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Kinetic equations are derived for a plasma in a gravitational field. In the Landau approximation a 
correct technique for separating the kernel of the collision integral is proposed. For vacuum 
spaces the resulting kernel is expanded to second order in the small parameter r,/A,, where r, is 
the Debye radius and A, is the characteristic length scale of the variation of the gravitational field. 
It is shown that in the zeroth approximation the kernel of the collision integral is the covariant 
generalization of the Belyaev-Budker kernel. In the second approximation in the nonrelativistic 
limit the correction to the Belyaev-Budker kernel is obtained in an explicit form that depends 
linearly on the Riemann tensor. The properties and possible applications of the kinetic equation 
obtained are discussed. 

1. INTRODUCTION 

In attempts to construct a kinetic theory for a plasma 
situated in a gravitational field a multiplicity of difficulties 
arise, many of which were noted and analyzed in the series of 
papers Refs. 1-3. A serious problem that arises in this situa- 
tion is associated with Currie's t h e ~ r e m , ~  which was formu- 
lated and proved for the special theory of relativity (STR). 
The problem consists in the impossibility of preserving the 
covariance of the equations for interacting particles. The sit- 
uation is further complicated when one goes over to the gen- 
eral theory of relativity (GTR). Three possible ways of over- 
coming this difficulty have been proposed. In the case of the 
STR B a l e ~ c u ~ , ~  suggested that the field of the interaction 
between the particles be treated not dynamically (equations- 
of-motion of the field), but statistically (kinetic equations). 
This leads to consideration of the complete distribution 
function of the particles and field oscillators. In this ap- 
proach, in the case of electromagnetic interaction between 
the particles the dynamical Maxwell equations are replaced 
by kinetic equations for the distribution function of the field 
oscillators. Systematic development of this method makes it 
possible to take radiative friction into account in the kinetic 
 equation^.^ 

In the case of the GTR, Israel and Kandrup obtained in 
Refs. 1-3 a covariant closed kinetic equation for the kinetic 
part of the distribution function of the particles, using the 
projection-operator method developed in Ref. 8. For a spe- 
cific application of the equations obtained to conformally 
static gravitational fields, see Refs. 9 and 10. The third meth- 
od, proposed in Ref. 11 (predicative relativistic mechanics) 
consists simply in postulating the solutions of the equations- 
of-motion. 

Another problem arises when one attempts to construct 
a complete kinetic theory that takes into account the self- 
consistent gravitational field. The problem consists in the 
necessity of calculating the average "macrometric" from the 
"micrometric." In Ref. 12 it was shown that the average of 
the energy-momentum tensor is not equal to the Einstein 

lem drops out. There exist, however, situations in which it is 
necessary to take the self-consistent gravitational field into 
account. For example, for the case of a weak plane gravita- 
tional wave there exists a region of frequencies in which 
allowance for the self-consistent gravitational field substan- 
tially alters the dispersion law of the gravitational waves in 
the medium (see Ref. 13). 

At temperatures T < {137L /In( 137L) }1'2.mc2 (Ref. 
14), when the scattering cross section prevails over the 
bremsstrahlung cross section, it is possible to use with suc- 
cess Klimontovich's for constructing a kinetic 
theory for a plasma in an external gravitational field, since at 
such temperatures there is no longer any need to take the 
statistics of the electromagnetic field into account. In this 
method the freedom that remains in the choice of the averag- 
ing hypersurface corresponds to "gauge" invariance of the 
kinetic theory developed by K a n d r ~ p . ~  The gauge invar- 
iance in Ref. 2 has as its cause the freedom to impose con- 
straints on the proper times of the particles, corresponding 
to the freedom to choose the observer (hypersurface) in the 
method of Klimontovich. Previously, this method has been 
used in the Landau approximation to obtain a kinetic equa- 
tion with a collision term for a plasma situated in an external 
gravitational field, for two types of metric-the Friedmann 
metric,17 and the metric of Bondi, Pirani, and Robinson for 
a plane gravitational wave.I8 

In the present paper we use this method in the Landau 
approximation to obtain for a plasma in a gravitational field 
a kinetic equation that is valid when the condition rD/A, 9 1 
is fulfilled, where rD is the Debye radius and A, is the charac- 
teristic length scale of the variation of the gravitational field. 
For vacuum spaces (R,, = 0)  the collision integral obtained 
will be expanded to second order in the above-indicated pa- 
rameter. The calculations will be performed in the nonrela- 
tivistic region and exclusively for vacuum spaces, for visuali- 
zability and compactness of the expressions obtained. All 
the notation used coincides with the notation in Ref. 19. 

tensor calculated on the average metric, this being a conse- 
quence of the nonlinearity of the Einstein equations. In the 2. DERIVATlON OF THE 

construction of a kinetic theory on the background of a grav- The method of Klimontovich is based on considering 
itational field, which is what we shall study below, this prob- the microscopic phase density of particles of type a, which 
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can be covariantly generalized in a unique and 
has the following form: 

Next, summing (7)  over j we obtain This method is described most fully and in most detail in 
Ref. 20 for the case of the STR. In the following we shall use 
an 8N-dimensional space (see, e.g., Ref. 2 1 ), which is a fiber 
bundle in which the base is space-time and the fiber is the 
space of the covariant momenta. 

The function ( 1 ) satisfies the following equation: 

a 
u l f i ~ a +  

daqtlLi,ac (s; q")ul -- (N. (q)Ncf (q") ) =O. 
ap i 

( 9 )  

We average this equation on a given hypersurface, then mul- 
tiply by N ;, (9'1, and again Next, using the 
relations 

(ni',(q))=n,F,(y), 

<~,(~)~b'(q'))=n,n,Fab(q; q'). 

( N ,  (q)Nb' (q')Nc (qN) )=n,nbn,F,b, (q; q'; (1") 

+6bcn.nbF..(q; qtt) J ds"6") (q"-q(b) (~"1 q') ), 

where v i  is the Cartan deri~ative;~'  qA = (XI; p k )  and 
A = 1, ..., 8. The electromagnetic field acting on a particle 
and originating from the other particles obeys the Maxwell 
equations 

where q, (s" Iq') is the trajectory of a particle of type b passing 
through the point q' at the moment of proper time s" = 0, and 
using also the standard expansions of the distribution functions 
into a vacuum part and a correlation part 

We shall define a function L ff by the following relation:15316 

Then the function L ~,b can be expressed in terms of the re- 
tarded vector Green function D,, , (x; x')  : 

we obtain a chain of equations, the first two of which have 
the form 

- e, afa C 2- J., uiVif,,+ - (Fila)u' -= - 
C api 6 ~ P S  

which satisfies the equation 

I,= d8q'L,rab (z; q') u'g, (q: 4 ' )  , 
In relation to this definition of L ;,bit is necessary to note 

two important points. First, to construct a kinetic theory in 
an arbitrary gravitational field it is necessary to know exact- 
ly the retarded vector Green function in an arbitrary gravita- 
tional field. However, this function can be calculated in 
closed form only for restricted classes of spaces. In Ref. 18, 
the Green function obtained in Ref. 22 in the space of a plane 
gravitational wave was used for these purposes. Second, as 
pointed out in Ref. 23, the retarded Green function cannot 
be determined in the general case, in view of the effect of the 
inverse scattering on the curvature. Only the casual Green 
function can be correctly determined. However, in con- 
structing the collision integral we shall use only local proper- 
ties of the Green function. Locally, it is possible to determine 
the retarded Green function using the adiabatic-expansion 
method of DeWitt and S ~ h w i n ~ e r . ~ ~  

In order to eliminate the self-action of the particles, we 
shall proceed as follows. We write the continuity equation 
(2)  for one particle of type a: 

dga, uzGigab + 5 Fi,Qbu' a??!!! + 5 (FiLa) u' - 
c dpi c api 

- 9 1 daq"Li1" (s; qtf) ulgb. (q' ; q") 
a ~ i  

-E 5 daq"L,iaYs; q")ulg~.(q; q'; q"). (11) 

It is obvious that, by making the replacements a-b and 
q-q' in the initial equation (7), we would have obtained an 
analogous equation, and it follows from this that the func- 
tion go, satisfies Eq. ( 1 1 ) with the corresponding replace- 
ments. In Eqs. ( 10) and ( 11 ) we have used the following 
notation: 

is the mean field acting on a particle of type a; 

is the field created, at the position of a particle of type a, by a where 
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particle of type b moving along the trajectory q, (s" (q'). 
In the approximation of a rarefied plasma and pair colli- 

sions, it is possible to omit the second term on the left-hand 
side and the last term on the right-hand side of Eq. ( 1 1 ) . The 
second term on the right-hand side of ( 11 ) takes into ac- 
count the phenomenon of dynamical polarization of the 
plasma,24 and leads in the nonrelativistic case to the 
Balescu-Lenard equation. We shall consider Eq. ( 11 ) in the 
Landau approximation, i.e., without allowance for the dy- 
namical polarization of the plasma. The corresponding 
equation was obtained in the nonrelativistic case by Landau 
and in the case of the STR by Belyaev and B~dke r . ' ~  Thus, 
Eq. ( 1 1 ) takes the following form: 

e, dg,b 
I L ' V  ,gab ( y ;  q ' )  + - <F,,">ul - 

C apt  

3. SOLUTION OF THE EQUATION FOR THE CORRELATION 
FUNCTION 

In a plasma situated in a gravitational field, self-consis- 
tent electromagnetic fields can arise, and are taken into ac- 
count by the term (Ff,) in Eq. (12). In the case of a plane 
gravitational wave the self-consistent electromagnetic field 
was calculated in Ref. 25, while in the presence of a supple- 
mentary external magnetic field it was calculated in Ref. 26. 
We shall confine ourselves to the approximation in which 
the influence of the self-consistent electromagnetic field on 
the act of collision of the particles is neglected. This approxi- 
mation will be valid for a homogeneous plasma in the field of 
a weak gravitational wave, since in this case, as shown in Ref. 
25, the self-consistent field is of order h (where h is the 
amplitude of the gravitational wave), and is therefore negli- 
gibly small. 

Thus, the equation for the correlation function takes 
the following form: 

Equation ( 13) is easily solved by the method of characteris- 
tics. Taking into account that the function g,, also satisfies 
Eq. ( 13) with the replacements a-b and q q ' ,  the solution 
can be represented in the form 

where q, (slq) is the solution of the geodesic equations 

which are characteristics of the kinetic operator 2 = u i t i .  
The quantity 5, which henceforth we shall set equal to zero, is 
determined by the relation q, (3;lq) = q. When the self-con- 

sistent field is taken into account, the equations of a geodesic 
are replaced by equations of a world line 

At this stage of the derivation of the collision integral on a 
flat background, the parameter so in the solution (14) is 
usually allowed to go to minus infinity, and one uses Bogo- 
lyubov's principle of the weakening of correlations, i.e., one 
assumes that 

The subsequent calculations of the collision integral can be 
performed in two ways. In the collision integral it is possible 
to cut off the limits of integration over r by the Debye radius 
at large r and by r,, at small r, but leave the interaction 
potential unscreened. This leads to the appearance of a Cou- 
lomblogarithm L (Ref. 24). In the opinion of Balescu,*' it is 
more correct to replace the Coulomb potential l /r  by a 
screened potential exp( - r/r, )/r  both in the collision inte- 
gral and in the correlation function, and to retain the cutoff 
only for small r. This leads to a small change of the Coulomb 
logarithm: L is replaced by L - 1/2. One can also propose a 
third way of calculating, which we shall demonstrate here 
for the example of the derivation of the Belyaev-Budker col- 
lision integral. 

In the case of a flat space-time the function L :b has the 
following form: 

e.eb 
L, ,""(x; y ' ) =  - - C a , , f i ( ~ ) e ( n x ~ )  ZL,']. (15) 

where u(x; x ' )  = + (x - x ' )  * is the Synge "world" func- 
tionZ3 for a flat space-time. In order to integrate in ( 14) over 
s' we go over from the derivative with respect to xi(s(q) in 
(15) to the derivative with respect to sf and integrate by 
parts. Then, 

Here, we have used the standard assumption that the change 
of the distribution function during the collision time is small. 
In order to integrate overs' in ( 16) it is necessary to solve the 
system of equations a = 0, A x ; ) O .  Since, in zeroth order in 
the interaction, the trajectories are straight lines, this system 
can be written in the following form: 

0 (s; s') ='/, (xi-x'i+UiS-u"S')~=o, 
(17) 

~~T'=N'-2'4+U'S-U'~s'>~. 

The system (17) has the unique solution 

where 
yi=x~-5't  , o=(uLL'), gi=ui-outi , R0"= (yuf)'-y2. 

The quantities 6 ' and R A reduce, in the rest frame of the 
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particle, which has velocity u,!, to the relative velocity and 
relative distance, respectively. Under the condition (17), 
the quantity - a,. utk takes the form 

It is not difficult to convince oneself that the quantity p has 
the meaning of the relative distance between particles mov- 
ing along straight lines when the retardation of the interac- 
tion is taken into account (a = 0). In the nonrelativistic 
limit, 

p=Ix+vt- (x'i-v't) I .  

Now, using the principle of weakening of correlations, 
we can find the parameter so that appears in g s  by requiring 
that correlation be absent when the particles fly apart to a 
distance equal to the correlation length 1 (of the order of the 
Debye radius). Thus, now the parameter so becomes a func- 
tion of q and q', and is found from the relation 

The solution satisfying the condition so ( 1 + oo ) -. - co is 
easily found: 

so=so(q: q': 1) = { ( Y E ) -  [ ( ~ t ) ~ - -  (a2-1) (ROf2-L2) ]"2)1(w2-1), 

S,=so(q - q'). 

Here, it is important that, although so is now a function of q 
and q', the correlation function gob again satisfies Eq. ( 13). 
Using the quantity R 6 defined above, we can specify the 
region of integration fl in the collision integral in a relativis- 
tically invariant manner: 

After substitution of the correlation function into ( 10) we 
obtain the Belyaev-Budker collision integral, in which, in 
place of the Coulomb logarithm L, we have L + 1/2 - In 2. 

Now it is not difficult to formulate a method for deter- 
mining s, in the general case. This quantity should satisfy 
the system 

a(xa(solq), xb(~*'Iq'))=O? 

x,'(so(q)-xbl(~='lq')>O, (19a) 

-0,. (x, (so (q) , zb (s-' 1 q') ) ~ ' ~ ( s * '  1 q') =L2,  

where a(x;  x') is the world function for the specified gravita- 
tional field. In analogy with the plane case, it is possible to 
show that the function gob with so from ( 19a) satisfies Eq. 
( 13), since uivisO = 0. The region of integration fl' in the 
collision integral is specified by the relation 

4. DETERMINATION OF THE KERNEL OF THE COLLISION 
INTEGRAL 

In order to determine the kernel of the collision integral 
correctly, it is necessary to change the order of the integra- 
tion in J, (10). But, as was noted in Ref. 21, this cannot be 
done, because the phase space is a fiber bundle and it is neces- 
sary, therefore, to integrate first over a fiber [pj (x') 1, and 
only then over the base (x"). This difficulty can be overcome 
if we construct some correspondence between different fi- 
bers. To this end, we parallel-transport the vectors p] (xi) 
from the fiber abovex"along the geodesic to the point xi. We 
also go over from the coordinates x" to Riemannian coordi- 
nates with origin at the point xi (which are the covariant 
generalization of the difference xi - x"). Thus, we obtain 
the following change of coordinates in the phase space: 

where gik, (x'; X )  is the bivector of the parallel transport 
along the geodesic; ai = Via. Using the relations given in 
Ref. 23 for the world function and parallel-transport bivec- 
tor, it is not difficult to calculate the Jacobian of the transfor- 
mations (20) : 

J =  
1 

A (x; x') ' 

where A(x; x') is the van Vleck-Morette determinant. After 
these transformations, it is then possible to change the order 
of the integration in ( 13). 

The expansion of the integrand in ( 14) in powers ofs, st, 
and yi is completely equivalent to the convolution of the ex- 
pansions of the two quantities 

This is a consequence of the covariant constancy of 
& [x; xu (slq)] along the geodesic, and of the relation 
&'g: = 6:. This representation is convenient in that the 
quantities Zi and Vi are vectors at the point x and scalars at 
the point x, (slq), and therefore the integration of these 
quantities separately is correct (only the scalars can be inte- 
grated). Analogously, for g, , 

Since the conditions ( 19) fix a certain region (having size of 
the order of r ,  ) in which the particles interact, it is possible 
to use for the Green function the DeWitt-Schwinger expan- 
~ i o n . ~ ~  The adiabaticity condition used in the DeWitt- 
Schwinger method implies in the given case that the charac- 
teristic length scale of the variation of the gravitational field 
is much greater than r,,. 

The expansions of Viand T i i n  powers of s, s', and yiare 
the covariant generalizations of the expansions in the STR: 
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In taking the self-consistent field into account it is nec- 
essary everywhere to replace the bivector of parallel trans- 
port along the geodesic by the bivector of parallel transport 
along the world line, and, in (23), to replace 

The contribution of the first-order terms in the expan- 
sion (23) in the plane nonrelativistic case was taken into 
account by Kl imonto~ich .~~ It was shown that these terms 
lead to allowance for fluctuations in the energy-conservation 
law. We shall take into account only the zeroth-order terms 
in (23), and shall expand the quantities Zi and Zi. For the 
subsequent calculations it is convenient to go over to orthog- 
onal-basis components of the vectors yi, pj, and pi. In order 
not to encumber the notation, henceforth, by convention, we 
shall take Latin indices to be basis indices. 

Thus, the collision integral takes the form 

where the kernels are 

5. EXPANSION OFTHE COLLISION INTEGRAL FOR VACUUM 
SPACES 

For vacuum spaces (R, = 0), to within the first power 
of the Riemann tensor, we have for the Green function the 
expression 

since A = 1 + o2 (Ref. 23). To shorten the expressions, we 
take it henceforth that the free indices r and t are being dis- 
placed with velocities ur and u', n and m are being displaced 
with velocities u'" and ul"(x), and p and q are being dis- 
placed with velocities y and y q. Using the known relations 
for the limits of coincidence of derivatives of 0 (Ref. 23), we 
can obtain an expansion of the quantities appearing in (25) : 

The region of integration a' is specified by the relation 

There exists a change of coordinates that reduces the region 
R' to the region R: 

Using (26), we can show that the kernels Mis satisfy the 
relations 

Miaabui=O, Mi/b~d=O, 
(28) 

Midbau'i(x) =0, Mi,bnus=O. 

Since the expansions (27) contain only the Riemann tensor, 
we can immediately write out a possible structure for Mi, : 

where the first term is the Belyaev-Budker kernel: 

&i*=Pis+Ei'E,'I( a2- I ) ,  Pi.=gi,-uiu,, 

gr'=uii (x) -WU*, a= (U (x) U' (x) ) , (30) 

The quantity W p  will have an analogous structure. Using 
the relations (28), we can reduce the number of unknown 
coefficients from 17 to 10. Then W, can be represented in 
the form 

W,8"b= {Q~R,rht+@zRlnhm+@~Rt~kn+@4Rtnk~}Pi1P? 
+ {@,2R,pni+@,"rn,,) EbSPii+ {@7ZRtrnt+@82R~n~mJEi'Ps1 

where 

In order to calculate the coefficients that appear in 
(32), it is necessary to substitute the expansions (27) into 
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(25) and integrate. In the integration, the need arises to cal- 
culate the tensors 

where ql = wy, - ul (x) (yu), to fourth order; in these ten- 
sors, f depends ongik, ui, uj (x), and yi. The tensors (33) can 
be calculated simply to arbitrary order, using the following 
procedure. From the vectors yi, u- and u" we construct a 
vector 8, that satisfies the relations Biui = BiuIi = 0: 

( Y E )  ( Y E ' )  Bi=yi+ui. - + ui' - , a=02-1. 
a a 

(34) 

From this, we express yi as 

and substitute this, in ql, into (33). Then the problem of 
calculating the quantities (33) reduces to the problem of 
calculating the tensors 

where 

Taking into account that the tensor pl,,..in gives zero when 
contracted with any velocity and depends only on g,, ui, 
and u,!, we can obtain 

where the operators 6?, B, and are given by 

The tensors pi,,,. in are then easily calculated: 

The calculations of the coefficients in W, are conveniently 
performed in the rest frame of the particle, which has veloc- 
ity u" (a  boost along a basis index). In this coordinate frame 
we have 8 = 2(cos28 ' - 1 ), where 8 ' is the polar angle. 

After tedious calculations, in the nonrelativistic limit 
we obtain 

where 

It is not difficult to check that the kernels (37) satisfy the 
relations (28). Going over, finally, from the basis compo- 
nents of the vectorspj (x)  and pi to the vectorsp; (x)  and pi, 
we obtain the following expression for the collision term of 
the kinetic equation: 

In this expression the kernels W,, are given by Eqs. (37) and 
(38), in which we have introduced the notation 

6. CONCLUSION 

In conclusion, we shall summarize the results of the 
paper. We have obtained a collisional kinetic equation on the 
background of vacuum spaces to within terms linear in the 
Riemann tensor. The appearance of terms with curvature in 
the collision integral39 is due, on the one hand, to allowance 
for the influence of the gravitational field on the elementary 
act of collision of two particles (deviation of the geodesics), 
and, on the other, to the influence of the gravitational field 
on the dynamics of the electromagnetic interaction of the 
particles with each other. As is well known,29 the Coulomb 
potential of a charged particle in the neighborhood of its 
world line in an external gravitational field contains extra 
terms that depend on the curvature. 

It should be noted that, so far as the author is aware, in 
the literature there is no correct derivation of the collision 
integral in a gravitational field, while in papers on general- 
relativistic kinetics (see, e.g., Ref. 26 and the references 
therein) a naive covariant generalization of the special-rela- 
tivistic Belyaev-Budker collision integral is used. A similar 
generalization, which fails completely to take into account 
the specifics of the general-relativistic phase space, has also 
been used in Kandrup's paper.2 The technique that we pro- 
pose (Sec. 4) for identifying the kernel makes it possible to 
construct the collision integral in a gravitational field in a 
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systematic way. The expression obtained for the collision 
integral reduces to the correctly generalized Belyaev- 
Budker integral with neglect of the variation of the gravita- 
tional field in the 4-dimensional collision region. It should 
also be noted that the collision integral (39) that we have 
constructed, like the Belyaev-Budker integral, has been ob- 
tained in the Landau approximation, i.e., without allowance 
for the dynamical polarization of the plasma. The next stage 
in complexity would be the derivation of the collision equa- 
tion analogous to the Balescu-Lenard equation. 

Comparison of the kernels linear in the curvature with 
the Belyaev-Lenard kernel shows that the condition for va- 
lidity of the expansion used in the derivation of the collision 
integral has the following form: 

where h, A,, and v, = c/Ag are the characteristic amplitude, 
characteristic length scale, and characteristic frequency of 
the gravitational field; v, and v, are the thermal velocity and 
plasma frequency. The condition (40) coincides exactly 
with the condition for smallness of the tidal deviation in the 
4-dimensional collision region. 

The kernels W,, linear in the Riemann tensor do not 
satisfy all the relations that are satisfied by the Belyaev- 
Budker kernel, but only the relations (28). An analogous 
situation arises in the construction of the theory of a non- 
ideal plasma2s and in allowance for the influence of an exter- 
nal electric field on the act of collision of  particle^.^' The 
hydrodynamic equations obtained from the kinetic equation 
with the collision integral (39) will differ, because of the 
presence of the terms linear in the curvature, from the stan- 
dard hydrodynamic equations. At the same time, it is known 
that calculations for gravitational-wave detectors are, as a 
rule, performed in the hydrodynamic approximation. There- 
fore, as one of the most important applications of the kinetic 
equation obtained in the present paper we may point to its 
possible use in the description of gravitational-wave experi- 
ments. Of course, this problem requires a separate investiga- 
tion. 

In conclusion, the author thanks the participants in the 
seminar "General-relativistic classical and quantum kinet- 

ics" at the Kazan State Pedagogical Institute for their sup- 
port and active discussion of the work. 
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