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The stability of 277 solitons of the discrete double sine-Gordon equation has been studied by 
numerical analysis. The width of the soliton decreases abruptly as the parameter H (the strength 
of the external field) is increased. The field dependence of the gap in the small-oscillation 
spectrum is found. The frequency of the local oscillation in the width of the 277 soliton is a 
nonmonotonic function of the strength of the external field. The small-oscillation spectrum 
contains a band not found in the continuum approximation. This additional band disappears in 
the transition to the continuum approximation. The properties of the localization of small 
oscillations in a chain with 277 structural solitons as the parameter H is varied were studied. It is 
possible to control the filtering properties of 277 solitons by means of an external field. 

1. INTRODUCTION 

Nonlinear effects manifested by self-localized states 
(static and dynamic solitons) which are solutions of the 
equations of motion of a many-particle system have been the 
subject of active research over the past decade in solid state 
physics. One-dimensional models are convenient for treat- 
ing nonlinear interactions of arbitrary strength most com- 
prehensively. In several cases, such models make it possible 
to derive analytic results with relatively little computational 
difficulty. 

Depending on the nature of the interparticle interac- 
tion, a classical spin chain has both regular and stochastic 
properties. Solitons in such models have been the subject of 
several For example, the properties of a spin 
chain in the limit of strong in-plane anisotropy are described 
in the continuum limit by the sine-Gordon equation.' When 
the discrete nature of the system is taken into account, some 
new physical results, which do not follow from the sine-Gor- 
don model, are found. In particular, the discrete nature leads 
to pinning of solitons, a change in the spectrum of excita- 
t i o n ~ , ~  and the formation of an amorphous ~ t ruc ture .~  The 
local properties of dynamic nonlinear excitations were stud- 
ied in Ref. 4 in a continuum model of a uniaxial ferromagnet. 
A numerical study of the dynamics of solitons of the discrete 
double sine-Gordon equation was carried out in Ref. 5 for 
various values of the parameters of the system. The thermo- 
dynamic properties of a magnetic chain describable by the 
double sine-Gordon equation were studied analytically (in 
the continuum approximation) and numerically in Ref. 6. 
The nonlinear theory of magnetic excitations in magnetical- 
ly ordered media was reviewed in Ref. 7 for spaces of various 
dimensionalities and for various types of magnetic interac- 
tion. 

The stability of solitons and the excitation spectrum in a 
biaxial magnetic material were studied in Ref. 8 in the long- 
wavelength approximation. The polarization of the polymer 
polyvinylidene fluoride (PVF, ) by an electric field was 
studied in Ref. 9. A phenomenological model whose dynam- 
ics is described by the double sine-Gordon equation was used 
to describe this process. 

In the present paper we report a numerical analysis of 

the static and dynamic properties of the soliton states of the 
discrete double sine-Gordon equation and of the conditions 
for the localization of small oscillations in the soliton-pin- 
ning region. 

2. DESCRIPTION OF THE MODEL 

We consider the model Hamiltonian 

where J,, A,, and H, are parameters of the model. From the 
conditions for an equilibrium of the system, dP/ap, = 0, 
with the Hamiltonian ( 1 ), we find a discrete analog of the 
double sine-Gordon equation: 

sin (cp,+,--9,) -sin (cp,-9,-,) =A sin 2cp,+H sin cp,, (2)  

where we have introduced the dimensionless parameters 

Equations (2)  were used in the continuum approximation to 
describe structural solitons in anisotropic quasi-one-dimen- 
sional magnetic materials in Refs. 1-4, 7, and 8. In this case 
the J, represents the exchange constant, A, represents the 
magnitude of the anisotropy, and H, represents the external 
magnetic field. A one-dimensional model with the Hamilto- 
nian ( 1 ) was used in Ref. 9 to describe the change in polar- 
ization due to the motion of solitons in the polymer PVF,, in 
which a dipole moment p is associated with each 
CF, -CF, -CF, monomer, and the angle p determines the 
orientation of this moment. In this case the constant A, is 
related to the interaction between chains, while H, is related 
to both the interaction between chains and the interaction 
with the external electric field. The magnitude of the con- 
stant H,, may vary with the external electric field. In Ref. 9, 
and also in Ref. 5, a study was made of the dynamic proper- 
ties of solitons in the discrete model ( 1 ). 
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The dynamic and static properties of solitons of the 
double sine-Gordon equation and the small-oscillation spec- 
trum were studied in detail in the continuum approximation 
in Refs. 1,2,6, and 10. In the discrete case, however, several 
new properties arise, in both the structure of the solitons and 
the small-oscillation spectrum of soliton structures. 

The values given for the constants A, and J, in Ref. 9 
indicate that the effects of discretization must be taken into 
account in describing soliton configurations of model ( 1 ) 
when that model is applied to the polymer PVF,. It  follows 
from Ref. 9 that the value of the dimensionless anisotropy 
constant is A = 0.6 in this case. It follows from Ref. 3 that 
this is a region where the solitons are strongly pinned and the 
discretization of the sysem has a substantial effect on the 
properties of the solitons. We will be discussing these points 
in the following sections of this paper. 

3. STABILITY OF 2n SOLITONS 

In the continuum approximation, Eqs. (2) become the 
double sine-Gordon equation: 

-- d2ip A sin 2ip-H sin ip=0. 
dzZ 

(4) 

The solutions of Eq. (4) which describe 27-soliton configu- 
rations are4-6r8"0 

ip(z)=2 arctg{(l-2q)'"cosech[ (I-2q)'"s]}, 

The stability of the solutions (5) in the continuum approxi- 
mation was studied in Refs. 6 and 10. The following numeri- 
cal simulation was carried out to learn about the stability of 
27r solitons in the discrete model (2) as a function of the 
parameter H (the external magnetic or electric field). A re- 
laxation method1'-l3 was used to determine the configura- 
tions of the system (1) which are stable in the static case. 
According to that method, the stable equilibrium structures 
are found from the solutions of the equations 

As t -, oo , the functions pi ( t)  describe a stable configuration 
of Eqs. ( 1 ) . The integration of Eqs. (6) is terminated when 
the quantity 

T = ( 1/N) Zi ld&P/dqi 1 , 
becomes sufficiently small (in most cases, 10 - 14-10 - 15). 
The specification of various sets of initial conditions 
{qi (0)) determines various stable configurations. 

Equations (6) have been used to find a stable 27  soliton 
in a chain of 40 particles with the parameter values A = 0.5 
and H = 0.05. The resulting structure is shown by the solid 
line in Fig. 1. The quantity plotted along the y axis is 
I ( n )  = sin (q, + , - q, ). The small-oscillation spectrum is 
found from the equation 

where 

As the field H is increased to a certain H "', we observe 
"softening" (at H = H ' I ) )  of the frequencies of the natural 
modes which are localized at the soliton and which belong to 
the lower band of the small-oscillation spectrum (7) (these 
are oscillations of the soliton as a whole and of its width). 
The structure of the small-oscillation spectrum is described 
in more detail in the following section of this paper. 

For W2=0, the soliton undergoes restructuring, in the 
direction of a decrease in its width. The result is the forma- 
tion of a stable 212 soliton of smaller width and with a non- 
zero gap in the small-oscillation spectrum. A further in- 
crease in the field leads to more softening of the oscillations 
which are localized at the soliton. At a certain H = H "', the 
width of the soliton again changes abruptly, etc. In our nu- 
merical simulation we observed several such jumps in the 
width of the 27r soliton. 

Figure 1 shows a sample sequence of structures ob- 
served in this simulation. The particular sequence of equilib- 
rium stable structures shown in Fig. 1 was found under the 
assumption that there is fast relaxation to the equilibrium 
position in the system. In the continuum approximation we 
do not find the soft modes, the nonmonotonic dependence of 
the frequency of the internal oscillation of a 2 7  soliton on the 
field H, and the abrupt change in the width of  soliton^.'^ 
These differences from the continuum approximation stem 
directly from the pinning of solitons in the discrete model. 
As A40 ,  the pinning of the solitons disappears, and along 

FIG. 1.  Sequence of soliton structures found in a numerical simula- 
tion with A = 0.5 as the field Hwas raised. 1-H = 0.5; 2--0.7; 3- 
0.12. 
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FIG. 2. The "magnetization" Mversus the field strength H at A = 0.5. L I I I 

0 40 8fl 
n 
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with it all the differences from the results of the continuum 
description disappear. We found that the field dependence of 
the gap g in the small-oscillation spectrum as H+ H '" has 
the form of a power law: 

We define the parameter M by 
N 

This parameter serves as an analog of the magnetization in 
the case of a magnetic chain or of thebolarization in polymer 
chains. Figure 2 shows M a s  a function of the applied field, 
H. We see that the behavior of the "magnetization" of the 
chain as a function of the field is not monotonic; the change 
is abrupt and is determined by the abrupt nature of the 
change in the width of the soliton with increasing H. The 2?r 
solitons and 2~antisolitons consist of two P solitons and two 
P antisolitons, respectively. The distinction between a soli- 
ton and an antisoliton is that for solitons we have I ( n )  > 0 
for all n, while for antisolitons we have I (n  ) < 0. In a discrete 
medium, the 27  solitons and 2~ antisolitons may be accom- 

FIG. 4. Spectrum of small oscillations in the chain with the 2z- soliton 
shown in Fig. 3a. 

panied by bound pairs of a P soliton with a P antisoliton. We 
have shown numerically that there can exist a stable random 
sequence consisting of 27r solitons and 277- antisolitons. 

4. PROPERTIES OFTHE SMALL-AMPLITUDE SPECTRUM IN A 
CHAIN WITH 2- SOLITONS 

To study the small-amplitude spectrum, we consider a 
chain of 120 particles with a single 2~ soliton. This structure 
was found by means of the relaxation equations (6) with 
A = 0.5 and H = 0.01; it is shown at the top in Fig. 3. 

Figure 4 shows the small-oscillation spectrum found for 
this structure from expression (7). This spectrum consists 
nominally of three bands. The frequencies of the lower band 
correspond to localized symmetric and antisymmetric oscil- 
lations of P solitons forming a 2~ soliton. The eigenvectors 
(discrete eigenfunctions) of the oscillations of this band are 
shown at the top in Fig. 5 a and b. These are oscillations of 
the 2~ soliton as a whole and of its width. The central band is 

FIG. 3. Chain of 120 particles with a 2 a  soliton. a-A = 0.5, H = 0.01; FIG. 5. The eigenvectors e(n,s) corresponding to localized oscillations of 
b--A = 0.5, H =  0.12. the two lower bands of the spectrum (Fig. 4). a-s = 1; b--2; c-3; d--4. 
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FIG. 6. Eigenvectors e(n,s) of normal oscillations of the upper band of the 
spectrum (Fig. 4) .  a-s = 30; b--118; c-120. 

a band of antisymmetric localized oscillations of 77- solitons 
forming a 2 a  soliton. The eigenvectors of these oscillations 
are shown in the lower part of Fig. 5 c and d. These are 
localized oscillations in the width of 77- solitons forming a 2 a  
soliton. This oscillation band is present if the parameter A is 
sufficiently large, and effects of the discrete nature are im- 
portant. As we go to the limit of a continuous medium 
(A -+ 0) , the oscillations of this band become collectivized, 
and the band coalesces with the upper band. At small values 
of H, the frequencies of the upper band correspond to a band 
of collective oscillations. The low-frequency oscillations of 
this spectral band constitute coupled oscillations of the soli- 
ton and of the rest of the chain (the 30th eigenvector in Fig. 
6), while the high-frequency oscillations (the upper part of 
this band) propagate throughout the chain without interact- 
ing with the soliton. The transmission coefficient for the 
transmission of such oscillations through the soliton is close 
to unity. 

We also observed the interesting result that it is possible 
to control the coefficient for the transmission of lirgar exci- 
tations through a 2asoliton by means of an external field. As 
the field H is raised, for example, the 277- soliton becomes 
narrower (see the preceding section of this paper). This nar- 
rowing leads to a change in the transmission of the soliton. 
As the field H i s  raised to H = 0.12, we obtain the structure 
shown at the bottom in Fig. 3. The transmission of the soli- 
ton has changed radically. While at H = 0.01 all oscillations 
of the upper part of the spectrum passed freely through the 
soliton, at H = 0.12 none of these oscillations passes through 
the soliton. 

Figure 7 shows the same eigenvectors as in Fig. 6. The 
oscillations corresponding to the lower bands of the spec- 
trum remain localized. In contrast with Fig. 6a, however, 
none of the oscillations of the upper band passes through the 

FIG. 7. Eigenvectors e(n,s) of normal oscillations for a chain with 2n- 
solitons with A = 0.5 and H = 0.12. a-s = 30; b--118; c-120. 

FIG. 8. Characteristic eigenvectors e(n,s) of a resonator consisting of two 
solitons with A = 0.1 and H = 0.25. a-s = 1, b-25; c-296; d-300. 
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soliton; instead they remain "localized." Effects of localiza- 
tion of normal modes in the Frenke1'-Kontorova model asso- 
ciated with a change in the parameter of the one-particle 
potential were studied numerically in Ref. 14. In particular, 
localization of the high-frequency vibrations of atoms was 
observed when the soliton pinning parameter decreased. 

It has thus been shown that it is possible to control the 
filtering properties of 2 n  solitons with respect to linear exci- 
tations by means of an external field H. As an example we 
have formed the structure in a chain of 300 particles contain- 
ing two 2n solitons with A = 0.1 and H = 0.25. For this 
structure, some of the high-frequency vibrations are local- 
ized in the region between solitons. For these frequencies, 
the solitons form a resonator. Other frequencies (from the 
low-frequency part of the upper band), in contrast, pass 
through the entire chain (i.e., are not localized). Figure 8 
shows characteristic eigenvectors of the natural modes of a 
resonator of two solitons. 

5. CONCLUSION 

1. It has been shown that the stability of 211 solitons in a 
discrete chain depends on the strength of the applied field, 
H. As this field is raised, the width of a 2 n  soliton changes 
abruptly. This change in width is preceded by the appear- 
ance of a soft mode in the small-oscillation spectrum of the 
system. It has been found that the gap in the small-oscilla- 
tion spectrum is a power-law function of the external field. 
This functional dependence has been found. 

2. The nonmonotonic dependence of the frequency of a 
local oscillation of the width of a 271. soliton on the external 
field has been found. The spectrum of small oscillations has a 

band not found in the continuum approximation. This new 
band disappears when the transition is made to the contin- 
uous-medium approximation. 

3. It is possible to control the transmission coefficient of 
structural 2 n  solitons for high-frequency oscillations in the 
spectrum of natural excitations by means of an external field. 
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