
Landau theory of continuous liquid-crystal transitions 
V. I. Marchenko 

Institute of Solid-State Physics, Academy of Sciences of the USSR, Chernogolovka, Moscow Province 
(Submitted 21 May 1991) 
Zh. Eksp. Teor. Fiz. 100,1370-1377 (October 1991 ) 

It is shown that continuous transitions from the liquid to the crystalline state are possible in the 
Landau theory of second-order phase transitions. Modulation of the density as a result of such 
transitions is a quadratic function of the order parameter represented by the correlation function 
of the density fluctuations. Different types of structures-smectics, crystals, incommensurate 
crystals, and quasicrystals-may occur, depending on the nature of the continuum of invariants 
in the Landau expansion. 

It is usually assumed that crystalline ordering can ap- sequently, has two one-dimensional representations, the 
pear only as a result of a first-order phase transition. This is identity and the pseudoscalar. 
based on an analysis of the feasibility of a second-order phase In the case of a three-dimensional liquid the proper 
transition in an isotropic liquid1 when the order parameter symmetry group of the vector k = 0 is SO(3)  x I (arbitrary 
is the spatial modulation of the density rotation and inversion). Its irreducible (2L + 1 )-dimen- 

sional representations (L, + ), where L are integers, can be 
p (1-1 - p,, = pkeekr. ( 1 ) described as follows: 1 (L, + ) correspond to the usual 

spherical functions with angular momentum L; 2) (L, - ) 

Since the quantities p, remain invariant under transforma- 
tions of the elements of the proper symmetry group of the 
vector k (see 5 134 in Ref. 2),  the Landau expansion includes 
third-order invariants. However, this case does not allow for 
all the possibilities in the continuous transition of a liquid to 
a crystal. 

Consider the correlation functions of the density fluctu- 
ations ( 4  40, ) , ( Ap Ap247, ), and generally 
G, = (Ap, Ap2...Ap, ), where 4, = p ( r l  ) -p,.  We select 
the arguments of the function G, in the form of n - 1 linear- 
ly independent combinations of the coordinates r, ,  which 
are not affected by arbitrary translations, and of the coordi- 
nate r = (r, + r, + ... + r, )/n. In the homogeneous case 
the correlation functions are independent of r. In the inho- 
mogeneous case we can expand their Fourier series 

The quantities G,,, which are functions of the ( n  - 1 )th 
coordinate, generally remain invariant under the transfor- 
mations of the elements of the proper symmetry group of the 
vector k. 

The proper symmetry group of the vector k = 0 of a 
two-dimensional liquid is the group C,, (representing arbi- 
trary rotations and reflections). This group has two one- 
dimensional representations, the identity and the pseudosca- 
lar, and the functions transforming in accordance with these 
representations remain invariant under rotation but exhibit 
sign reversal as a result of reflection. All the other represen- 
tations are two-dimensional and split into two classes: the 
functions belonging to the first class (m, + ) transform as a 
pair of functions (sinmp, cosmp), where m are natural 
numbers and p is angle; the functions belonging to the sec- 
ond class (m, - ) transform as products of a pseudoscalar 
and of a function with the moment m belonging to the first 
class. The proper symmetry group of the final wave vector 
reduces to reflection by a straight line parallel to k and, con- 

correspond to products of  the spherical functions and a 
pseudoscalar. The proper symmetry group of a nonzero 
wave vector is C,,,  representing rotation about the direc- 
tion k and reflection by planes parallel to the wave vector k; 
its representations are given above. 

The star of the wave vector k (see § 134 in Ref. 2) con- 
sists of all arbitrarily oriented vectors with the same magni- 
tude, so that representations with nonzero wave vectors are 
finite-dimensional. 

We expand the functions G,, in terms of irreducible 
representations of the proper symmetry group of the wave 
vector. The pair correlation function may contain only the 
even moments with the "normal" behavior on reflection be- 
cause of the transposition symmetry of the coordinates 
G, (r ,  ,r, ) = G, (r, ,r, ) : in the two-dimensional case if 
k = 0, the representations are (m, + ), whereas for a finite 
value of k there is only identical representation; in the three- 
dimensional case if k = 0, the representations are (L, + ) 
and for a finite k, they are (m, + ). In the expansion of the 
triple correlation function G, there are no limitations in the 
two-dimensional case. In the three-dimensional case any 
representation is obtained only in the quadruple correlation 
function G,. In the case of the triple correlation function 
there is no anomalous behavior with respect to reflections: 
these representations are either pseudoscalar or (L, - ), 
(m, - ), since four points must be distributed in the three- 
dimensional space in order to specify a figure in which inver- 
sion is violated. 

These ideas on the correlation functions are put for- 
ward above only to demonstrate the generally trivial circum- 
stance that all the irreducible representations correspond to 
quite simple physical parameters and when they are intro- 
duced into the theory there is no need to invoke any models, 
such as those for the structure of molecules composing a 
liquid crystal (any symmetry breaking is permissible even in 
the case of a monatomic liquid). 

In the case of a phase transition and a nonidentical rep- 
resentation of the wave vector there will necessarily be such 
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correlation functions which include an anomalous contribu- 
tion representing a change in the symmetry. It is natural to 
select the order parameter to be that part of the correlation 
function which minimizes n. The modulation of the density 
in a transition must then be a quadratic function of the order 
parameter, since expansion of the square of any representa- 
tion always includes the identity representation of the sym- 
metry group of the doubled wave vector. 

Let us assume that the representation active in a transi- 
tion is pseudoscalar with a finite wave vector. The quadratic 
(in components of the order parameter v k )  term in the 
expression for the energy is 

where vk = q t  because the order parameter (correlation 
function) is real. Near the phase transition the function A 
has the following form in the vicinity of its minimum: 

A (T, Ikl) =a(T-T,) +g(k-f)'. (4) 

There are no cubic invariants for the pseudoscalar rep- 
resentation. In the two-dimensional case symmetry consid- 
erations lead to the following fourth-order invariants for 
vectors with the same magnitude (the corresponding graph 
is shown in Fig. la) :  

Here, b(8) is a function of the angle 8 between the vectors k 
and p ( 1 kl = lpl =A, which satisfies the obvious conditions 

In the future we shall represent the pairs of vectors k and 
- k by a single line segment. For example, the graphs in 

Figs. l a  and lb  are fully equivalent. 
At first sight it is surprising that the function b(8) is 

essentially nonanalytic at the point 8 = 0. In fact, Eq. (5)  
should be regarded as the result of going over to a Fourier 
series in the following functional: 

FIG. 1. 
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where the kernel D is symmetric under transpositions of the 
arguments and falls rapidly at distances between the points 
ri and rj, which are large compared with the interatomic 
distance (short-range action). These simple calculations 
yield 

Eb=x ~ ( 0 )  I ~ ~ I ~ I ~ ~ ~ ~ - ~ ~ ~  Iqk14y (8)  
k,P k 

where fl, = P(0) and the function fl(8) is 

which is obviously analytic. Comparing Eqs. (5)  and (8) ,  
we can demonstrate that 

b(e)  =me) 
if 8 $0 and 

2b(0) =8 (0 )  

if 8 = 0. The following point is of importance. In the first 
sum in the energy of Eq. (8) there are terms (k, - k, p, 
- p) for p = k and p = - k, and these terms correspond to 

the same energy contribution. The second sum serves to re- 
move the extraneous terms. This nonanalyticity ensures that 
a finite number of wave vectors appears at a phase transition. 

Varying the total energy E, i.e., the sum of Eqs. (3) and 
(8) ,  we find the equilibrium equation for 67:: 

It follows from the condition (6) that the functionfl(8) has 
extrema (such as a minimum or a maximum) at 8 = 0 and 
8 = ~ / 2 .  The absolute minimum may be attained at some 
arbitrary value Omin. Let us assume that the function P (8 )  
has the form of the representations in Fig. 2a, when only two 
harmonics qf and 7 - (Fig. 3a) appear at a phase transition 
and we have 

The symmetry of this smectic is due to the following ele- 

FIG. 2. 
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FIG. 3. 

ments: the glide line representing the product of reflection 
and translation by n-/f along the reflection line; reflection 
about a normal to the glide line; and arbitrary translations 
along this line. The condition for stability of the smectic 
phase against small perturbations reduces to the inequality 

If the function P (8 )  varies, for example, in moving 
along a phase transition line in the p T  diagram, its mini- 
mum may drop to the critical valuePo/2. We shall show that 
up to this moment all the other solutions are characterized 
by a higher energy. With the exception of the angle 8 = 0, we 
replace the functionP(8) with a constant P,,, and then we 
can obviously reduce the energy of any solution. Next, sum- 
ming the expressions in the braces for all N >  2 vectors corre- 
sponding to a given solution, we obtain 

which is less than the magnitude of the quantity given by Eq. 
( 11 ) as long as the condition ( 12) is satisfied. However, the 
lowest energy in the Landau theory is the property of a state 
with the maximum absolute value of the order parameter. 

IfPmin = ,Bo/2, then the energy minimum corresponds 
to structures with the wave vectors f ,  and f2 inclined at an 
angle dm,, to one another and with the arbitrary ratio 
Ivt, /qn I. The degeneracy is lifted if we allow for terms of 
the eighth order. Consequently, we either have a first-order 
transition to the crystalline state (Fig. 3b) with identical 
values of I vfl I = 1 vn I, when the magnitude of the order pa- 
rameter is 

or an intermediate phase and its ratio IT,, /vn I varies from 
zero to unity. In the latter case the crystal symmetry reduces 
to a twofold axis and translations. The crystal symmetry 
corresponding to Eq. ( 14) for 8,,, # 7~/2 is governed by mu- 
tually perpendicular glide lines along the directions of the 
vectors f ,  + f2 with translations n-/f c0s(8~,,  /2) and 
n-/f sin(B,,, /2). If Om,, = n-/2, the C, axis should be added 
to the symmetry elements. 

If 2Pm,, <Po holds, we are in a region where without 
detailed knowledge of the function P(8) we cannot make 

any definite conclusions about the states with the minimum 
energy. Therefore, we assume first that the condition ( 12) is 
satisfied almost everywhere with the exception of a small 
interval near the angle 8,,, . Moreover, we assume that P,,, 
is only slightly less than P0/2 (Fig. 2b). 

If the angle Om,,, is not equal to n-/2, we find that moving 
along the phase transition line changes the angle, which may 
become n-/2 or ~ / 3 .  When 8,,, becomes n-/2, a second-order 
phase transition to a crystal with a higher symmetry then 
takes place. In this state the approach to the angle n-/3 is 
impossible. A transition to a state which differs fundamen- 
tally from that of the crystal symmetry takes place first. 

Expanding near the minimum function /?(8), 

we can readily analyze the phase diagram as Omin approaches 
~ / 3 .  Critically close to the angle 7~/3 when 

we find that an incommensurate density wave appears in a 
continuous manner in the crystal and this wave is directed at 
an angle 8, = (2/3)n- - (1/2) 6, to one of the lattice vec- 
tors (Fig. 3c). Therefore, the orientational and translational 
symmetries are lost completely. A closer approach to the 
angle n-/3 rapidly increases the amplitude of the new wave 
and for S,/2 a continuous transition to a crystal with the 
hexagonal symmetry takes place (Fig. 3d). 

It is worth noting the following circumstance: these 
structures are described by an order parameter of the type 

where @, are pseudoscalar functions of the arguments given 
above and these functions are generally complex, i.e., they 
can be represented in the form 

where the functions @; and @; are real and linearly indepen- 
dent, whereas the phase p, is simply an arbitrary number. 
The functions @; and @;' corresponding to different vectors 
f differ only by substitution of the variables corresponding to 
rotation. It must be stressed that any relationship between 
the functions is determined not only by the symmetry con- 
siderations. In general, the expansion ( 17) may contain dif- 
ferent functions @ corresponding to different wave vectors. 
However, in the case of a phase transition we are interested 
in an instability corresponding to a definite change in state 
for a given wave vector. The change described by the func- 
tions @; and @; should, for reasons of symmetry, be the 
same for different wave vectors, apart from substitution of 
the variables. There is no reason to expect a relationship 
between the phases p,, because the addition of some number 
to a phase represents a wave shift along the wave vector. 

In the case of a smectic the freedom of the phase means 
that the structure may exhibit a translation relative to the 
liquid at rest. A crystal with four vectors has two phases, 
corresponding to the feasibility of lattice translation along 
two directions. A hexagonal structure with six vectors has 
three phases, and their sum becomes fixed when we allow for 
the sixth-order terms shown graphically in Fig. l c  (only 
twofold degeneracy remains and it is related to the absence 
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of the reflection symmetry of this crystal; reflection results 
in a transition from one possible state to another). In an 
incommensurate crystal all the phases are free. Structures of 
this kind are characterized by a specific phase symmetry: the 
state does not change when 2 a  is added to any of the phases. 

We can easily show that quasicrystalline states may ap- 
pear and they exhibit not only the phase symmetry, but non- 
crystalline rotation elements. W-e assume, for example, that 
the function P(B) has the form shown in Fig. 2c, that its 
absolute minimum is located somewhere in the vicinity of 
the angle 72/4, and there is no function P(B) with special 
symmetry. The magnitude of the order parameter of the 
structure with the C, symmetry (Fig. 3e) is 

Comparing the state with possible competitors, such as the 
conventional crystals with four vectors and the angles Omin 
and 72/2, we find that when the relatively weak condition 

is satisfied, the proposed structure has a lower energy. We 
can easily show that, as in the above case of a structure with 
six wave vectors, we can expect multicritical behavior with 
incommensurate and quasicrystalline phases. 

If the functionp(8) has the form shown in Fig. 2d, i.e., 
when beginning from a certain small angle BO, it is small 
compared withPo, then-as 8, decreases-a series of quasi- 
crystalline states should be observed and should have sym- 
metric N-ray stars with the number N increasing in propor- 
tion to 8; I. A more refined study of the behavior of the 
function may reveal the appearance of several wave vec- 
tors with random mutual orientation (incommensurate 
crystals). 

In the three-dimensional case the fourth-order invar- 
iants are parametrized by two angles 6, and 8, (see Fig. 4) 
and the energy E4 is 

where the functionp is real, since it is not affected by spatial 
reflection and the product of the parameters 7, transforms 
into a complex conjugate, because on reflection the vectors 
are transposed in such a way that the effect is equivalent to 
the reversal of their direction. Following the changes in the 
figure shown in Fig. 4, we can easily see that variation of 
their angles and plotting of figures consisting of exactly the 
same vectors but with a different closure demonstrates that 
the function p( 8, , 8, ) need be known only in the interval 
[B, , 0, ] governed by the following condition: for a con- 
stant value of B,, the angle 13, varies from zero to its maxi- 

mum B,,, when the angle in the figure at the edge AB be- 
comes r/2, i.e., 

and, since the function /? is obviously symmetric under 
transposition of the arguments, the required region repre- 
sents the triangle ABO shown in Fig. 5 and located in the 
sin2(B, /2), sin2(B2 /2) plane. The symmetry of the function 
p means that the corners of the triangle correspond to local 
minima or maxima, whereas along the sides the derivative 
with respect to one of the angles (or with respect to a certain 
combination of the angles) vanishes. 

Investigation of the possible situations is basically the 
same as in the two-dimensional case. However, we have to 
study a large number of competing structures. Let us assume 
that, for example, the function has a local minimum some- 
where in the vicinity of the points (0,72/3 ). Then, in addition 
to the two-dimensional structures in Figs. 3b, 3c, and 3d 
discussed above (in the three-dimensional case they are 
smectics), we have to allow for crystals: a )  with three pairs 
( + ) of the wave vectors (representing edges of a tetrahe- 
dron meeting at the same vertex); b)  with the same number 
of vectors, but with a mutual orientation slightly differing 
from symmetric and with very different values of ]??,I;  c )  
with six (corresponding to all the edges of a tetrahedron) 
pairs of vectors; d )  with four pairs of vectors oriented along 
the edges of an octahedron meeting at one symmetric vertex; 
e )  a crystal which is in the same relationship to the preceding 
case as case b to case a; f)  a crystal with six pairs of vectors 
oriented along the edges of an octahedron; g) a quasicrystal 
with vectors oriented along the edges and diagonals of an 
icosahedron. Depending on the ratio of the parameters, we 
have all the structures except the smectic in Fig. 3b. The 
energy E4 is the same for the smectic in Fig. 3d and for the 
crystal a; this degeneracy can be lifted if we allow for terms 
of sixth order (Figs. l c  and Id).  

These transitions do not exhibit a Lifshitz instability. 
This instability reduces to loss of the order parameter from 
the wave vector representation characterized by a certain 
proper symmetry to a representation of a different vector 
with a lower symmetry. In the case of a liquid the only vector 
special in respect of the symmetry is k = 0. We can also say 
that the selection of the representation with IkI = f [see Eq. 

FIG. 4. FIG. 5. 
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(4) ]  corresponds precisely to the absence of the Lifshitz 
invariant, but for any other value of k there is such an invar- 
iant: it is proportional to the derivative d,A.  In the case of 
crystals the situation is similar. When the Lifshitz invariant 
exists in accordance with the symmetry considerations and 
changes the symmetry to a different one, but with the same 
proper symmetry of the wave vector (in the class of vectors 
of the general position on the axis, on a plane, or simply a 
general position without any proper symmetry), the transi- 
tion is possible for that value of k for which the coefficient is 
minimal in quadratic terms of the Landau expansion. 

It should be pointed out also that in the case of phase 
transitions described by two-dimensional representations of 
the wave vector group there are several functions represent- 
ing the structure of the continuum of fourth-order invar- 
iants. 

We shall elucidate tile Ginzburg-Levanyuk criterion 
for these transitions. The "roton-like" behavior of the func- 
tion A(k) of Eq. (4)  has the effect that the fluctuation cor- 

rection to the specific heat (see $147 in Ref. 2) depends 
weakly on the dimensionality d of space: 

AC-haT,Z(a/g)'"I T-T,I-", (23) 

where the constant A, is equal to f for d = 2 and to f */T for 
d = 3. Comparing Eq. (23) with the characteristic jump in 
the specific heat a2/P,, we can find the condition of validity 
of the Landau theory: 

a1 T-T,I=->(hdpO)'g-'bT~/~, 

i.e., we must have 

(hd$O)213g-"3TC'13<< 1. 

'L .  D. Landau, Zh. Eksp. Teor. Fiz. 7, 627 (1937). 
*L. D. Landau and E. M. Lifshitz, Statistical Physics, Vol. I ,  3rd ed., 
Pergamon Press, Oxford ( 1980). 

Translated by A. Tybulewicz 
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