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The electron-impurity relaxation time and the thermoelectric power are calculated for a quasi-2D 
electron gas with an isotropic spectrum in the case of a neck-breaking topological electron 
transition. Near this transition, the thermoelectric power is greater than its background value by a 
large factor. This result is attributed to the joint effects of the diffusion of conduction electrons 
and phonon drag. The results found here agree qualitatively with experimental daia on the 
thermoelectric power in metal-insulator-semiconductor structures. 

1. INTRODUCTION 

Electron topological transitions have recenLly attracted 
increased interest from both theoreticians and experimenta- 
lists. When the topological properties of the Fermi surface 
change, anomalies appear in the electron characteristics of a 
metal.'32 Features of the kinetics of conduction electrons 
near an electron topological transition in 3 0  systems were 
studied in Refs. 3 and 4. There is also interest in the effect of 
topological transformations of the Fermi surface on the elec- 
tronic properties of 2 0  systems. The problem of electron 
topological transitions in 2 0  inversion layers has been stud- 
ied theoretically and experimentally by Zavaritskii, Kvon, 
and S ~ s l o v . ~ , ~  

In a metal-insulator-semiconductor (MIS) structure, 
the electron density can be varied quite easily in the course of 

and thermoelectric power of a quasi-2D electron gas through 
a solution of the kinetic equation. We do this first for a gas 
with an isotropic spectrum, and then for one with a spectrum 
which allows a "neck-breaking" electron topological transi- 
tion. We ignore the interelectron interaction, and we assume 
that the electrons are scattered by screened Coulomb centers 
(impurity centers). We show that the corrections to the dif- 
fusion component of the thermoelectric power for the energy 
dependence of the time scale of the relaxation of electrons 
due to impurity centers may be any of the following sizes 
relative to the phonon-drag thermopower: greater, compar- 
able in order of magnitude, or smaller. 

2. ELECTRON-IMPURITY RELAXATION TIME AND 
THERMOELECTRIC POWER IN THE CASE OF AN ISOTROPIC 
SPECTRUM 

an experiment, by applying a potential difference between 
Following Ref. 10, we consider a thin conducting film the gate and the interior of the semiconductor. A 2 0  electron 

(with an important quantum-size effect) in the region gas forms in a thin boundary layer7 (with a thickness d -  50 
O(z(a. Potential centers on thez = 0 surface are distributed A).  In order to observe electron topological transitions ex- 
randomly and independently with a surface density n i .  The perimentally at comparatively low values of this potential 
second surface is assumed for simplicity to be a mirror sur- difference, Zavaritskiiand Suslov6 ingeniously used a slight- 
face. In the approximation of a square potential well, the ly skewed face of a crystal (silicon). A superstructure of a 

sort arises in the skew direction in this case and gives rise to electron energy spectrum is 
- 

Bragg reflection in this direction with a wave vector signifi- 
cantly lower than che standard size of the Brillouin zone. 
This circumstance made it possible to observe both an elec- 
tron topological transition corresponding to the tangency of 
the faces of the Brillouin zone, accompanied by the forma- 
tion of a neck, and the formation of a second zone, i.e., elec- 
tron topological transitions accompanied by the appearance 
of an electron cavity, at comparatively low electron densi- 
ties. 

In a theoretical interpretation of the results in Ref. 6, 
the authors distinguished the diffusion-related component 
of the thermoelectric power of the electron gas and the com- 
ponent due to phonon drag. Features of the diffusion compo- 
nent of the thermoelectric power were studied with the help 
of the Mott formula; the theory of the acoustoelectric effect8 
was used to analyze the thermoelectric power due to the 
phonon drag. However, the validity of the Mott formula in 
the case of an electron topological transition is not obviou~,~  
and the expression derived for the features of the diffusion- 
related thermoelectric power in Ref. 6 is not valid when the 
system is very close to the transition point (at A <  T, where A 
is a measure of the proximity of the system to the transition 
point, introduced below, and T is the temperature). 

In the present paper we calculate the relaxation time 

where p = (p, ,p, ) is the momentum in the xy plane, n is the 
index of the quantum-size level, and (here and below) fi  = 1. 
We restrict the analysis to the case in which the entire elec- 
tron gas is in the first quantum-size level. This is a legitimate 
assumption if the distance between levels is greater than the 
Fermi energy: E, < l/ma2 we then have n = 1. Below we 
omit the index specifying the quantum-size level. 

To describe an actual experimental situation, we need 
to take account of the scattering of electrons by impurities. 
This scattering is important in a description of the kinetic 
properties of a thin film at low temperatures. Let us calculate 
the probability for the scattering of conduction electrons by 
screened Coulomb centers. Following Ref. 10, we assume 
that if the screening radius q; ' is much smaller than the film 
thickness then the screening is the same as in an unbounded 
sample: 

e2 
( r )  = - exp ( -qor )  , 

Er 

where E is the static dielectric constant. The set of conditions 
EF < l/ma2 and q; ' < a  leads to the inequality q;/m$&,, 
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which we will assume is satisfied. When the effects of the 
thermal spreading of the Fermi surface outweigh the effects 
of the electron-impurity scattering ( Tr% 1 ), we can use the 
Born formula for the scattering of an individual electron by 
impurities. For the scattering probability per unit time we 
have the expression1' 

where 

Integrating, we find the following expression for the elec- 
tron-impurity relaxation time T(E) = W - (E) : 

The kinetic coefficient D,, which appears in the gener- 
alized transport equations 

(E is the electric field, VT is the temperature gradient, j is 
the current density, IJ,, is the conductivity tensor, and Pik 
characterizes the thermoelectric properties of the metal), 
can be written" 

where p is the chemical potential, and u, = d~/dp,. Inte- 
grating, we find 

3. ELECTRON-IMPURITY RELAXATION TIME AND THE 
THERMOELECTRIC POWER IN THE CASE OF AN ELECTRON 
TOPOLOGICAL TRANSITION 

By analogy with the 3 0  case,9 we use a neck-breaking 
model to describe the electron topological transition in a thin 
film. In this model, the electron energy spectrum is 

The last term here is the energy of an electron in the first 
quantum-size level (we are again restricting the analysis to 
the first such level). This energy can be incorporated in Ec. 
When we do this, the latter becomes the critical value of the 
chemical potential, corresponding to an electron topological 
transition at T = 0 in the absence of impurity scattering of 
electrons. Figure 1 shows the Fermi surface for such a sys- 
tem. The parameter A = p - Ec is a measure of the proxim- 
ity of the system to the electron topological transition. At 
A = 0, the hyperbola degenerates into two straight lines. It is 
near this point that the electron topological transition oc- 
c u r ~ . ~  

To calculate the electron-impurity relaxation time, we 
note that under the condition go %p* (p* is the limiting value 
of the momentum p, ) the amplitude for the scattering of an 
electron by an impurity can be assumed independent of the 
momentum, and the integral in (3)  becomes proportional to 
the density of states. In the 2 0  model, this density of states 
near the electron topological transition is calculated as in a 

FIG. 1. Neck-breaking model of an electron topological transition. a- 
A > 0; b--A < 0. 

3 0  rn0de1.l"~ As a result we find 

where ro is again given by expression (5),  but now m is 
replaced by (m, my ) I", w = E - p, and E, = ~ * ~ / 2 m , .  Ac- 
tually, E, also depends on the energy, but this dependence is 
far weaker than that in the denominator. In the calculations 
below we will accordingly assume that E, (E) = E, (p)  is in- 
dependent of the energy. 

Expression ( 10) differs substantially from expression 
( 15), which describes the electron relaxation in the isotropic 
case. A logarithmic dependence r (w)  arises in the case of the 
spectrum (9),  and as w + A + 0 we find 7--t 0. We should 
also stress the distinction between (10) and the expression 
for the relaxation time in the 3 0  model.g In the 3 0  case we 
know that the relaxation time, like the density of states, can 
be written as a sum of two terms, a smooth function of the 
energy and an increment which vanishes on one side of the 
transition. The 2 0  functional dependence cannot be repre- 
sented in this manner, and as a result there are important 
differences between the A dependence of the thermoelectric 
power in the 2 0  case and that in the 3 0  case. 

We turn now to a calculation of the thermoelectric pow- 
er in the case of an electron topological transition. Substitut- 
ing ( 10) into general expression (7) ,  and integrating over 
the constant-energy curves E = const, we find 
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where Po is given by expression ( 8 ) . We see that the back- 
ground value (i.e., that far from the transition) of the ther- 
moelectric power is equal to Po in order of magnitude. The 
last term in (11) is small over the entire range of A 
( IAI(E~)  [cf. (13) and (14) below]. 

We first note that the result p sing(A) = /3 Sing ( - A) fol- 
lows from ( 11). The reason is that in this case there is a 
symmetry under a simultaneous change in the sign of A and a 
replacement of the electron gas by a hole gas in this system, 
in contrast with the 3 0  case with a = 0. Let us examine the 
asymptotic behavior of /3sing(A) in two limiting cases. (In 
accordance with the discussion above, we assume A > 0. ) 
We rewrite the expression for /3 sing(A,T) in the following 
form: 

1 ) A) T (the region far from the transition). In this 
case, because of the rapid convergence of the integral in 
( 12), the difference between the inverse logarithms can be 
expanded in a series in 2Tx/A (although this expansion be- 
comes illegitimate for x) A/2T, the region x ( A/2 T be- 
comes important in the integral because of the divisor of 
cosh2 x in the integrand). We then write 

(A/2T.4 y 4 1 ). In the former we replace cosh2x by one; as a 
result, this integral becomes 

b a -y ln -  2 % .  
T A 

In the second integral we can expand the difference between 
inverse logarithms in a series in Ax/T. As a result we find 

To first order in A/T we thus have 

Figure 2 shows the results of a numerical calculation of 
/3 sing(A)/& from ( 1 1). 

4. DISCUSSION OF RESULTS 

The expressions found here for the electron-impurity 
relaxation time and for the thermoelectric power in 2 0  sys- 
tems are quite different from those in the 3 0  case. In the first 
place, although the thermoelectric power in ( 10) can again 
be written as the sum of a background value of the thermo- 
electric power and a singular part which is greater than the 
background component by a factor of a large parameter, in 
this case the singular part PSing is an odd function of the 
parameter A. As a result, /3 sing(A) is a double-humped curve 
(Fig. 2). The electron-impurity relaxation time in ( lo) ,  on 
the other hand, cannot in general be written as the sum of a 
regular component and a singular component, and it is non- 
zero on both sides of the transition. The reason for this be- 
havior is the symmetry of the system under a change in the 
sign of the carriers and a simultaneous change in the sign of 
A in the case a = 0, which we mentioned above. We might 
add that in a 2 0  system, in contrast with a 3 0    stern,^,^ the 
part of the relaxation time which is associated with the elec- 
tron topological transition is a strong function of the param- 
eter E~ which characterizes the peripheral regions of the Fer- 
mi surface. 

2) A 4 T (the immediate vicinity of the transition). In 
this region the integral in ( 12) can be broken up into the sum 
of two integrals: one from 0 to y and one from y to 

FIG. 2. Results of a numerical calculation of p Z g / P , ,  in units of 
(3/2d)(~, , /T)  (m,/my)1'2, as a function of A/2T [see ( l l ) ] .  
1-% = 100T; 2-E, = 500T. 
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In the analysis of the thermoelectric power near an elec- 
tron topological transition in a quasi-2D electron structure 
above, we made several assumptions, which require special 
discussion. 

First, in describing the transverse quantization of the 
motion of the electron we used the model of an infinitely 
deep potential well. That model substantially simplifies the 
energy spectrum of the conduction electrons, ( 1 ). Actually, 
the potential well in an MIS structure or a heterostructure is 
approximately triangular, and an Airy function or even 
more-complex model functions would have to be used as the 
electron wave functions in the transverse direction.' Second, 
an important circumstance in an analysis of thin MIS struc- 
tures is the presence of fluctuations in the surface potential 
in the insulating layer.13 Nevertheless, we would expect that 
these factors would play a role only in a numerical compari- 
son of theoretical and experimental results. Our simplified 
model is therefore adequate as long as we are not attempting 
to reproduce the experimental results accurately. 

Third, in analyzing the scattering of electrons by impur- 
ities we used a 3 0  screened Coulomb potential." That ap- 
proach actually means that we are arbitrarily breaking the 
electron system up into two subsystems: the electrons which 
are screening the charged centers and the electrons which 
are participating directly in the transport. This is a legiti- 
mate approximation since our main purpose here is to dis- 
cuss features of the thermoelectric power which are linked 
with the electron topological transition, and the main re- 
quirement on our choice of scattering potential is that it be of 
short range [go $ (.corn) ' ' 2 ] .  The actual shape of the poten- 
tial is again important only in a numerical comparison of 
theory and experiment.14 Furthermore, in actual experi- 
mental studies of the kinetic characteristics of MIS struc- 
tures, the history of the sample is important. In the standard 
procedure, the experimentalist first applies a voltage to the 
gate of the MIS structure and only then cools the sample. In 
this case the screening of the Coulomb centers is caused pri- 
marily by 3Delectrons, which localize near these centers and 
which participate no further in transport processes.'' 

Despite the number of limitations involved here, the 
results found on the thermoelectric power near the electron 
topological transition in the 2 0  system which we have con- 
sidered agree well with the experimental data of Ref. 6, 
which we have already cited (Fig. 3).  In analyzing the re- 
sults we should note that the results in Ref. 6 were given as 
functional dependences E W - ' ( Vg ), where E is the electric 
field, W is the heat flux, and V, is the gate voltage. Since 
W cc - VT, we plot the thermoelectric power with the oppo- 
site sign in the figure. For the left-hand side of the figure, the 
vector W is directed along the superlattice. For the right- 
hand side, it runs perpendicular to this superlattice. Clearly, 
the two structural features which have been singled out, A 
and B, are observed at the same values of Ns ( Vg ) in the two 
cases. Feature A corresponds to tangency, and feature B cor- 
responds to the formation of an electron cavity. Unfortu- 
nately, it is difficult to analyze the experimental situation 
since these two types of topological transitions lie close to- 
gether. Nevertheless, it is clear from Fig. 3 that-in agree- 
ment with (1 1)-feature A consists of a maximum and a 
minimum. The fact that the thermoelectric power of an MIS 
structure and a superlattice has an anisotropy was explained 
previ~usly.~* '~ Here we wish to point out that the feature 

FIG. 3. Experimental results6 on the thermoelectric power as a function 
of the density N,. A-Transition corresponding to the appearance of a 
neck; Stransition corresponding to the appearance of a cavity. Curves 
at left-The heat flux is directed along the superlattice; at right-it is 
directed perpendicular to the superlattice. 

spreads out with increasing temperature according to ( 14). 
The asymmetry of the feature in the thermoelectric power 
between topological transitions A and B is apparently 
caused not only by phonon drag, as was assumed in Ref. 6, 
but also by the joint effects of transitions on the kinetics of 
the conduction electrons. 

According to Ref. 6, the thermal spreading of the char- 
acteristics of a metal near an electron topological transition 
does not require a special analysis. It can be found by substi- 
tuting the temperature T for A in the final expressions. For 
example, to calculate the singular part of the diffusion com- 
ponent of the thermoelectric power (without phonon drag), 
it is sufficient to use the Mott formula and to replace A  by T  
at T ( A .  The analysis above shows that the situation be- 
comes more complicated in a calculation of kinetic proper- 
ties because the energy dependence of the relaxation time 
near an electron topological transition is not a trivial point. 
In the limit A -0, the relaxation time is a logarithmic func- 
tion of the energy, so the Mott formula, which is based on an 
expansion of 7. in powers of w, should not be used. 

As can be seen from a comparison of our results with 
experimental data of Ref. 6, a calculation of the singular part 
of the diffusion component of the thermoelectric power 
leads to a ~ s i n g ( A )  dependence which is reminiscent of the 
singular thermoelectric power component associated with 
the phonon drag as found in Ref. 6. For the latter, the follow- 
ing expression was derived in Ref. 6: 

where A is the strain component, I,,, is the phonon mean free 
path, s is the sound velocity, andp is the density of the metal. 
The large number of constants involved here makes it diffi- 
cult to make a direct comparison with expressions ( 13) and 
(14 ) ,bu t i fwese tA~Tin  (13)-(15) wefindthattwocases 
are possible: (a )  The mechanism due to the T ( E )  dependence 
outweighs the phonon-drag mechanism. In particular, this 
may be the case at low temperatures (this conclusion agrees 
with the theory of Ref. 16, which asserts that the phonon- 
drag effect does not influence an electron topological transi- 
tion at low temperatures). (b) The opposite is true. The 
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effect can thus apparently be attributed to the joint effects of 
a diffusion of conduction electrons and a phonon drag. Each 
of these effects may outweigh the other under certain condi- 
tions. 

We are deeply indebted to N. N. Ablyazov, B. L. A1'- 
tshuler, E. M. Baskin, V. S. Egorov, M. I. Kaganov, and M. 
E. RaTkh for useful discussions and for interest in this study. 

"We wish to thank S. G. Semenchinskil for calling our attention to this 
point. 
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