 
same multipoles, we must adhere to certain rules. Terms 
with the function Q, , (coshv) appear in the expansion for x, 
with arbitrary coefficient a,, at the first opportunity, i.e., in 
the termsp,,, + , (v). In all the subsequent terms of the series 
(35) [p ,  with i+n or k +n + I ] ,  thecoefficient with which 
they appear is fixed from the condition that the correspond- 
ing logarithmic divergences are absent and 

p i k - 0  F--r rn for k > n + l .  

The first term of the series ( 7 ) ,  which determines the mass, 
is specified from the beginning in (9)  and does not change 
further. Therefore, in x, terms proportional to In tanh (v/2) 
should be absent. 

Analogously, terms of the form 

should appear, with arbitrary coefficient f in ,  only in the 
terms A,, from (34). For k # i  in (39) we should fix the 
coefficients using the condition 

The sequences a, and Pn [or the coefficients C, for 
k = i +  1in (38)andC,fork=i  in(39)lensuretwoinfi- 
nite sets of arbitrary quantities. In the analysis of the space- 
time around a prolate rotating body they should ensure the 
possibility ofjoining with the interior solution, if the latter is 
symmetric under reflections u+ - u. This requirement 
stems from the fact that the solution ( lo) ,  ( 15), (34), (35) 
includes only the even terms of the series (7)  and the odd 
terms of the series ( 16). As a result, it possesses the above- 
mentioned symmetry and can be joined only with the corre- 
sponding interior solution. 

The series ( 15 for our solution will converge only for 
restricted values of the multipole moments. In view of the 
fact that the parameter C  becomes one of many, one may 
think of abandoning the expansion (34), (35) in powers of C 
and going over directly to the self-consistent solution. Mak- 
ing use of the form of the dependence (34) and (35 ), we set 

- 

= A ( U C O S ~ ~  u x= B,  (u) toss u. 
, = I  i= o (50) 

Substituting this into Eqs. ( 12) and ( 13) and expanding the 
latter in powers of cos2u, we obtain the conditions 
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BiN+Bi' cth v-2i(2i+l)BL-4(i+l) Bi+, mi=cos2 u (Cg ( u )  +C,q, ( v )  sin u )  , (58)  

where q ( v )  must be taken from (21 ), and 

k 

Then, using ( 1 2 )  and ( 1 3 )  alternately, we can obtain the 
+ t + - 4 k 1 k + 1 ~ 1 A f + ' 1 A 1 1  I=I next terms of the series. The principle of the choice of the 

coefficients in the solution of these equations remains as be- 
A ( v )  =4L-, t h ' " ( v / 2 ) ~ h - ~  u, ( 5 2 )  fore: Upon the first appearance of terms of the form (7)  in x, 

or of the form ( 16) in w i  these coefficients are taken to be 
where we have used the notation arbitrary, and upon their next appearance they are found 

from the same considerations as for the mirror-symmetric 
m m case. The mass of the singularities for w = 0, the first correc- 

D , ~ ~ = e x p ( ~ z  Bj?). ( 5 3 )  tion to this quantity, and the angular momentum of the 
LO J = O  source will be determined, as before, by Eqs. (45)-(47) .  

These conditions are extremely complicated. Even the first 
of them have the form 

and do not enable us to find an equation for any one of the 
functions A, and Bi . 

By including in the analysis all the terms of the series 
( 7 )  and ( 16), we shall seek the solution in the most general 
form 

7. RELATIONSHIP OFTHE SOLUTION OBTAINEDTO THE 
VAN STOCKUM METRIC 

In this section we consider the relationship of the solu- 
tion obtained to the singularity in the form of a filament of 
finite length with an exterior solution for an infinitely long 
rotating dust cylinder, obtained by van S t ~ c k u m . ~  The van 

' Stockum metric has the form 

where the functions F, M, L, and H depend also on the pa- 
rameters R and a, regarded as the radius and angular veloc- 
ity of the rigidly rotating dust cylinder. For r<R the compo- 
nents of the metric ( 6 0 )  and the density p and four-velocity 
ui of the dust [xi = (2, r, p, Z) ] have the form 

which follows from ( 1 6 ) .  The equations ( 1 2 )  and ( 1 3 ) ,  
H=exp (-a2?), L=rz(l-azr2), M=aF, F=l, 

after substitution of ( 5 5 )  and expansion in powers of sin u, 
will give the conditions 2np=aZ exp (a2?), ui=60'. ( 6 1 )  

A,"-A:!,+ (A,'-A:-,) (4p sh-' v-cth v )  +2(1+4i-i2)A, Outside, at r >  R, the exterior vacuum solution that joins 
+ (iZ-lli+lG)A,-,+ ( i + l )  (i+2)A,+,+2(i+l)BlA,,, with ( 6 1 )  at r  = R takes one of the following three forms, 

depending on the value of aR: 
1 ) For aR < 1/2, 

+2 {B~-,(A;-AL,) +a.-,[z ( i + k - c ) k ~ ,  
A = O  H=exp (-aZR2) (R/r)2"'R', 

L='/,rR sh ( 3 ~ + 0 )  sh-'e ch-' e, ( 6 2 )  

M=r sh (e+0)sh-' 28, F= ( r /R)  sh(e--0)sh-' E ,  

0= ( 1 - 4 ~ " R ~ ) ' ~ ~  In ( r /R) ,  th E= (1-4aZRZ)'bj 
( 5 6 )  

2 )  for aR = 1/2, 

3 )  for aR > 1/2, 
+Ah-, ( 1  (2+1-k) (ZA,-A,-,)+ (14-2) (k-l)A,+,) 1 } , ( 5 7 )  

H=exp(-a2R2) (R/r)Za2R2, L='12rR sin(3e-t 8) cosec E sec e, 

where A ( v )  is the same as in ( 5 2 ) .  Di is defined in (53 ), and M=rsin(e+0)cosec 28, F= (r/R)sin(~-0)cosec e, ( 6 4 )  
functions with negative indices should be assumed to be 

0= (4a2RZ-I)'" ln ( r /R) ,  t g  E= (4a2R2-I)">. equal to zero. Naturally, this system of equations cannot be 
solved either. Only in the case of small multipole moments 
can be obtain x and w in the form of the series ( 15) by means We shall consider these solutions in more detail. Since 
of perturbation theory. Here, we must start from they all depend only on one spatial variable r, each of them 
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can be transformed, by the transformation 

into one of the three well-known solutions (dependent on 
the spatial variable x )  described in Ref. 7. These are the 
spatial Kasner solution 

the spatial Kasner solution with complex exponents 
(PI,* = P' + ip" 

ds2=xZP' [ (du2-dv2)cos 9-2 sin qdudv] -dx2-x2p3dz2, 

and the spatial Kasner solution with equal exponents 
[pl =p2; (p1,p3) is equal to (0, l )  or (2/3, - 1/3); a is a 
constant] 

Apart from these, there exist only two other metrics that 
depend only on the spatial coordinate x and have a nonzero 
component gxx. They are regular in the entire space-time 
and have the form 

ds2=-dx2+epx [COS (3Ihpx) (du2-dv2) 
-2 sin (3"px) dudv] -e-awdz2, p=const, (69) 

We shall show that the absence of rotation for aR< 1/2 
is a manifestation of Mach's principle. In other words, the 
rotation of an infinitely long and massive source leads to 
drag of the entire space into rotation with the same angular 
frequency. For this we shall examine into what our solution 
( 10) goes over as the source is lengthened. After the intro- 
duction of new coordinates 

2p=La  sh u, 2z=La sin u, t*=L-"Y, 

with 

a=(1-pf F2)-', b=ap" 

in the limit L - a, it tends to the metric 

In fact, for the first term on the right-hand side of ( lo),  

If the ratio J / M  (and hence the angular velocity of rotation 
of the singularity) does not change as the singularity is 
lengthened, then, according to (47), the quantities C and o 
do not change either. In view of this, when the condition 
(44) is fulfilled the coefficient ofdp * in (73) tends to zero as 
L + a, . Therefore, for any angular velocity of the source the 
solution ( 10) tends to the static metric (72), which is equiv- 
alent to the Kasner spatial metric (66) (Ref. 9).  The metrics 
(62) and (72) are connected by the transformation (65), 
with 

The solution (64) for aR # 1 goes over into (62), with 

Therefore, for aR > 1 the only (and true) singularity x = 0 
goes over into r = a, (this was noted by Bonnor in Ref. 8),  
and this points to the incorrectness of the usual interpreta- 
tion of (64) as the exterior solution around a rotating 
cylinder for this case. For aR = 1 this solution goes over into 
(69) withp = exp(1/2)R-' . 

The solution (62) goes over into (66). But in the inter- 
pretation of the latter a problem arises, as was pointed out by 
Bonnor in Ref. 8. The metric (62) possesses a timelike Kil- 
ling field orthogonal to the hypersurface r = const, and con- 
sequently, is static. In fact, by the transformation (65) it 
reduces to the explicitly static solution (66), which de- 
scribes space-time around an infinitely long line singularity 
with constant mass density.9 An analogous problem also 
arises in the interpretation of the solution (63). Although, 
for this solution, the Killing field is null or lightlike, it is 
equivalent to the metric (68) [withp, = 2/3 (Ref. 8 ) ]  that 
was investigated in Ref. 10. This solution describes a strong 
zero-frequency gravitational wave in the field of an infinitely 
long filament with pi  = 2/3. In this case too, rotation is ab- 
sent. This is manifested also in the absence of rotation of the 
geodesics in the space-time (63 ) . 

' and the condition 0 < aR < 1/2 leads to the condition (44). 
Thus, for O<p < 1/2, in the rotation of an infinitely 

long line source the entire space-time is dragged by it into 
rotation with the same angular frequency. Therefore, in this 
case the space-time is described by the static solution (66), 
(72). But in the van Stockum metric (62) it is considered in 
the rotating system of coordinates (65). The formally ob- 
tained quantity J / M  (Refs. 6 and 8) reflects only the angular 
velocity of this system and has no relation to the angular 
velocity of the source. 

For p = 4 (pi = f ) the solution (66) joins with (67) 
and (68). With increase of p a qualitative change of the 
exterior solution occurs at this point. To investigate this 
change, it would be extremely useful to find the solution 
(with a line source of finite length L) that goes over into the 
metric (67) as L - a,. Unlike (67), this solution should not 
belong to the Lewis class, since, for the latter, sources of 
finite length are not admissible. It  is not difficult to convince 
oneself of this by making use of the results of Ref. 11. 

Thus, we have established the relationship of the solu- 
tion obtained to the well-known van Stockum metric. The 
difficulties that appear in the interpretation of the latter have 
been overcome. At the same time, a number of results asso- 
ciated with our solution have been found not to be correct. 
These are the formulas for the specific angular momentum 
of the source and the consideration of the exterior solution 
for a R 9  1. 
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On further conclusion, important for the analysis of the 
exterior solution obtained in this paper for prolate bodies, is 
that the conditions (44) for its existence are not accidental 
and do not decrease the region of its applicability. 

8. OBLATE ROTATING BODIES 

Earlier in the paper we considered the case of prolate 
bodies. But, perhaps, the approach used is also applicable to 
oblate, axially symmetric, uniformly rotating bodies. In this 
case, it is natural to perform the analysis in the coordinates 
of an oblate ellipsoid of revolution in a conventional flat 
space with 

p=R cos u ch v, z=R sin u s11 u. (75) 

For w = 0 the solution of Eq. ( 3 )  will be 

We separate out the first term of the series, the coefficient p  
of which is related to the mass of the source: 

Using Eqs. (5)  we can find the related function 

Introducing the notation 

we bring the metric (2)  to the form 

ds2=@ (u,  v )  [dt-o (u, v)drp] '-R2@ (u, u ) - I  c1l2 v 
X [ e u u ~ " )  (1--cos2 u ch-2 U.dv2], 

@(u, o)=exp[x(u, v)]exp [pn-2p arctg(sh u) ] .  (80) 

For w = x = 0 it reduces to the well-known solution investi- 
gated in Ref. 2. Its source is the ring v = u = 0, which has 
radius R  in the conventional coordinate space and mass 
M = p R .  

For the metric (82) the conditions (3)  and (4)  take the 
form 

w,,,+o ,,,,, +o,, (2x,,+tg u) +o+,(4p ch-' v-th v+2x,,) =O. 

(82) 

For x = 0 Eq. (82) has a (regular at u = + r / 2 )  solution of 
the form ( 16) with 

q,(v) =@,F(n, -1-n, -Zip, 0,5+ i sh v) 
-y,(l+4 shz v) exp[-4p arctg(2 sh v)] 

XF (1-n, n+2, 2+2ip, 0,5+ i sh v). (83 

The solution that falls off as v- cc is real. Thus, for n = 1 we 
have 

q,=C{(l+4 sh2 v)exp[-4p arctg(2 sh u)] (84) 
-exp (-2np) [4(sh v+p)'+4pZ+1]}. 

It is easy to convince oneself, on the basis of the form of the 
dependences of (76) and ( 16) on u, that for the case of ob- 
late bodies as well the solution must be sought in the form 

(55). The relations that are then obtained between A i  and Bi 
from the conditions (81) and (82) will differ from (56) and 
(57) only in the replacement sinhv ++ coshv and in the differ- 
ent function 

ii(v)=R-' ch-% v.exp[pn-2p arctg(sh u )  1. (85) 

In the case of mirror symmetry with respect to the plane 
u = 0 the solution can be written in the form (50). The rela- 
tions between A,  and B, will be obtained from (5 1 ) and (52) 
after the analogous replacements. 

The difference between the cases of prolate and oblate 
bodies is associated with the possibility of applying perturba- 
tion theory. By substituting (84) into the right-hand side of 
( 8 1 ) , it is not difficult to convince oneself that the latter will 
have a lower power of v than does the abbreviated expres- 
sion on the left-hand side for Au,. Thus, no arbitrarily small 
rotation can be regarded, for v-0, as a perturbation of the 
original static metric. However, if the central oblate body 
has finite size, application of perturbation theory is possible, 
provided that not only C g R  but also 

where v,,, is the smallest value of the coordinate u on the 
surface of the body. In this case, the analysis does not differ 
fundamentally from that in the case of prolate singularities, 
and requires cumbersome calculations. 

From the form of the dependence ( 16) or (84) it is not 
difficult to find 

J=2pRC(4p2+1 ) exp (-2np)/3, (86) 

b/M=2C(4p2+1)exp (-2np) 13. 

The quantity J / M  increases with increase ofp, and J  has a 
maximum at p ~ 0 . 6 7 .  It is also possible to show that, when 
the condition for applicability of perturbation theory is ful- 
filled, the space-time cannot possess closed timelike geode- 
sics. 

9. CONCLUSION 

The solution constructed in the paper for prolate 
sources is a generalization of the Zipoy-Voorhees metric ( 1 ) 
for the case of rotation.Written in the form ( lo) ,  (55), it is, 
when the conditions ( 12)-( 14) are fulfilled, the exact vacu- 
um solution of the Einstein equations. However, the result- 
ing system of ordinary differential equations (56), (57) is 
too complicated to be solved. At the same time, in the case of 
small multipole moments of the mass (starting from the di- 
pole moment) and of the angular momentum, the desired 
metric can be obtained in the form of a series of successive 
approximations ( 15). However, even in the simplest case of 
a source that is symmetric under reflection u + - u the re- 
sulting terms of the series are described by extremely un- 
wieldy expressions. 

If we consider our solution in the entire space-time, it 
will possess a rotating bare line singularity of finite length. 
Around this singularity will lie a region of possible violation 
of causality. 

The metric obtained is a candidate for the role of the 
exterior solution for prolate, axially symmetric, uniformly 
rotating bodies, under the condition that no part of the re- 

795 Sov. Phys. JETP 73 (5), November 1991 S. L. Parnovskr 795 



gion of violation of causality lies outside the body. The possi- 
bility ofjoining this metric with an appropriate interior met- 
ric should be ensured by the circumstance that it contains 
two infinite series of arbitrary parameters. However, even in 
the simplest central-body variants, the determination of 
both solutions is a very difficult problem. In particular, the 
difficulties of solving this problem are great because the solu- 
tion is obtained in the form of a series and because of the 
complexity of the resulting expressions. However, until at 
least one example of a complete solution has been construct- 
ed, the metric found in this paper can be regarded only as a 
candidate for the role of the exterior solution around rotat- 
ing bodies. 

The same can also be said of the exterior solution for 
prolate bodies, considered in Sec. 8. While the formulas ob- 
tained are similar, the types of the two singularities are very 
different. This is manifested, in particular, in the fact that 
the exterior solution with rotation can be constructed by 
means of perturbation theory from the original static metric 
only in the case of a central oblate source of finite size. 

We note that for a prolate source of finite size violation 
of the condition (44) is possible. Since negative values of p 
are related to a negative mass of the source, they do not have 
physical meaning. The violation can be associated only with 

values p> 1/2. However, with decrease of the width of the 
source to zero or increase of its length to infinity the condi- 
tion (44) is obligatory. 

In conclusion, the author would like to thank A. N. 
Aleksandrov, V. I. Zhdanov, Yu. N. Khudrya, and K. A. 
Piragas for useful discussions. 
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