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A method is proposed for calculating transport coefficients directly from the Kubo formulas, 
without solving the kinetic equation. The method is based on expanding the scattering operator in 
inverse powers of the number of atoms in the crystal. In the case of elastic scattering by randomly 
distributed defects, this method yields the standard results of kinetic theory. In the case of 
inelastic scattering (e.g., a scattering of electrons by phonons), in contrast, the use of the Kubo 
formula leads to an explicit expression for the conductivity. In standard kinetic theory, the 
conductivity can be found only through approximate solution of an integral equation. 

The late 1950s were years of fundamental progress in 
the theory of transport phenomena. Using the equations of 
motion for the density matrix, Kubo managed to derive ex- 
act closed expressions for the transport coefficients in terms 
of correlation functions of the corresponding fluxes.' The 
static conductivity tensor, for example, is given by 

where j is the current operator, and is the Hamiltonian of 
the system in the absence of an electric field. With such ex- 
pressions available, it should have been possible to avoid 
having to solve the kinetic equation for the nonequilibrium 
distribution function. In the case of inelastic scattering, this 
is an extremely important matter, since even the linearized 
kinetic equation is an integral equation, so it cannot, in gen- 
eral, be solved exactly. Furthermore, the Kubo formula 
makes it possible in principle to find the conductivity to any 
order in the interaction of the electrons with the scattering 
subsystem. The kinetic equation offers no such flexibility. 

However, Kubo's theory actually turned out to be in- 
complete, since no direct methods were found for calculat- 
ing the current correlation function for specific systems. In 
particular, attempts to construct such a correlation function 
by extrapolating to long times the expression derived for 
short times proved unsuccessful. Such attempts were in fact 
begun by Kubo himself.' In addition, essentially nothing 
was achieved through the use of the representation in which 
the complete Hamiltonian R, including the scattering 
Hamiltonian, was diagonal. Expression ( 1 ) thus remained 
more a formality than a genuine tool for solving practical 
problems. 

Various indirect methods were developed for calculat- 
ing the current correlation function in cases in which it could 
be found in terms of a two-particle Green's function. Special 
methods were proposed for calculating such Green's func- 
tions (for example, there is the elegant but rather involved 
graphical technique worked out by Konstantinov and 
Perel',* and there is the method of equations of motion for 
two-time Green's functions3 ) . These methods ultimately led 
to a kinetic equation which had previously been derived di- 
rectly from the equation of motion for the density m a t r i ~ . ~  
These methods also made it possible to establish a first-prin- 
ciples foundation for the kinetic equation. They also made it 
possible to derive transport coefficients to any order in the 

potential of the scattering subsystem, with allowance for the 
renormalization of the energy spectrum of the conduction 
electrons caused by that subsystem. 

Nevertheless, these and other methods aimed in the 
same direction have not yet solved the problem of how to 
make direct use of the Kubo formula for specific calcula- 
tions. In the present paper we wish to propose a method 
which makes it possible to calculate transport coefficients 
directly from the Kubo formula without solving a kinetic 
equation. In this method, the current correlation function is 
calculated by means of a representation in which the current 
operator is diagonal. The scattering Hamiltonian is expand- 
ed in the inverse number of atoms in the crystal, N. In the 
case of elastic scattering of electrons by randomly distribut- 
ed defects, this method makes it possible to derive the stan- 
dard results of the kinetic theory in the Born approximation. 
In the case of inelastic scattering of electrons by phonons, in 
contrast, it becomes possible to derive an expression for the 
conductivity which is exact within the framework of the 
Born approximation. This cannot be done in the kinetic the- 
ory. 

1. IMPURITY SCATTERING 

We will demonstrate the general procedure for calculat- 
ing the current correlation functions in ( 1 ) by discussing the 
example of the scattering of free electrons by randomly dis- 
tributed defects. The Hamiltonian of the system is 

We have omitted the spin indices from the electron operators 
a:, a,; p, is the position of the defect n; and v, is the matrix 
element of the potential of this defect. To simplify the ex- 
pressions, we assume that the electron gas is nondegenerate. 
Accordingly, the contribution of each electron to the con- 
ductivity is independent of the contributions of the other 
electrons. We use the Born approximation, in which we ig- 
nore the renormalization of the electron spectrum due to the 
interaction of the electrons with defects. Making use of the 
isotropy of this system, we can then rewrite ( 1 ) as 
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where f, is the equilibrium distribution function for an elec- 
tron with a momentum k, and the subscript Av means an 
average over the distribution of defects. 

To calculate the matrix elements of the operator expo- 
nential functions, we use the well-known relation 

t 

e x p [ i ( A + B )  t ]  = eiAtT exp ( i 5 e-'*' f I e i A r d r ) ,  (4) 
0 

where T denotes a time ordering. Thinking of a random dis- 
tribution of the impurity, we put the operator exponential 
functions in a form which is multiplicative in the defect in- 
dex in order to carry out the averaging over the positions of 
the defects. For example, in order to single out v, we should 
use as the Qperators A and B in (4) the quantities 
A?, = A? - v, and v, , respectively. In our approximation 
we then find 

t 

exp (%t) = e x p ( M , t )  [ l + i  1 e ~ p ( - ~ % , ~ )  v ,  e x p ( i X I ~ ) d ~  
0 

1 < 

- 1 j d r  d ~ ,  8 ,  ( - r 1 ) 8 ( - r )  1, 
0 0 

B ( T )  = exp (iz,~) B exp ( - ~ X , T ) .  (5)  

According to (4) ,  on the other hand, in the same approxima- 
tion we have 

exp ( - i ~ , ~ ) v ,  exp ( i l , ~ )  
t 

= e x p ( - i z o T )  { v , - i  j ~ T [ P ,  ( T I ,  v i ] }  
0 

x e x p ( i % , ~ ) ,  T7,=V-v,. (6) 

When we take a configurational average of the product of 
two operator exponential functions from (3), including v, , 
we find that the second term in (5) ,  (6)  and the correspond- 
ing term from the complex-conjugate exponential function 
vanish. The reason is that these are the only terms among 
those of order v 2  which depend in a random way on the ran- 
dom coordinate p, . 

Continuing this procedure, we can write 

Writing the matrix elements of the product of the operators 
xn in (7)  in terms of the matrix elements of the operators X, 
separately, taking a configurational average over the pairs 
(pIxn Ip') (q1Ix? Iq), and using the relation 

we find 

Here M is the number of defects, and we are using the nota- 
tion 

Fpt=F (@kp)=  (i@kp)-' [exp (iokpt) -11, okp=Ek-Ep, ( 10) 

G l p = G ( o l p )  =alp-' ( I - c o s  a l p )  +iO1p-l(O1p-l sin @ I , - I ) .  ( 11 ) 

Using 

2 sin2 ( o t / 2 )  
l im = nS ( a )  
1- m . 0 2 t  

we can write (9)  in the form 

where we are using the following notation for the probability 
for scattering from the state Ik) to the state Iq): 

In writing ( 11 ) we note that in the case of elastic scattering 
with E, = E, the following relation holds: 

Since the second term in parentheses on the right side of 
( 1 1 ) is of order 1/N, the response function for ( 1 1 ) can be 
rewritten as 

Lk=k2 exp ( - t l ~ k ) ,  

The decay of Lk with the time is thus a simple exponential 
decay, and the scale is the ordinary relaxation time for trans- 
port processes in the Born approximation (it differs from the 
decay time of the state by a trigonometric factor inside the 
integral). According to (3)  and (13), the conductivity of a 
nondegenerate electron gas is given by precisely the same 
expression which we find by solving the kinetic equation: 

2. SCATTERING BY PHONONS 

Below we will use the Kubo formula to derive an expres- 
sion for the conductivity of a nondegenerate electron gas for 
the case in which a scattering by phonons is predominant. A 
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scattering by phonons differs from a scattering by an impuri- 
ty in that it is generally inelastic. For this reason, the kinetic 
equation cannot be solved exactly, as we have already stated. 
Correspondingly, we would expect that the response func- 
tion corresponding to the inelastic scattering would fall off 
by a law more complex than the simple exponential law in 
( 16) as time elapsed. 

The Hamiltonian of the electron-phonon system is 

where b :, b, are the phonon creation and annihilation oper- 
ators. Since the phonon modes are independent of each oth- 
er, the temperature averaging over each can be carried out 
separately. This circumstance greatly simplifies the calcula- 
tion of the response function through an expansion of the 
operator exponential functions in (3)  in Vq a N - Using 
the same calculation approach as before, we find an analog of 
expression (9)  : 

Making use of the parity with respect to q of the quanti- 
ties A, and vq and the average phonon numbers m,, we find 
the following expression1) from ( 19) : 

According to (20), the time dependence of the response 
function is indeed nonexponential. From the condition that 
the conductivity remain finite we conclude that the quanti- 
ties Rk, must definitely be negative under the condition 
k + k-qn > 0. If these quantities are negative, and the con- 
dition k + k . ~ , ,  < 0 holds, then as time elapses there should 

be a crossover from exponential dependence with a time 
scale rk,  

(this is the analog of the transport relaxation time), to the 
same dependence but with time scale ;i,, 

This time scale represents the lifetime of the state Ik). 
We should point out that in the case of inelastic scatter- 

ing the time rk (in contrast with ;i, ) is not positive definite. 
Accordingly, there is the possibility in principle that the re- 
sponse function L, will be a nonmonotonic function of t, 
increasing at small values of t and decreasing only after a 
sufficiently long time, when the behavior of Lk is determined 
by the lifetime ;ik . 

If, on the other hand, the quantities R,,, are positive 
under the condition k + k*q < 0, then for t > R , ' the (neg- 
ative) argument of the exponential function in the expres- 
sion for L,  would increase exponentially with time. At such 
times the response function would thus fall off not exponen- 
tially but essentially abruptly with increasing t. 

In the high-temperature limit, where the electron ener- 
gies are high in comparison with the phonon frequencies, the 
inelastic nature of the scattering of electrons by phonons can 
be ignored. We can then write JkJ = Jk + qn 1 in (20). Mak- 
ing use of the circumstance that the sums of the quantities 

f 
W k , k  qm and Wz+ q , k  + q n  T qm over all vectors of the star 
qm are equal to each other, we find that the quantity Rkn 
vanishes. (Strictly speaking, the summation over the vectors 
of the star qn + , in the expression for Rkn may be incomplete, 
but since their number is finite the corresponding error is 
asymptotically small. ) The time dependence of the response 
function thus becomes purely exponential, as in ( 16), and 
the time rk in (21), which is positive definite in this limit, 
becomes a genuine relaxation time. 

It is a simple matter to derive an expression for the con- 
ductivity in which the extent to which the scattering is in- 
elastic is appreciable, but still small. This expression differs 
from ( 17) in that the actual relaxation time T, is replaced by 
an effective time r Eff given by 

When the scattering is substantially inelastic, it would ap- 
parently be necessary to appeal to numerical calculations to 
find the time integral of ( 3 ) with (20). 

'' Note that the result (20) should be the same as the result of the exact 
solution of the integrodifferential kinetic equation, if such a solution 
were possible. 
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