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The indirect interaction of solitons through phonons is analyzed in the one-dimensional p 4-p 
model. The interaction of planar domain walls in a d-dimensional model is also analyzed. It is 
shown analytically and numerically that the indirect interaction is repulsive, strengthens with 
increasing temperature, and is of considerably longer range than the static interaction of solitons. 
The interaction of solitons in the case of a pinning of solitons is also studied. 

1. INTRODUCTION 

The primary reason for the unflagging interest in classi- 
cal soliton solutions is that they are nonperturbative and are 
characterized by a certain topological index' which ensures 
their stability. These properties of a soliton invite one to as- 
sociate a corresponding extended particle with it. If the soli- 
tons are sufficiently far apart, they can be treated as a system 
of widely separated particles, and one can ask about the po- 
tential energy of their interaction. This question bears di- 
rectly on planar domain walls. A two-soliton solution is gen- 
erally unstable, so some additional forces are introduced in 
order to hold the solitons in place and make the question 
meaningful. ' 

In the case of the one-dimensional ( 1D) model 

To hold the solitons in place, we impose a slight poten- 
tial excitation on the field energy. This spatially localized 
excitation pins the solitons. Alternatively, instead of intro- 
ducing an external pinning potential one could make use of 
the circumstance that the time over which the soliton and 
antisoliton approach each other is exponentially long, 
a exp ( 2 J m ~  ), if the distance between solitons is much 
greater than their width. This process is then adiabatically 
slow compared with the processes in which the phonon 
propagates from one soliton to the other. As we will see be- 
low, the two approaches lead to the identical result. The 
potential of the indirect interaction of solitons depends on 
the distance between the solitons in a way quite different 
from that of a static potential. In addition, at nonzero tem- 
perature the attraction gives way to repulsion of the two 
solitons. 

the single-soliton solution is 2. STATISTICAL FIELD FUNCTIONAL IN THE CASE OF TWO 
(P, (x) =qo th(mx/2%), cp,2=m"lh, (2)  SOLITONS 

The statistical functional of field theory is 
and we write the two-soliton solution in the form2 

q2 (x) =qo th [m(x-R)/2'"] th [m (x+R)/2'"] , (3)  Z= S D ~ ( X ) ~ X P ( - B H ) .  (6) 

where 2R is the distance between the soliton and the antisoli- The idea underlying the approximate treatment of (6) in the 
ton. The static interaction potential is then's2 case of a single soliton is to first  rite^'^ 

V(R)=-2"2(m3/h) exp(-2"mR) =-BE, exp (-2"mR), (4)  c~ (2) =fP* (3) +ll(x) 7 (7)  

where 

Eo= (2"'/3) (m3/h) 

where p, ( x )  is the single-soliton solution from (2) ,  and to 
then find the statistical functional in (6)  in the harmonic 

( 5 ) (i.e., Gaussian) approximation: 

is the energy of the soliton. 
In this paper we consider a renormalization of soliton- 

soliton interaction (4) to allow for thermally excited phon- 
ons. In other words, we find the potential of the indirect 
interaction of solitons through harmonic excitations. Phon- 
ons are not scattered by  soliton^,^ in contrast with, say, im- 
purities, but when a phonon passes through a soliton it un- 
dergoes a phase shift, as we will see below. Correspondingly, 
when a phonon passes through two solitons the phase shift 
becomes a function of the distance between the solitons. This 
subtle effect means that phonons introduce some additional 
spatial correlations between the solitons. The corresponding 
renormalization of the interaction of two domain walls 
through phonons occurs in multidimensional systems, but 
the explicit expression for the potential of the indirect inter- 
action of the walls through the phonons is determined by the 
dimensionality of the domain wall, as we will see below. Spe- 
cifically, the interaction weakens with increasing dimen- 
sionality. 

The one-soliton potential is 

3 m2 mZ 
mVv,  ( x )  = -A(P,'(x) - - = 4 3  tha(m/2"*) -1). (9)  

2 2 2 

The integral over ~ ( x )  in (8) can be evaluated easily if we 
know the eigenvalues of the Hamiltonian 

In the case (9),  the problem can be solved exactly.'*6 
There are two discrete energy levels, 
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wherez = rnx/2lt2 is a dimensionless constant. There is also axis. The potential of the indirect interaction per unit area of 
a continuum of levels, a domain wall is 

kT o:=m2(2+'bk2), qk(z)=e*z13th2z-i-k2-3ikthz!. ( 12) r(,) 
The energy level wi = 0 here describes a free displacement (18) 
of the soliton, while the other energy levels are vibrational 
modes. Phonons corresvond to the solutions (12). Substi- where k, is a wave vector which lies in the plane of the do- 

A -  . . 
tuting ( 11) and ( 12) into (8),  we find3*5 main wall. 

where Cis the contribution from the translational mode with 
w2 = 0. 

We turn now to the two-soliton solution (2) .  The equa- 
tion for the eigenfunctions and eigenvalues becomes 

where V2 is the two-soliton potential 

V z  (2, a )  =3thZ(z+a) th2(z-a)  -1, 
(15) 

a=mR/Zi", hn=wn2/mz.' 

3. ENERGY LEVELS OF ATWO-SOLITON POTENTIAL 

Since problem (14) is identical to the Schrodinger 
equation for a particle in a double potential well, it is clear 
that the two discrete energy levels ( 1 1 ) , which characterize 
the one-soliton potential, split in two, because of tunneling 
between the potential wells (Fig. 1 ) . The continuous spec- 
trum of energy levels in ( 12) undergoes no changes, because 
of the spatial localization of potential (15) (Ref. 7).  Since 
we do not know the exact solutions of Eq. ( 14), we will use 
some approximate methods. For the discrete energy levels in 
the case a )  1 we can use the familiar WKB result for a sym- 
metric double potential well? , 

For a = 1, the distance between solitons is equal to the size of 
one soliton, as can be seen from ( 1 ) . If we wish to ignore the Substituting the functions 7, and 7, from ( 1 1 ), we find 

distortion of one soliton caused by the other, we must set h, .2=~m21ha/ch4a=~16e-4a,  h,.& 
a )  1. 

By analogy with (8 )-( 13 ), we construct a statistical =m2[3/2rtha(i-2th2a)ch-2al 

functional for two solitons:' =m2[3/2r4e-zof 48e-4a]. (19) 

z =  Ida e a p [ - 2 ~ ~ , - ~ ~ ( a ) l  (1//3h.mz) We recall that the static interaction potential of soliton: in 
7t terms of the dimensionless unit a [expression ( 15 ) ] is 

=JC exp(-ZPEo) j daexp l - / 3~ .~ , (a )  1, (16) V(a)=-6E,  exp (-4a). (20) 

where 

V e f f ( a ) = V ( a ) + P ( a ) = V ( a ) +  kT ~ ~ n ( ~ l . r n ~ ) .  (17) 
n 

It can be seen from this expression that the potential of the - 
indirect interaction of solitons through phonons, V(a), 
arises as the phonon vibrational modes become thermally 
populated. 

There is no difficulty in generalizing ( 17) to the d-di- 
mensional problem, in which the solitons are (d-1 )-dimen- 
sional planar domain walls oriented perpendicular to the x 

It can be seen from ( 19) that the first eigenvalue A, , 
which determines the square of the frequency of the funda- 
mental mode, is negative. The reason is an instability of the 
given soliton-antisoliton pair with respect to the attractive 
potential (20). This is a purely relaxational mode, and the 
corresponding annihilation time is T = I R , I - " ~  
= exp(2a). In the approximation a )  1 this turns out to be 

a very long time. Accordingly, as we mentioned in the Intro- 
duction, we can treat the process in which the solitons ap- 
proach each other as being adiabatically slow, and we can 
independently examine the dynamic processes of the propa- 

FIG. 1 .  Splitting of the discrete energy levels of the one-soliton prob- 
lem (solid lines) in a two-soliton potential (dashed lines). The 
hatched region corresponds to the continuous spectrum of phonon 
excitations. 
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gation of phonons from one soliton to another, with time 
scales [A, ( - - 1. Their contribution is represented in 
( 17) by the other energy levels. A different approach, which 
is taken in Sec. 5 of this paper, is to add a potential perturba- 
tion to the Hamiltonian of the two-soliton problem to cancel 
the negative energy of the ground state, A, < 0. 

4. INDIRECT INTERACTION OF SOLITONS 

In the semiclassical approximation the next energy lev- 
el turns out to be positive. Actually, the translational invar- 
iance of the system of two solitons as a whole means that the 
exact value of A, must be zero. The accuracy of the WKB 
approach for the lower pair of energy levels is therefore 
+ exp( - 4a). The second pair of energy levels in ( 19) 

must accordingly be written with the same accuracy: 

m2[3/2*4 exp (-4a) ] 

Substituting this result into ( 17), we find that the contribu- 
tion of the discrete energy levels is zero in the WKB approxi- 
mation. If we substitute f 19) into ( 17) and make use of the 
above comments regarding the first pair of energy levels, we 
find the following contribution from the discrete energy lev- 
els: 

2kT In (3brn2/2) - (6419) kT exp ( -4a) .  (21) 

Let us analyze the continuum contribution to V,, . As 
we mentioned in the Introduction, the dispersion relation 
between the phonon frequencies and the wave vector deter- 
mined by ( 12) remains the same in the two-soliton problem. 
It would thus appear at first glance that this contribution 
vanishes. However, when we sum over k in ( 17) we need to 
know the permissible values of k, which are determined by 
the periodic boundary conditions on the eigenfunctions 
qk (z). AS was shown in detail by Rajaraman,' this proce- 
dure leads us to the formula 

where 6,  (k,a) is the phase shift of the phonon after it passes 
through the two-soliton potential from left to right. This 
shift evidently depends on the distance between solitons. 
This shift is known exactly for one-soliton potential (9) .  

In the two-soliton case we assume that the phase shift is 
caused exclusively by the soliton on the left if the phonon lies 
to the left of the origin; correspondingly, for x > 0, the phase 
shift of the phonon is caused exclusively by the soliton on the 
right. As we will see below in a comparison with the results 
of a numerical analysis at low temperatures, these assump- 
tions give a good description of the soliton interaction prob- 
lem. Since the phase-shift problem is equivalent to the prob- 
lem of a one-dimensional scattering of a free particle 
(phonon) by a soliton potential,' the phonon wave function 
can be written 

exp (ilEZ)+R exp(-ikz) ,  z<-a, 
S ,  exp(ikz)  +R, exp(- ikz ) ,  z ~ O ,  (23, 
S exp ( i k z ) ,  zBa.  

The transmission coefficient S determines the phase shift in 
which we are interested, S, (k,a). 

We now make use of the known fact4,' that the reflec- 
tion coefficient R of a one-soliton potential is zero. That this 
is true can be seen easily from the solutions ( 12) of the one- 
soliton problem. We can then replace (23) by 

i 
exp ( i k z )  , z<<-a, 

I$, ( z ,  a )  = exp [ikz+i6, ( k ,  a )  1, z=O, 

exp[ikz+2i6,(k, a ) ] .  z B a ,  

where, according to ( 12), 

3k t h a  
6 ,  ( k ,  a )  = - arctg [- - 1- arctg[$]. (24) 3th2a-I-k '  

The expression 6, (k,a) = 26, (k,a) determines the resul- 
tant phase shift of the phonon after it passes through the 
two-soliton potential well. 

Substituting (24) into (22), we find the contribution of 
the continuum to the potential of the indirect interaction: 

% 

We have omitted terms which do not depend on the distance 
a. 

Finally substituting (25) into (22), then substituting 
into (17), and recalling that in the approximation 
exp ( - 2a) the discrete energy levels of localized vibrational 
excitations A,,,,,,, do not contribute to p (a ) ,  we find the 
following expression for the interaction potential of two soli- 
tons at a nonzero temperature: 

12 
lief, ( a )  =-6E,e-'"I + - kTe-'"[a+y In (pE,) 1 ,  

n 
(26) 

where 

Figure 2 shows plots of the effective interaction potential 
V,, ( a )  and of the indirect interaction potential v ( a ) .  These 
results will be discussed and compared with the numerical 
results in Sec. 6 .  

5. SOLITON PINNING 

As we mentioned in the Introduction, in order to elimi- 
nate the problem of the instability of the ground state of two 
solitons-an instability which is manifested by a negative 
value of the eigenvalue A ,  for a translational mode-we need 
to hold the solitons in place. In other words, we need to break 
the continuous translational symmetry of the Hamiltonian. 
We can do this by (for example) using a lattice version of the 
field.9 Alternatively, we could add to ( 1 ) a perturbation 

which holds the soliton at the point at which h ( x )  is at a 
maximum. Using (27), we can write the Euler-Lagrange 
equation in the form 
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FIG. 2. Potential of the indirect interaction between solitons through 
phonons as a function of the distance a and of the temperature t = Eo/kT, 
where Eo is the soliton energy. Solid line-Numerical results [expression 
(38 )  1; dashed line-analytic results [expression (26) 1; dotted line-stat- 
ic potential [expression ( 2 0 )  1. 

d2cp/dx2-hrp3+m2q-h (x) rp=o. (28) 

Making use of the circumstance that h (x )  is small, we 
write the one-soliton solution (28) in the form 

(TJ~(x)=(P~(x)+~~)'(x),  (29) 

wherep, is the soliton solution (2)  without pinning, and 29- is 
the correction for (27). To first order in the perturbation 
(27), the equation for 29- becomes 

-da6/dx2-m2[1-3 th2(mx/2%) ]6=-h(x)q, (x), (30) 

The solution of this equation can be written in the form 

6 (x) = z* &, 
k h k ( ~ )  

where 
m 

and 7, (x) are the eigenvalues of one-soliton problem ( 11 ), 
(12). 

We adopt the pinning potential 

h (x) =a exp (- 1 X I  /so),  xo<a. (32) 

Using ( 1 1 ) and ( 12), we find that the solution ( 3  1 ) becomes 

6 (z) =- (4am2xo/3h'")sh z/ch2 Z. (33 

With pinning taken into account in first-order pertur- 
bation theory, the energy of the ground state is 

Substituting (33) into this expression, we find 

Ei=El+anmxo3/2'h. 

Assuming El 20, we find a condition on the parameters of 
the potential (32) (primarily on the parameter a )  which 
pins the soliton at the point x = 0. 

Correspondingly, we can write the pinning potential for 
two solitons at the points f a: 

In the case of the one-soliton potential, for which we know 
both the eigenstates v, (x)  and the spectrum of eigenvalues 
A,, we can calculate the correction S ( x )  in (33). In the two- 
soliton case, in contrast, this correction is unknown. Ac- 
cordingly, in the numerical simulation we found the value 
for the parameter a which caused the ground-state energy to 
vanish for each value of a. 

6. NUMERICAL RESULTS 

For the computer analysis we adopted a one-dimen- 
sional chain of N particles, 

with the boundary conditions p, = p,, , = 0. To simulate 
the continuum problem, we assigned the lattice constant a, 
values of 0.01 and 0.02. Correspondingly, the number of par- 
ticles was assumed to be 1000 and 2000. The width of the 
soliton was estimated to be 100 and 200 particles in these 
terms. The eigenvalue equation (14) for the chain (36) be- 
comes 

[2-2a02+6a,2th2(a0f-a)th2(aof+a) -2a02h,l $i=$r+i+$r-l. 
(37) 

For each value of a we found N eigenvalues A,, which 
we then substituted into (17) after subtracting the first 
eigenvalue, A, < 0. We carried out a numerical summation 
over all the eigenvalues. As a result we found the indirect- 
interaction potential p ( a )  which is plotted in Fig. 2. Ana- 
lytically, we can approximate F ( a )  by 

gV(a) = (2,00*0,01) exp [- (0,33I+0,01) ( 2 ~ ) ~ ] .  ( 3 8 )  

A change in the number of particles from N = 1000 to 
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N = 2000 or a change in the lattice constant from a, = 0.02 
to a, = 0.01 does not cause any changes in (38) which go 
beyond the indicated error in the approximation of t ( a ) .  

We thus see that the phonons have a fundamental effect 
on the soliton interaction potential. This effect occurs at 
temperatures above absolute zero. In the first place, the in- 
teraction through phonons is repulsive, so at low tempera- 
tures we find both a region in which solitons attract (by 
virtue of the static interaction potential) and a region of re- 
pulsion. Breakup of the soliton-antisoliton pair requires the 
surmounting of an energy barrier. Second, the indirect inter- 
action t ( a )  is of much longer range than the static potential 
(20). The latter has a cutoff radius of 1/4, while that of the 
interaction (26) is 1/2. The numerical result in (38) yields 
31'2/2z0.87. 

Moreover, as can be seen from Fig. 2, there is no signifi- 
cant difference between the results of the numerical and ana- 
lytic approaches at low temperatures. The difference does 
becomes noticeable at higher temperatures. Accordingly, al- 
though the original assumption that the contributions of the 
solitons to the resultant phonon phase shift S2 (k,a) are inde- 
pendent is not exact, it does cover the basic features of the 
soliton-soliton interaction through phonons. 

In the numerical calculations we also found the poten- 
tials of the indirect interaction of planar domain walls in the 
2 0  and 3 0  cases, working from ( 18). Switching from sums 
over the transverse wave numbers in ( 18) to integrals, we 
find 

TABLE I. 

I 

1 
d=3: V (a) = k~ ln (h.+n2/2) + 2'hh,, arctg (n/2"hn)] . 

(40) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

FIG. 3. Interaction potential of the solitons with pinning for t = 0.25. 
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We recall that An is the dimensionless eigenvalue spectrum 
of the two-soliton problem (37). Substituting the numerical 
values ofA, ( a )  into (39) and (40), and summing over these 
values, we find results for the indirect interaction for domain 
walls. We write these results as the approximate expressions 

-0,0003870 
0,0004952 
0,0013425 
0,0016259 
0,0016666 
0,0017485 
0,0018494 
0,0019778 
0,0021295 
0,0023028 

d=2: V (a) = k ~  (0,4020,01) exp [- (0,33*0,01) (2a) '1, 
(41) 

d=3: V (a) =kT (0,0163*0,0010)exp [ -  (0,33*0,01) (2a)'I 

-0,0000089 
0,0000037 
0,0011118 
0,0012740 
0,0016255 
0,0016820 
0,0017705 
0,0018924 
0,0020370 
0,0022072 

+kT (O,OO1.tO,OOI) exp (-Za). (42) 

We first note that the decay of the interaction potential with 
increasing distance between the domain walls is described by 
exp( - 4a2/3), regardless of the dimensionality of the do- 
main wall. The potential amplitude, on the other hand, falls 
off substantially as the dimensionality d of the space in- 
creases. 

The result that the domain walls repel each other 
through the phonons can be understood easily by comparing 
the eigenvalues A n  of the Schrodinger equation (37), which 
determine the squares of the phonon frequencies, for two 
values of the distance between solitons. Table I shows the 
first 20 values of 2aiiln for a = 1 and a = 2, where a, 
= 0.02. 

We see from this table that with increasing distance be- 
tween the solitons all the eigenvalues A n  of the Schrodinger 
equation (37) become lower, except A, .  

- We conclude with the results of a numerical analysis of 
V(a) with the pinning potential (35) in Eq. (37). These 
results are shown in Fig. 3 for the dimensionless temperature 
t = PE, = 0.25. We recall that for each value of a the pin- 
ning potential a in (35) was chosen so that the minimum 
eigenvalue A ,  would be equal to zero (to within 10 - 12). We 
see from Fig. 3 that the pinning substantially alters the shape 
of the indirect-interaction potential. The reason is that the 
pinning potential, to which the soliton is rigidly tied, leads to 
a direct interaction of the phonon with the soliton, which is 
absent, at an accuracy level exp( - 4a), from the two-soli- 
ton problem without pinning. 
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