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The critical state of a linear, nonuniform Josephson junction with a periodic array of pinning 
centers is studied. Profiles of the magnetic field penetrating into the junction are constructed. The 
correlation phase at all points in the junction is dealt by simultaneous numerical solution of a 
chain of sine-Gordon equations with matching conditions at the pinning centers. When the 
distances between the defects are large, and when the pinning force is strong, the behavior found 
can be described approximately by the phenomenological Bean formula. In the opposite case, 
there are two possibilities: Either the front of the profile stretches out to an extreme extent, or a 
uniform distribution of vortices is established instantaneously in the junction if the external field 
exceeds a certain threshold. 

If an external field above the lower critical field is ap- 
plied to a hard type-I1 superconductor, a rapid relaxation is 
followed by the establishment of a uniform distribution of 
magnetic flux. This flux then undergoes a very slow relaxa- 
tion to a uniform distribution which minimizes the free ener- 
gy. The state which is initially established is called the "criti- 
cal" state and is usually described by phenomenological 
theories.l4 Below we examine a corresponding situation for 
a nonuniform Josephson junction, without resorting to phe- 
nomenological approaches. 

We have previously determined the critical profiles of 
the magnetic induction [and thus the dependence of the 
critical current on the magnetic field, j, (H) ] from the re- 
quirement that the drop in the density of vortices at each 
pinning center be the maximum which can be maintained by 
the given center.596 We ignored the correlation among the 
phases at different pinning centers, under the assumption 
that, say, the distance between irregularities was large. The 
actual critical profiles for the final state between pinning 
centers should therefore be less steep than those found in 
Refs. 5 and 6. Below we report numerical calculations of 
corresponding extreme profiles of the vortex number density 
n (x)  [or B(x)  H ( x )  1 in a linear, nonuniform junction, 
with allowance for the correlation among the phases at dif- 
ferent pinning centers. We essentially carried out a numeri- 
cal solution of a chain of sine-Gordon equations coupled by 
matching conditions at the nonuniformities, and we then 
selected the extreme solution. 

We consider a linear Josephson junction which is inter- 
sected at uniform intervals L by Josephson junctions of finite 
length 21 (Fig. 1 )',' (in principle, we could choose other 
nonuniformities9 ). Between intersections the system is de- 
scribed by the sine-Gordon equation 

where S is the Josephson length. On each side of each notch, 
the derivatives of the phases and their jumps are related by 

right. We seek the extreme profile which corresponds to a 
metastable state with the highest value of the thermodynam- 
ic potential, working in the following way. We fix the posi- 
tion of the profile's front: n (x < 0) = 0, where x = 0 corre- 
sponds to node m = 0. If L B S, we can assume that a solution 
which decays with distance into the sample is 

0 (x) =4 arctg exp[ (x-x,) / 6 ]  

for - L < x  < 0. The value x, determines the phase 
8 A3' =O(x- - 0) and its derivative; it therefore determines 
the complete form of the solution on the right: m = x = 0. 
This may be an extremely complex deterministic-chaotic so- 
lution. We vary x, to seek a solution for which the magnetic 
field HN and the vortex density nN reach maxima on the 
surface, i.e., at a certain given notch index N. The steepest 
front is realized in this case. In this case, the minimum num- 
ber of vortices penetrates from the surface into the junction 
at a fixed value of the external field. 

For each specific x, we find {8 h3',8 6 1. Using ( 1 ) we 
find {8 A0,8 6 1. Using these results and the known expres- 
sions for the solution of the sine-Gordon equation," we find 
(8 13',8 ; 1, etc. As a result, n, [x, 1, the penetrating flux, 
and the corresponding free energy are all extremely non- 
smooth functions of the parameter x,. Small changes in x, 
may result in extremely large changes in the values of these 
functions (compare curves 1 and 2 in Fig. 2, which are two 
solutions corresponding to approximately equal values of 
x,). For this reason, it is essentially impossible to accurately 
determine the upper local minimum of the free energy by 
simply trying several values of x,. On the other hand, by 
going through this trial-and-error procedure a sufficient 

I - ,  

0:) -02.' = 210,'. FIG. 1. Linear Josephson junction (the xz plane) with a periodic array of 
irregularities. L is the period of the structure, and 21 is the length of the 

We assume that an external field is applied from the transverse Josephson junctions, which are parallel to the yz plane. 
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FIG. 2. Profile of the vortex number density nS = 2 ? i / d ~ , ,  in a junction 
with L /S = 100 and 1 /6 = 0.1. The external field is applied from the right. 
1-Extreme profile found in a calculation with an initial condition 
x,/S = - 0.78250438; 2-representative profile found for approximate- 
ly the same value, x,/6 = - 0.7835; dashedine-profile found without 
consideration of phase  correlation^.^.^ Here H ,  is the average field over 
various regions of the junction. The profiles of the magnetic field at the 
nodes, H,,, , are similar. 

number of times, we can approach the extreme profile which 
we need. 

We adopt the following specific values of the param- 
eters: L /S = 100, I/S = 0.1, and N = 50. Figure 2 shows a 
profile found by the procedure outlined above after - 15000 
trials. Corresponding to this profile is the value 
x,/S = - 0.78250438. In other words, the last vortex is 
forced out to the left of pinning center m = 0 almost com- 
pletely. Also shown in this figure is a profile calculated by 
ignoring the correlations among the phases at the various 
pinning  center^:^,^ 

where H,, is the critical field of a linear Josephson junction. 
Expression (2) was derived for the region 

i.e., for 2/7? <nS(S/21, where d = U, + d ' is the effective 
thickness of the junction, 4, is the flux quantum, and A, is 
the London penetration depth. 

It follows from Fig. 2 that in this region the profile con- 
structed with allowance for phase correlation is approxi- 
mately linear. In other words, the field penetration is of the 
Bean type.'*3 The correlation among the phases at the var- 
ious pinning centers should be ignored during the solution of 
this problem only if there are very large jumps in the number 
of vortices at each center? An, L - LI /SZs  1, where 
An, = n, - n, - , , and n, is the number density of vorti- 
ces in gap m (Fig. 1). Consequently, as L increases, the ex- 

FIG. 3. Values of the field H,  at the nodes of a dense Josephson structure 
(L / 6  = I/S = 0.1 ) for various initial conditions at the point m = 0.1- 
Solitary solution; 2,3-examples of essentially periodic solutions. 

treme profile which we find should become a progressively 
better approximation of the profile shown by the dashed line 
in Fig. 2, remaining under the latter at any finite L. It should 
also be noted that for a finite number of trials the profile of 
n, which is found will be slightly smoother than that for an 
infinite number, and the actual critical profile will lie be- 
tween curve 1 and the dashed line in Fig. 2. 

At small values of L and I, on the other hand, we were 
not able to find any significant deviation of the solutions 
from periodic solutions or solitary solutions, regardless of 
the initial conditions which we specified. This assertion is 
correct at least over distances of lOOL (some representative 
solutions of this sort are shown in Fig. 3 for 
L /S = I /S = 0.1 ) . For a junction with a periodic irregular- 
ity in this regime, in contrast with the first which we consid- 
ered, we thus observed no traces of "deterministic chaotic 
behavior" or solutions of the type shown in Fig. 2. What can 
we conclude from such observations at small values of L /S 
and I /S? The numerical procedure cannot rule out the possi- 
bility that stochastic behavior will nevertheless set in far 
from x = 0. We can point out two possibilities, but we can- 
not choose between them by means of our approach. 

1. This observation remains valid for any scale greater 
than that studied (100L). Actually, the only solutions 
which are possible are either periodic or solitary. The mean- 
ing here is that at small values of L /& and I /S magnetic vorti- 
ces will immediately penetrate the entire sample once the 
external magnetic field exceeds the effective lower critical 
field. There will be no critical state at all. The region in 
which the transition is made to this behavior from the behav- 
ior characteristic of the first regime is An, L - LI/S2- 1. 
This parameter also appears in the Frenke1'-Kontorova 
model: 

In the case L<1<S, that model is equivalent to the system 
under consideration here1) (Refs. 7 and 8; Ej is the Joseph- 
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son energy). However, we that specifically this 
parameter specifies the thresholds for the depinning of in- 
commensurable structures in the Frenkel9-Kontorova mod- 
el. 

2. In this regime, the variations in the soliton number 
density occur over a large scale, so they cannot be observed 
(because the front of the magnetic-induction profile is 
stretched out to an extreme degree). To estimate the length 
scales over which we would expect variations in the density 
of vortices in the critical state, let us estimate how closely 
two extreme vortices which have penetrated into the interior 
of the junction (i.e., at the boundary of the front) can ap- 
proach each other. This distance of closest approach can be 
found from the balance struck by the repulsive force between 
two vortices with the minimum pinning force at the irregu- 
larities of the junction, since the last vortex has a single 
neighbor. (We are assuming that the distance between vorti- 
ces is large.) We can therefore estimate the possible jump in 
the number density of vortices from n = 0. We assume 
L 4 1 <S. We describe the system by the FrenkeP-Kontorova 
model, (3). The energy of an individual vortex in a periodic 
structure with 2L1 /S2 4 1 depends on the coordinate of the 
center of this vortex in the following way:I3 

The energy of the interaction between two solitons separated 
by a distance Y )S(L /21) 'I2, i.e., separated by a distance 
greater than their width, is given by14 

The distance which we are seeking is found by equating the 
intervortex repulsive force dEi /dY to the maximum force 

pinning a vortex in the lattice, found from (4) : 

- 32n9 1 6 
E, exp - - T ( ~ T  ) [ 

As a result we find 

In particular, for the parameter values used above, 
L /S = 1/6 = 0.1, we find Y / [ S ( L  /21) 'I2] - lo2 and 
Y / L -  lo3. These values go beyond the capabilities of our 
numerical calculations (Fig. 3 ) . 

The second version looks preferable, since in models of 
the FrenkeP-Kontorova type only certain of the 
quasiperiodic uniform states are depinned. 

"Strictly speaking, only the case L(641 was studied in Refs. 7 and 8. 
However, the equivalence of the two models for the situation under 
consideration here can be proved by a method completely analogous to 
that used in Ref. 8. 
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