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The effect of an intense light wave on the magnetization of a transparent cubic ferromagnet is 
studied. Phase diagrams are constructed for a material in the field of a light wave near the Curie 
point and in the vicinity of an orientational phase transition. The change in the magnetization can 
occur by a first- or second-order phase transition, depending on the values of the homogeneous- 
exchange constant and the crystallographic-anisotropy constant. The critical and bicritical 
points are calculated. The effect of light on domain walls and on the domain structure is analyzed. 
The changes in the width of domain walls, in the period of the domain structure, and in the 
orientation of this structure are calculated. The effect of pinning of the magnetic moment at the 
surface on the light-induced phase transition is analyzed. A phase diagram is constructed for a 
ferromagnetic plate; inhomogeneous states are taken into account. 

A light wave interacts with a magnetic subsystem of a 
magnetic material through the electric component of the 
wave field, by virtue of the magnetization dependence of the 
dielectric constant. " The interaction changes the character- 
istics of both the light and the magnetic subsystem. If the 
components of the magnetic energy (the inhomogeneous ex- 
change energy, the anisotropy energy, and the magnetic-di- 
pole energy) are large in comparison with the interaction 
energy, the changes are primarily in the light. Examples are 
the classic magnetooptic effects of circular and linear bire- 
fringence. 

If these energies satisfy the opposite inequalities, the 
primary changes are in the magnitude and direction of the 
magnetic moments of the sublattices. These changes can be 
thought of as inverse magnetooptic effects, i.e., optomagne- 
tic effects. Optomagnetic effects stem from the constant ef- 
fective magnetic fields which arise from the nonlinear inter- 
action of the light wave with the magnetic subsystem. Since 
the magnetooptic constants are small, and the optomagnetic 
effects are quadratic in the electric field of the wave, the light 
has only a weak effect on the magnetization, even if it is 
relatively intense. Nevertheless, near phase transitions, 
where the susceptibility is anomalously large, even weak ef- 
fects can cause substantial changes in the magnetic subsys- 
tem, including light-induced phase transitions. 

The magnetization of a transparent nonmagnetic medi- 
um by an alternating electric field was studied in Ref. 1. The 
inverse Faraday effect in paramagnets was studied in Ref. 2. 
Relations given in Ref. 2 were used in Ref. 3 to estimate the 
light-induced magnetization of magnetic semiconductors. 
This effect was studied in magnetic insulators in detail in 
Ref. 4. The inverse Cotton-Mouton effect in ferromagnets 
was studied theoretically in Refs. 5 and 6. It has been ob- 
served experimentally in iron garnet films containing bis- 
muth.' 

In the present paper we are interested in magnetic spon- 
taneous and orientational phase transitions caused by a light 
wave in a transparent cubic ferromagnetic crystal. We exam- 
ine the effect of light on domain walls and the domain struc- 
ture. We studied the effect of pinning of the magnetic mo- 
ment on the light-stimulated phase transition. We should 
point out that optomagnetic effects differ from photomagne- 

tic effects.' The former are unrelated to the absorption of the 
light and are seen most obviously in transparent crystals. 
The light wave simply produces effective magnetic fields. In 
the latter case, the light, as it is absorbed, excites electrons 
into the conduction band or into localized energy levels. As a 
result the electron density becomes redistributed; this redis- 
tribution in turn causes changes in the properties of the mag- 
netic subsystem: the homogeneous- and inhomogeneous-ex- 
change constants, the anisotropy, the energy of the pinning 
of the magnetic moment at defects, and other parameters. 

BASIC EQUATIONS 

The energy density of the magnetic subsystem of a 
transparent ferromagnet in the field of a monochromatic 
light wave can be written 

1 dM a M  1 w=f(M2)+-n.---+ W.(M?)-M(H---A,) 
2 ' I  dx, axj 2 

The terms in ( 1 ) determine the energy of the homogeneous 
and inhomogeneous exchange, the anisotropy energy, the 
magnetic-dipole energy, and the average energy of the mag- 
netic material in the field of the light. Here M is the (vector) 
magnetic moment, a ,  are the homogeneous-exchange con- 
stants, H = H, + H, is the internal magnetic field, H, is 
the external magnetic field, H, is the demagnetizing field, 
xi, is the susceptibility of the paraprocess, E, are compo- 
nents of the complex amplitude of the electric field of the 
wave, 

g= [E exp (iot) +E* exp (--iot) ] 12, 

and w is the frequency of the light. The dielectric tensor is 
written in the form 

where E?) is the dielectric tensor of the paramagnetic phase 
in the absence of H, e,,, is the Levi-Civita tensor, and and 

are the circular and linear birefringence tensors, whose 
values are taken at the frequency of the wave. The terms 
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which contain H, determine the anisotropy 2 induced by the 
external field while those containing M, determine the in- 
trinsic anisotropy, which is a consequence of the homoge- 
neous-exchange field H '". In the ferromagnetic phase far 
from the Curie point Tc the condition H "' %H usually 
holds. As Tc is approached, the quantity H "' decreases, 
and the effect of H becomes noticeable. Near Tc the external 
field stimulates the exchange interaction, thereby increasing 
H "I. The effect of the field H on the direct and inverse mag- 
netooptic effects was studied in Refs. 9 and 10. In the para- 
magnetic phase far from T,, the terms linear and quadratic 
in H become the leading terms. The linear term gives us the 
magnetization change, 

AM,=- [dw (Ei) ldH,] 1 o=ieij,a,,'Ei'Ejll6n, 

and the quadratic term gives us the change in the paramag- 
netic susceptibility, 

In the absence of an external magnetic field, the light does 
not affect the state of a paramagnet. 

The amplitude E satisfies the equations 

where c is the velocity of light. 
The energy density of a cubic magnetic material in the 

vicinity of the ferromagnetic phase can be written as follows, 
where we are using ( 1 ) and (2)  : 

(4)  
Here aik = a s i k ;  K,,, K,,,, K,,, are the crystallographic- 
anisotropy constants; and 

It can be seen from expression (4) that the light wave 
creates an additional anisotropy and a magnetic field G, and 
in a field H it also creates an additional magnetization. The 
symmetry of the light-induced anisotropy depends on the 
polarization and propagation direction of the wave. The 
quantity G is determined by the ellipticity of the polariza- 
tion. For a linearly polarized wave we would have G = 0. 
The components of the vector M change by the following 
amount in the field of the light by virtue of the effect of H: 

This change consists of an isotropic part and an anisotropic 
part. Near T, the inhomogeneous-exchange energy can be 
written in the following form, within the range of applicabili- 
ty of the self-consistent-field theory: 

It follows from (4)  and (5)  that the wave also creates an 
additional exchange field. If we set A = A  ' ( T  - T c ) ,  the 
isotropic effect of the light reduces to a shift of T, by an 
amount AT, = fl, I El ,/87~A '. The direction of this shift in 
T, depends on the sign of fl, , since we have A ' > 0. 

In a plane wave, the longitudinal component Ex is relat- 
ed to the transverse components E,, and Ez by the following 
relation, as can be seen from (3): 

Since the off-diagonal components of the tensor 2 are 
determined by small magnetooptic constants, the compo- 
nent Ex can be ignored. In this case the field G will be direct- 
ed along the light beam. 

SPONTANEOUS PHASE TRANSITIONS 

The effective magnetic fields produced by the light 
wave may alter the state of the magnetic material. We first 
consider spontaneous phase transitions which occur be- 
tween homogeneous states in the field of a wave which is 
polarized linearly along the z axis and which is propagating 
along the x axis, in a direction parallel to an edge of the cubic 
cell. Near Tc we can restrict the discussion to the first ani- 
sotropy constant. In the absence of a magnetic field, expres- 
sion (4)  then becomes 

where A, = A  - 2& Uo is the homogeneous-exchange con- 
stant as renormalized by the light field, Uo = IE, I2/167r is 
the energy density of the light field in vacuum, and 
U, = (fl, - f12 ) UO is the constant of the light-induced ani- 
sotropy. In the case at hand, the light shifts Tc and creates 
uniaxial anisotropy in addition to the cubic anisotropy. The 
axis of this new anisotropy runs parallel to an edge of the 
cube. Under the condition fl, >fl,, there is an easy-axis ani- 
sotropy, while under the condition fl, <fl, there is an easy- 
plane anisotropy. Minimizing ( 6 ) ,  we find the system of 
equations 

where C = B + 2K,,. From ( 7 )  we find the stationary states 
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Phase 1 is paramagnetic, while the other phases are ferro- 
magnetic. In states 2,3, and 4, the vector M is oriented along 
the [001 ] crystallographic direction (an edge of the cube). 
In state 5, the vector M is directed along the [ 1101 axis (a  
diagonal of the base of the cube). In states 6, 7, and 8, the 
magnetization vector lies in, respectively, the ( 100) plane, 
the (010) plane (lateral faces of the cube), and the (110) 
plane (the plane which passes through the diagonal of the 
base and the edge of the cube which is normal to it) .  

The states determined by (8)  are locally stable if all the 
principal minors of the determinant (a 'w/dMiaMj 1 are 
positive: 

d(p l+2BMZ2)  +4C2MZ2 (8K,~JIf2M,' -p5My2-pf l$)  >O. 

(9)  

Substituting (8)  into (9) ,  we can determine the stability of 
the phases. The paramagnetic phase is stable in the region 
A, >max (0,2U, ) . The equality sign here corresponds to the 
line on which stability is lost. A necessary condition for the 
stability of the ferromagnetic phases is B > 0. Phases 2 and 3 
are stable under the condition K,, >O in the region 
A, <min(O, - bU, ), where b = B/K,,. Phase 4 is stable in 
the region A, (min [2U, , (2  + b) U, ] if we have K,, > 0 and 
in the interval (2  + b) U, <A, <O if we have - B < K,, < 0, 
U, <O. The stability regions of phases 2, 3, and 4 overlap. 
Phase 5 is stable in the region - 2(1 + b) U, <A, (0 if we 
have - B < K,, < 0, U, < 0. Phases 6 and 7 are unstable. 
The vector M may pass through these states in the case of a 
nonuniform distribution of the magnetization. Phase 8 is sta- 
ble in the region A,<min[(2+b)UI,  - 2 (1  + b ) U , ]  if 
- 3B/4<K12<0. 

A stable phase with the minimum energy corresponds 
to the ground state. Substituting (8)  into (6) ,  we find the 
energies of the phases to be 

FIG. 1. Phase diagrams of a cubic ferromagnet in the vicinity of a sponta- 
neous phase transition in the field of a linearly polarized wave. a-K,, > 0, 
i=2,3forBl  < &  andi=4forB,  >.62;b-R,2 <0 , j=5 fo rB l  <&and 
j = 4 f o r B l  > P ? .  

Phases 2 and 3 have identical energies. For phases 2,3, and 4, 
we have w ' ~ ' > <  w'") under the conditions U, ?O, respective- 
ly, in the stability region. 

We can determine the phase boundaries by equating the 
energies (10) of the phases with overlapping stability re- 
gions. The boundaries between the paramagnetic and ferro- 
magnetic phases 2, 3, 4, and 5 correspond to the relation 
A  , = 2 max (0, U, ), The boundaries between ferromagnetic 
phases 4 and 8, 5 and 8 are determined by the relations 
A ,  = ( 2 + b ) U I , A ,  = -2(1  + b ) U , .  These phase boun- 
daries coincide with lines of loss of stability. When these 
boundaries are crossed, the magnetization changes continu- 
ously, according to (8). The change in state occurs through 
a second-order phase transition (PT-11). 

As a result, two phases exist at K,, > 0: a paramagnetic 
phase and one of the ferromagnetic phases 2, 3,4. The crys- 
tallographic anisotropy gives rise to three special axes, along 
the edges of the cube. The light-induced anisotropy partially 
lifts the degeneracy. If this is an easy-axis anisotropy 
( U, > O), the magnetization is directed along the polariza- 
tion axis, parallel to the [OOl] edge. If the induced anisotro- 
py is instead an easy-plane anisotropy ( U, < O), the vector 
M lies in the basal plane, along the [ loo]  or [OlO] axis. 
Under the condition K, ,  <O, three phases exist: the para- 
magnetic phase and two ferromagnetic phases, 8 and either 4 
or 5, under the conditions U, 20,  respectively. In this case 
the crystallographic anisotropy gives rise to special axes 
along the body diagonals. The light-induced anisotropy de- 
flects M toward the [001 ] axis in the ( 110) plane if this is an 
easy-axis anisotropy; alternatively, it deflects it toward the 
[ 1101 axis if this is an easy-plane anisotropy. 

Figure la, b, shows a state diagram in terms of the inde- 
pendent variables A, U, . The behavior of the magnetization 
with increasing field energy depends on the initial state of the 
magnetic material and on the direction in which T, shifts. 
For A DM < 0 [DM = max (Dl ,P, ) 1, the paramagnetic and 
ferromagnetic states persist. For A, DM > 0 the magnetic ma- 
terial goes from a paramagnetic state to a ferromagnetic 
state. For A, DM < 0, on the contrary, it goes from a ferro- 
magnetic state to a paramagnetic state. Under the condition 
K,, <O, phase transition can occur between the various fer- 
romagnetic phases. In the case@, </?, , the magnetic materi- 
al goes from state 4 into state 8 or in the opposite direction, 
from state 8 to 4, under the conditions A, 2p, 
+ b (PI - p, ) >< 0, respectively. In the case 8, < fl,, phase 5 

is replaced by phase 8, or vice versa, under the conditions A, 
0, - (1 + b) (8, - ,8, ) 20,  respectively. 

In specific situations, the change in the magnetization 
with increasing U, occurs in the following way. Let us as- 
sume that in the absence of the light the magnetic material is 
in the paramagnetic state (A > 0).  In the case Dl > 8, or 
8, > 0, the magnetization M is then zero as long as the condi- 
tion U, <A /2p, holds. A component M, then arises. If we 
have K,, < 0, then in the region 

the components M, and My also begin to grow. Under the 
conditionp, < 0, the state does not depend on U,. In the case 
8, <pz  with p, > 0, the component M, or My iilcreases in 
the region U, >A /2p2 if the condition K,, > 0 Iiolds; alter- 
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natively, the two components M, and My increase simulta- [A3+B(Mx(0))2] M,(O)=H X I  
neously ifK12 < 0. In the latter case, with 

a component M, also appears. If P2 < 0 holds, the light does 
not alter the state of the magnetic material. The initial ferro- 
magnetic state changes in the opposite order as a function of 
uo. 

Let us examine the behavior of the magnetization in a 
circularly polarized wave which is propagating parallel to 
the direction of the magnetic field, along the x axis. Since the 
field H lifts the degeneracy with respect to the direction of 
M, a slight anisotropy can be ignored near Tc. For a left- 
hand circular polarization (E, = - iEy ), expression (4)  
then reduces to the following expression, where we are using 
( 5 ) :  

where A, =A-2 (P l  +P2)U0,  H, = H + y U o ,  y = 2 a  
+ (P ; + P; - ; )H. In this case, as in the preceding case, 

the light shifts Tc and gives rise to uniaxial anisotropy. In 
the present case, on the other hand, the anisotropy is parallel 
to the light propagation direction, and the anisotropy con- 
stant has the opposite sign: It is an easy-axis or easy-plane 
anisotropy under the conditions PI ><P2. In addition, the 
light gives rise to an effective magnetic field along the light- 
propagation direction or in the opposite direction, under the 
conditions a 2 0. It also renormalizes the magnetic-dipole 
energy. 

Minimizing ( 1 1 ) under the condition Hz $0, we find 
M F '  = M:O' = 0, and we find that Mi0) satisfies the equa- 
tion 

where A, = A - 4& Uo . Since we have M F' + 0 according 
to (12), a spontaneous phase transition does not occur in 
this case. Nevertheless, the structural features in the changes 
in M persist, and in the limit H, -0 they are strengthened. 
In the weak-field region, Ih I = I H, I/Hc 4 1, where we have 
H - [A, 1 3 / 2 ~  - 1/2 c - , we have 

in the "paramagnetic" phase (A, > 0) and 

in the "ferromagnetic" phase (A, < 0). The value of M:O) 
which is greatest in magnitude in ( 14) (the + signs corre- 
spond to the conditions H, 2 0 )  corresponds to the ground 
~ t a t e . ~ '  In the strong-field region, Ih I % 1, we have 

IfAP, < 0, the state of the magnetic material does not change 
as Uo varies. In the case A50, the initial ferromagnetic (or 
paramagnetic) state goes into a paramagnetic (or, respec- 
tively, ferromagnetic) state under the conditions P2 50.  
Working from ( 13)-( 15), we can introduce the susceptibil- 
ity 

In general, the functional dependence ( 16) is quite compli- 
cated, since U, changes the two parameters A, and H, si- 
multaneously. The functionx, differs substantially from the 
ordinary X( T,H). In the weak-field region in the paramag- 
netic state we have 

In the ferromagnetic state we have 

and in the limit A, -. - 0 we have 

%-T (-2As)-'. 

In the limit A, + - CQ we have 

Under the condition y& < 0, the function X ,  has some addi- 
tional features in the ferromagnetic phase: At the point 
( - A, ) z f yB 1/2/4P2 = f A y)/4, this function takes 
on a value X, zO. At the point ( - A, ) "'z f A i0)/2, the 
susceptibility has a local minimum or maximum, 
xa, z - 2P :/yB, respectively, under the conditions y><O. 
The value ( - A, ) "'z f 2A :O'/3 corresponds to an inflec- 
tion point. In the strong-field region, X, reaches a minimum 
or maximum, X, =: - 4P:/3yB, at the point 
H 2/3 z - yB '/,/2P2 under the conditions y 20.  In the case 
H k'3 = - yB 'l3/4P2, it takes on the value X, z 0. Near the 
global maximum we have X, cc H ; '/,. It follows from an 
analysis of the functional dependence X, ( U,, ) that, for ex- 

675 Sov. Phys. JETP 73 (4), October 1991 A. F. Kabychenkov 675 



ample, under the conditions A, P, , Hz > 0, and y < 0 an in- 
crease in Uo is accompanied by an increase in X ,  in the para- 
magnetic phase. It goes through a maximum and then 
decreases, going negative. In the ferromagnetic state, X ,  in- 
creases from the region X ,  < 0, crosses zero, goes through a 
local maximum, and then asymptotically approaches zero. 
As the critical point is approached (A3,H, -0), the maxi- 
mum of X ,  tends toward infinity, and the power laws have 
different exponents in the ferromagnetic and paramagnetic 
states. 

In the case H ,  = 0, in which the effect of the field H i s  
canceled by the wave, the light will create only uniaxial ani- 
sotropy. Assuming K,, = 0 in the discussion below, and re- 
placing M, by M,, we find a phase diagram of the magnetic 
material in terms of the coordinates H, A. 

The self-consistent-field theory is valid only near the 
phase-transition point, outside the fluctuation region. In this 
case, the range of applicability is determined by the follow- 
ing conditions, where we are taking the shift of Tc into ac- 
count: 

where Tcc = T,  + AT,. 
These results become valid for a right-hand circularly 

polarized wave if we replace a by - a in ( 10) - ( 16). 

ORIENTATIONAL PHASE TRANSITIONS 

At relatively low temperatures ( T( Tc ), the magni- 
tude of the magnetization M is conserved. In this case, we 
can conveniently rewrite (4) in polar coordinates: 

w='lz~M,~[ (V8)2+(Vcp)2 sin2 8]+'/,[K1 sin2 28 
+ (K,+K2 cosZ 43) sin' 8 sin2 2q]- (U, cos2 q+U, sin2cp)sin2 8 

-U, cos2 8-Vx, sin 2cp sin2 8 

- (Vxz cos cp+V,, sin cp)sin 28-MH,. (17) 

Here 8 and e, are the polar and azimuthal angles of the vector 
M, 

are the crystallographic-anisotropy constants, 

Ui=(b,-bz) Mo21E*(2/16n, VG=b3M02(EiEj.+Ei.Ej)/32n 

is the constant of the light-induced anisotropy, Mo is the 
saturation magnetization, and 

Ex=-E, sin cp,-E, cos 8, cos cp,, 

EY=El cos qn-E2 cos 8, sin cp,, 

E,=E2 sin, 8,. 

Here El and E2 are field components in the Cartesian coor- 
dinate system (n,e, ,e2 ) moving with the wave, n is the unit 
vector along the wave propagation direction, 8, and e,, are 
the polar coordinates of the vector n, and e, is a unit vector 
in the x,  y plane. In addition, 

is the resultant internal magnetic field, 

is the field produced by the light, and S = 8 ,  - S, is the 
phase difference between the components ElS2 
= IE,,, I exp(is,,, 1. 

We consider uniform phase transitions in the field of a 
wave which is linearly polarized (S = 0) along the [001] 
axis (El = 0). The wave is propagating in the basal plane 
(8, = ~ / 2 )  with H = 0. In this case, ( 17) simplifies: 

where U = U,. The effect of the light on the magnetic mate- 
rial reduces in this case to no more than the induction of a 
uniaxial anisotropy, with an axis parallel to the polarization 
axis. Working from ( 18), we can write the equations for 
stationary states in the form 

p sin 28= [K, cos 28+'/2(K,-3/2K2 sin2 8) 
x sin2 8 sin2 2cp+U] sin 20=0, 

sin 2cp cos 2q (K,+K2 cos2 8)sin4 8=0, (19) 

where K3 = K, + K, . 
The stability of the states is determined by the inequal- 

ities 

Pw/802=21.~ cos 28-sin2 28 [2K,-*/, (K,-3K2 sin2 8)  sin,' 2q], 

32~/dq2=2(K,+K2 cos2 0)sin6 8 cos 4cp, (20) 
~2w/38acp=sin2 8 sin 28 (K3-3/2K2 sin2 0) sin 4cp. 

From ( 19) we find the stationary states; from ( 18) and (20) 
we find their energy and the stability region: 
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wheret= 1/3 - Kl/K2,ands=4/3(U+ K,)/K2.There- 
lations for the stability regions with the equal sign determine 
the line of instability. All the states are degenerate, as can be 
seen from (21 ). The reason for this degeneracy is that the 
axis of the light-induced anisotropy coincides with a symme- 
try axis of the crystal. In phases 1,2, and 3, the vector M is 
oriented along the symmetry axes: These are collinear 
phases. In the state 1, the magnetization vector is directed 
along the polarization axis. In the states 2 and 3, the vector 
M lies in the plane perpendicular to the polarization axis. 
The orientation of M is along the [loo] crystallographic 
direction in phase 2 and along the [ 1 101 direction in phase 3. 
In the corner phases 4 and 5, the direction of M does not 
coincide with a symmetry axis of the crystal. In state 4, the 
vector M rotates in the ( 100) plane, while in state 5 it rotates 
in the ( 110) plane. In the limit U-0 we have the asymptotic 
behavior cos 20 '4' -0, sin2 B "' -+2/3. In this case M be- 
comes oriented along a face diagonal, [ 1 101, or along a body 
diagonal, [ 1 1 1 1; these orientations are the same as in the 
phases of the cubic magnetic material in the absence of exter- 
nal fields. I 

The stability of the phases depends on the sign of K2 . If 
we have K2 < 0, phase 4 is unstable. The stability regions for 
the different phases may overlap. If we have K2 <O, then 
regions 1 and 2 , l  and 3,3 and 4,3 and 5, and 4 and 5 overlap. 
In addition, phases 3, 4, and 5 overlap. If we have K2 > 0, 
then regions 1 and 2; 1 and 5; 2 and 5; and 1,2, and 5 overlap. 
Hysteresis arises upon a transition from one state to another 
in an overlap region. The stability regions of phases 2 and 3 
do not overlap, although the direction of M changes abrupt- 
ly upon a transition between these states3' In a region in 
which three phases coexist, the energy of one phase is always 
greater than the two other energies. In the case K2 > 0 with 
U>0, the inequalities w ( ~ '  > w ' ~ ' ,  w ' ~ '  hold. In the case 
U<0, the inequalities w ' ~ '  > w ' ~ ' ,  w"' hold. If K2 < 0 holds, 
then w ' ~ '  > w"', w ' ~ '  for U> 0 or w( ' )  > w ( ~ ) ,  w ( ~ )  for U<O. 

Equating the energies of coexisting phases, we find the 
following relations for the phase boundaries: 

FIG. 2. Phase diagrams of a cubic ferromagnet in the vicinity of a spin-flip 
phase transition in the field of a linearly polarized wave. a-K, > 0; b- 
K, < 0. 

3-4: u=O, -'/,< k<0, K,>O; (22) 
3-5: u='/, (k+'12 sign K,)  , kG -'I3; 

u3-'1, (1+3/2k-9/2k2)~2+'/ia (1+2k-'/,k2-9k3) u 
+'/,,k (1+Z"4k+13k2+ 9k3) =0, 
-'/,G k<-'/,, K2>0; 
~=' / , (k- ' /~) ,  k<O, K,<O; 

4-5: u='/,,k{9+2k [10+ (3k-'+7)"]), 

where u = U/I K2 I, and k = K, / I  K2 I. Figure 2a, b, shows 
phase diagrams for K2 20, respectively.I2 The heavy lines 
are boundaries between phases, while the dashed lines are 
lines of instability which do not coincide with phase boun- 
daries. Transitions between phases when the energy density 
of the light or the parameters of the magnetic material 
changes are accompanied by either a continuous change in 
M (PT-11) or an abrupt change in M (a first-order phase 
transition, PT-I). A PT-I1 transition occurs between phases 
1 and 4, 1 and 5, and 3 and 5 in the region K < - 2/3 in the 
case K2 > 0. It also occurs between phases 1 and 5 in the 
region K < - 1/3 and between phases 3 and 5 in the region 
k < 0 in the case K2 < 0. The transition between phases 2 and 
3 is the hysteresis-free transition PT-I. A hysteretic transi- 
tion PT-I occurs between phases 1 and 2 and between phases 
3 and 5 in the region - 2/3 < k < - 1/3 if K2 > 0. It also 
occurs between phases 1 and 5 in the region - 1/3 < k < 1/3 
and between phases 2 a d  5 in the region 0 < k < 1/3 if 
K2 < 0. 

The critical points have the coordinates k = - 2/3, 
u = - 1/12 for K2 >O or k =  - 1/3, u = 1/3 for K2 <O. 
At these points, the PT-I line with hysteresis gives way to a 
PT-I1 line. At the point k = 0, u = 1/4 for K2 > 0 the line 
PT-I1 splits into a line of a hysteresis-free PT-I and a line of a 
hysteretic PT-I. At the origin of coordinates in the case 
K2 > 0 the PT-I1 line splits into two lines, PT-I with hystere- 
sis and PT-I without hysteresis. At the bicritical point, 
k = - 1, u = 1 for K2 > 0, two PT-I1 lines and a line of a PT- 
I with hysteresis converge. At the points k = - 4/g, u = 0 
for K2 > 0 or k = - l/g, u = 0 for K2 < 0, three PT-I lines 
with hysteresis converge. 

The resulting phase diagrams can be used to determine 
the changes in the components of M as a function of the light 
intensity and the parameters of the materid. Figure 3a, b, 
shows the component m, = M,/Mo as a function of the in- 
tensity for various relations between PI and P2 (uPO for 
p, ><P2 ) for K2 PO. The dashed lines correspond to points of 
instability. In the regions k < - 1 for PI >P2 and k < - 2/3 
for Dl <P2 in the case K2 > 0, and in the regions k < - 1/3 
forp, > P2 and k < 0 for P, <p, in the case K2 < 0, the com- 
ponents of M vary continuously with increasing U in a cor- 
ner phase and remain constant in the collinear phases. In the 
interval - 1 < k < - 4/g in the case K2 > 0 and P, > P2, the 
vector M rotates in the ( 110) plane with increasing light 

677 Sov. Phys. JETP 73 (4), October 1991 



FIG. 3. Square of the component m, versus the energy density of the wave 
field. a: K, >O. 1-k = - 1; 2-- 0.55; 3-- 0.25. b: K, <O. 1- 
k = - 0.42; 2- - 0.06; 3-4.06; W . 3 .  

intensity and then turns abruptly to an orientation along the 
[ 1001 axis (PT-11). In the interval - 2/3 < k < - 4/9 for 
PI <P2 in the case K2 >O, and in the interval 
- 1/3 < k < 1/9 forfl, >P2 and also the interval 0 < k < 1/9 

for PI > P2 in the case K2 < 0, a single transition, PT-I, oc- 
curs as the intensity is raised. If the stability regions overlap 
in the case u = 0, the change in M depends on the original 
orientation. The components of M do not change if the ini- 
tial orientation of this vector is the same as the asymptotic 
orientation in the limit I U I - co . In the opposite case, a PT-I 
occurs with increasing Uo. A PT-I1 may occur later. After 
the effect of the light ends, the orientation of M is not the 
same as its original orientation: There is hysteresis as Uo is 
varied. 

In addition to the stable states (20) discussed above, 
there are some unstable stationary states of the saddle-point 
type. These states have a significant effect on nonuniformly 
magnetized magnetic materials. 

We now consider reorientation of the vector M in the 
field of a circularly polarized wave which is propagating 
through a slightly anisotropic magnetic material 
(P,M; Uo,aMo Uo S K I  ,K, ) in the direction of the external 
magnetic field. Working from ( 1 1 ) , using the condition 
M2 = M i ,  and proceeding as above, we find the stationary 
states, their energy, and their stability regions: 

for cos~0"' sin cp("S0; 
2 )  sin 0(2)=1 ,  cos q ~ ( ~ ) = l ;  W ( ~ ) = U +  F; U < - P / 2 ;  (23) 

3 )  ~ i n 0 ( ~ ) = l , c o s ~ ( ~ ) = - l ;  W ( ~ ) = U - F ;  U<F/2;  
4 )  sin 8") cos C Q ( ~ ) = - F / ~ U ;  w ( ~ ) = - F ~ / ~ ~ J ;  ~2 I F  112, 

where F = Mo H z .  In the metastable state 1, the magnetiza- 
tion is directed normal to the magnetic field. In the collinear 
phases 2 and 3, M is oriented along and opposite the wave 
propagation direction, respectively. Corresponding to the 
corner phase 4 are directions of M along the generatrix of a 
cone whose axis is parallel to H. 

The 2-4 and 3-4 phase boundaries coincide with insta- 
bility lines. The boundary between phases 2 and 3 is deter- 
mined by the relations U<O, F = 0. The phase diagram is 

FIG. 4. Phase diagram of a slightly anisotropic ferromagnet in the field of 
a circularly polarized light wave. 

shown in Fig. 4. The transition from phase 4 to phases 2 and 
3 occurs through a PT-11. The transition between phases 2 
and 3 is a PT-I with hysteresis. We can work from the phase 
diagram to determine how M changes as a result of the light. 
In the case of an easy-axis light-induced anisotropy 
(p, <P2 ), under the conditions H < 0 and a > 0, the mag- 
netization M turns abruptly to an orientation opposite the 
field as the light intensity is raised. The quantity Uo reaches 
a threshold value 

For a < (0, - PI )Mo, the direction of M does not change. 
In the case of an easy-plane light-induced anisotropy 
(p, > P2 ), under otherwise the same conditions, the mag- 
netization M begins to move away from the H direction for 
Uo > UCh" and becomes oriented opposite the field at 

u o > - H l [ ~ - ( f j r - B z ) M o l .  

In contrast with the spontaneous phase transition discussed 
above, the field does not smear the phase transition in this 
case; the transition is simply shifted. It thus becomes possi- 
ble to obtain different types of behavior of the M orientation 
as a function of Uo . 

DOMAIN WALLSAND DOMAIN STRUCTURES 

The ground state of a ferromagnet of finite dimensions 
has a domain structure. The size and shape of the domains 
and also of the walls separating them are determined by the 
relations among H,, H,, the anisotropy field, and the ex- 
change field. Since the light creates an effective magnetic 
field, an additional anisotropy field, and an additional ex- 
change field, the wave should alter the domain structure and 
the domain walls. 

Varying ( 17), we find the equations of the inhomogen- 
eous stationary states: 

where A is the Laplacian, and iZ = w ( a  = 0).  We consider 
Bloch domain walls. In this case we find from (24) 

(25) 
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These expressions give the distribution of M in a domain 
wall and the energy of the wall. In phases 1,4, and 5 we have 
$ = 13, while in phases 2 and 3 we have $ = p. The quantities 
$o and $, are asymptotic values of $; Eo = E(Bo,p0 ); is 
the coordinate normal to the plane of the domain wall; and 
7 = f 1. In the integration of (25) below, we consider only 
the constant K, in cases in which the plane of the domain 
wall does not coincide with the lateral faces of a cube. 

In phase 1, the magnetization distribution in a 180" do- 
main wall is given by 

where 6"' = [aMi/2(U + Kl ) ] 'I2 is a characteristic 
length, and U,, = U + $ K, sin2 2p. The angle p is treated 
as a parameter in (26); it can take on arbitrary values. Ex- 
treme values correspond to angles n77/4. Far from singular 
points, the thickness of a domain wall is Sg& z?TS(') and is 
determined primarily by the effective anisotropy constant 
U + K, . With increasing Uo, the quantity Sg& increases or 
decreases under the conditions p, ><B2, respectively. To- 
ward a PT-I1 line, the thickness of the wall remains finite, 
Sg& - ?rM, (a/2UI, ) 'I2, and the shape of the wall remains 
the same. As a PT-I line is approached, a 180" domain wall 
breaks up into two 90" domain walls between which a new 
collinear phase forms. 

The energy of a domain wall is 
q-'" Arcsh q", 

wg& = wg:, I+ (l+q-') { K,>O, 
(-q)'" arcsin (-q)'", K,<O, 

where wg&, = [2aM ( U  + Kl ) ] '12,q = K,,/U,,, and 
K,, = K, ( 1 - $ sin2 2p). Domain walls with p = n77/2 
have the minimum energy in the case K, >O, while walls 
with p = ( 1 + 2n)77/4 have the minimum energy in the case 
K, < 0. At the point K, = 0, the plane of the domain wall 
undergoes reorientation. This rotation of the wall can have 
strong effects on phase transitions in nonuniformly magne- 
tized magnetic materials. 

In phase 2, the magnetization M in a wall rotates 
through an angle of 77/2 in the plane of the base of a cube. 
The M distribution is given by the standard expression 

p g& = aartg [ exp (z/6")) I ,  (28) 

where = (aMi/K, ) 'I2. In this case the energy is 
wg& = (aM i K, /2) 'I2. The quantities and wg& do not 
depend on Uo, since M always lies in the easy plane. In phase 
3, the domain walls are similar to those in phase 2. 

In phase 4, the M distribution in a domain wall is de- 
scribed by 

where = ( - aM;/2K, )'I2 C O S - ~  13'~', v = + 1. The 
value of v specifies the interval over which 8g& varies: 
- vI9 '4'c19g& ~ v I 9  '" + ( 1 - v)77/2. In a wall with v = 1, 

M passes through the z axis, while in a wall with v = - 1 it 
passes through the basal plane. The energy of the wall is 
given by 

- 
= W ~ & O  {1/2 sin 28(41-cos 28'4'[t)'*1- ( I - v )n /41 ) ,  (30) 

where wgL0 = ( - 2aMiK, )'I2. As the 4-1 phase bound- 
ary is approached, we have Sg& - CO, wg& -0 in the case 
v = 1 and S$& + T( - a M  i/2Kl ) 'I2 and wg& 

(77/2) wg&, in the case v = - 1. As the 4-2 boundary is 
approached, the changes in 6$& and wg& occur in the oppo- 
site order. When phase boundaries corresponding to PT-I1 
are crossed, the energy of a wall changes continuously. In 
phase 5, the domain walls are described by expressions (29) 
and (30) if K, is replaced by 3K, /4. 

How does the light affect a domain wall? In a 
plate of a magnetic material with the [ 11 11 easy axis 
(Kl < - 2K2 /3 < O), if this plate is cut in the direction par- 
allel to the ( 100) plane, there is a stripe domain wall, which 
is oriented parallel to the [Ol 1 ] axis. A light wave polarized 
along the [001] axis changes the direction of M in the do- 
mains and the properties of the domain wall, as we can see 
from the discussion above. As a result, there are changes in 
the period (d)  and orientation of the domain wall. 

The energy of a clearly defined domain wall can be writ- 
ten 

where I is the thickness of the plate, Sii"' = E(O0,pO), 
wg& = w,, (0, ,pO ), 8, and p0 are the values of the angles 
in the middle of a domain, and p =. 1.7 is numerical coeffi- 
cient. The terms in (30) determine the energy of the do- 
mains, the domain walls, and the demagnetizing fields. The 
M distribution in the domains and in the wall are different 
from a uniform distribution and different from the distribu- 
tion of M in isolated domain walls, respectively. In the case 
d)SDW, however, the distinction is negligible. In the case 
wg& we can thus use the expressions for w&, replacing 
O"', q, "' by Oo, q,,. The energy of a domain wall of the 
domain structure under consideration is given in this case by 

1+3 cos' 8,) 
" [ 1 - sin 8, 

1 + cos2 8, 2 

At Oo = d 2 ,  the energy in (32) is comparable to wg&. Sub- 
stituting (32) and ( 18 ) into (3 1 ), and minimizing with re- 
spect to 8, and d, we find 

d=d0f1' sin-' go, (33 

where do = 2 [21( - 2aK, ) 'I2/pM0 ] 'I2.The angle 8, satis- 
fies the equation 

f" f' -P-(1+-tg80)]=o, 
sin 8, 2f 

where p = p M i d  /( - 3K, I), and f '=df/de0. In the do- 
mains, as in an unbounded magnetic material, there are two 
collinear phases, with 6, = 0 and 77/2, and there is also a 
corner phase. Since we have cos2 19 "' = f [ 1 - 2 ( U/K, ) ] 
if we take only the constant K, into account, the value of 0, 
in the corner phase differs only negligibly from 6 ifp ( 1. 
The angle between the polarization axis and the direction of 
the domain structure is given by 
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For 0, > p2, an increase in Uo is accompanied by decreases 
in d and ODs. At small values of O0, we find d a 8 A'2 and 
OD, - 8, from (33) and (35). As the boundary of the nonun- 
iform state is approached, we find d, 8,, -0. The reason 
why d decreases, despite the decrease in the component of M 
normal to the plane, is that the wall energy falls off more 
rapidly than the energy of the demagnetization fields. Under 
the condition 0, <@,, an increase in Uo is accompanied by 
increases in d and ODs. As the vector M rotates toward the 
basal plane we find d-+ do (r /2)  'I2 and ODs -, 7~/2. The tran- 
sition from a nonuniform state with a domain wall making 
an angle with the crystallographic axes to a uniform state 
and to a state with a domain wall parallel to the axes occurs 
through a PT-11. 

Near the critical points, this analysis does not hold. It 
simply indicates the existence of a phase transition but does 
not describe it. In the limit 8-0, the quantity S,, becomes 
comparable to d. The difference between a domain wall and 
domains disappears. The change in the angle 8 becomes har- 
monic. Taking the energy of the demagnetization fields into 
account, we write w as a series in 8, which we restrict to 
quadratic terms. From the condition for a minimum of the 
energy we find the period of the critical mode to be 

The period d, is small (a- 10 - l 2  cm2) but not zero. Equat- 
ing the energies of the uniform and modulated states, we find 
the equation of the phase boundary to be 

The shift of the PT-I1 line with respect to the uniform phase 
transitions [see (21)] determined by the last term in (37) 
increases with increasing inhomogeneous exchange and 
with decreasing thickness of the plate. 

TRANSITIONS TO A NONUNIFORM STATE 

A nonuniform state may be caused not only by the de- 
magnetizing fields but also by pinning of the magnetization 
M at defects in the interior or at the surface of the magnetic 
material. If the magnetic-dipole energy is small in compari- 
son with the energy of the interaction of M with the defects, 
the nonuniformity of the magnetization will be determined 
primarily by the defects. The effect of the defects strengthens 
as the phase-transition point is approached. 

Let us consider an unbounded plate of thickness I, with 
a surface which coincides with the lateral faces of a cube. In 
the absence of an external field, and with K, ,  K, > 0, the 
magnetization M lies in the plane of the plate and is directed 
along a [001] or [010] axis. Consequently, demagnetizing 
fields do not arise. We assume that M at the boundaries of 
the plate is pinned in the [001] direction. In the absence of 
light, the state will then be uniform (the vector M will be 
parallel to the [001] axis). During the application of a light 
wave which is polarized linearly along thez axis (thez axis is 
parallel to the [001] direction), in the case U < 0, the vector 
M(M2 = M i  ) rotates in the plane of the plate (q, = n/2). 
The rotation angle 8 reaches a maximum value 8, at the 
middle of the plate, while at the surfaces we have 8 = 0. 
Substituting (18) into the first equation into (25), and inte- 

grating the latter, imposing the boundary conditions, we 
find an expression which describes the distribution of M 
over the thickness of the plate: 

8 = arctg 
0 ,  (u,-e2)snY(rE, t> 

{ (uI+O,) [1-01 sn2((rE, f) I-f32 
}'". (38) 

Here 8, = sin2 Om, 8, = cos2 8,, u1 = - U/K, > 02, 
sn(<, k )  is the elliptic function, 6 = [2(u2 + 28, ) '/,/ab ] x  
is its argument, u, = u, - 1, a ,  = (2aMi/12K,)1/2, and 
f 2  = 8, ( u ,  + 8, ) / (u ,  + 28, ) is the modulus of the elliptic 
function. The quantity 8, in (38) is found from the equation 
(u, + 201 ) 'I2 = a ,  X ,  where X(f2) is the complete ellip- 
tic integral of the first kind. 

The energy of the nonuniform state per unit area of the 
plate can be written as follows, where we are using the sec- 
ond equation in (25) : 

a-ili, [aa,  !m(cosz e - e , ) ~ 1 2 ~ e , + u 2  + sinz do+ ( e , c u , ) e 2 ~ .  
0 

(39) 

Minimizing (39) with respect to ern, we find the equation of 
the stationary states to be 

sin 20, (u2+28,)'12 [ a , X -  ( ~ , + 2 0 , ) ; " ~ ]  =O. (40) 

Stable stationary states satisfy the condition 

, ai 8 6' ln t" 
( X  2 1-f )( --) ( u , + 2 0 , ) " - 2 ] ~  0, (41) 

85, 

where 8 (f2) is the complete elliptic integral of the second 
kind. Equation (40) has the solution 8 I" = 0. The reason 
for the existence of a uniform solution is that the axis of the 
surface anisotropy which pins M coincides with a crystallo- 
graphic symmetry axis. It  follows from (41) that the uni- 
form state 8 = 8 2 ' = 0  is stable in the region 
u, <a, = 7?a:/4. A solution of Eq. (40) of the form 
8:') =0,  which describes a nonuniform state with 
8, = r / 2 ,  is unstable. In the region 8, 4 1 we can use the 
asymptotic (f2-0) expansion X+3 r( 1 + + f2), and we 
find a solution of (40) in the form 

2 ) -  U 2 - a ~ [ , ~ ( , -  0, --- 8 ~ 2  ( U Z - a ~ )  ) " ' I  , 
(42) 

2 (8-az) ( u z - ~ , ) '  

where a, = 5a2/(8 - a, ). It follows from (41 ) that the first 
solution in (42) is stable for u, > 3 in the range 

while the second solution is unstable. The stability regions of 
phases 1 and Z have a common boundary a, = u2. When this 
boundary is crossed, 8, changes continuously. In the region 
8, ( 1, using the asymptotic expansion X + l n  [4/(1 - f2) ] 
as f Z  + 1, we can write a solution of (41 ) in the form 

02(3)=16 exp {-n[ ( 2 f  u2 ) /a z ] '" ) ,  (43) 

which is valid for u, + 2% a,. The region in which solution 
(43), with (41 ), is stable is given by 
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FIG. 5. Phase diagram of a ferromagnetic plate with magnetic moments 
pinned at the surface in the field of a linearly polarized wave. 

This region overlaps the stability regions of phases 1 and 2. 
The energy of these states can be expressed in terms of 

g(f:) and X(f:) on the basis of (39), where fz = B I", 
i = 2,3. The integrals $ and X can be written as series in fi, 
and 1 - 1: in which only the first terms are retained. In this 
case, the phase boundaries are given by 

1-3: ul=2a1 (01(3)+~z) 'h  [ I -  (ln 2--'/& In 0,(3)+'/,) f3,(3)] 

+ ( ~ ~ + 0 ~ ( ~ ) ) 0 ~ ( ~ )  for u t e l ,  (45 

where u' = u,  - B i3j. The phase diagram is shown in Fig. 5. 
The transition between phases 1 and 2 is of second order, 
while that between phases 1 and 3 and that between phases 2 
and 3 are of first order. With increasing intensity of the light, 
at a fixed a, > 3, the value of 19, is zero as long as the condi- 
tion u, < a, holds. Later on, 8, begins to increase monotoni- 
cally, but remains small. When the instability boundary of 
phase 2 is reached, the value of 8, changes abruptly to a high 
value. After this jump, 8, monotonically approaches ~ / 2 .  
With increasing intensity, 8, jumps into phase 1 abruptly, 
skipping phase 2. 

The boundary condition used above holds as long as the 
surface-anisotropy field is weaker than the nonuniform-ex- 
change field. In the opposite case, the magnetization M un- 
dergoes a reorientation of the surface, so the distribution of 
M in the interior changes. When the phase transition at the 
surface is taken into account, the phase diagram of the mag- 
netic material becomes more complicated. 

We thus see that defects can substantially alter the reor- 
ientation of M. Certain previously stable uniform states may 
become unstable, and the stability region of other uniform 
states may expand. Some new stable states, both nonuniform 
and uniform, arise. 

DISCUSSION OF RESULTS 

We have been discussing cubic magnetic materials. In 
general, one can introduce an effective field due to the light 
wave as follows: 

where w E  = w(Ei,dEi/dx, 1. If w  depends on Ei alone, the 
expression for H, can be written 

The first term in (47) is an analog of the vector product in 
expression (4) .  Substituting the effective field in the form 
H = H, + HE, where H, is the field in the absence of the 
light, into the equation of motion for M, and using (3) ,  we 
can determine the dynamic and static properties of any mag- 
netic materials. 

The calculations above ignored the absorption of the 
light and the inverse effect of the magnetic subsystem on the 
light wave. These simplifications are justified if the decrease 
in the amplitude and the change in the phase of the wave due 
to the magnetization M over the length I of the sample are 
small. This condition places a limit on the size of the 
material along the light propagation direction: 
I<  min (A /2n-An,aa; I), where A is the wavelength, An is the 
change in the refractive index due to the magnetization, and 
a,, is the absorptior~ coefficient. The reorientation of M 
caused by the light may occur even if the condition on I does 
not hold. There may be changes in not only the phase dia- 
gram but also the kinetics of the transition. 

The strength of the field H,, which has a significant 
effect on the magnetic subsystem, depends on how closely 
the point of the phase transition can be approached. In the 
case of magnetic orientational phase transitions, the fluctu- 
ation region is very narrow,13 AT/Tc < 10 - 6 .  The proxim- 
ity to the phase transition is thus determined by the experi- 
mental conditions and the quality of the samples. The field 
H, can be estimated from & z 2AnI/cMo, where I is the 
light intensity. If the effective internal field is stabilized 
within AH, the relation > AH. should hold. 

The highest values of An are observed in magnetic semi- 
conductors. In EuS (T, -- 16 K) ,  at T z 8  K andA--0.6pm, 
we have An, ~ 0 . 3  for the case of circular birefringence, 
witha,z105cm-'andMo~l.6~ 103G (Refs. 14-17).In 
EuO films (T, ~ 7 0  K )  at T z 2 0  K, and A ~ 0 . 6  pm, the 
quantity An, is about 0.25, and we have a,, -- lo5 cm - ' and 
Mo -- 1.9. lo3 G (Refs. 14 and 18). Single crystals of EuSe 
( T ,  ~ 4 . 6  K )  are distinguished by their relatively low ab- 
sorption, a,, z 4 5  cm - ', while An, =. 6.10 - is large in the 
regionA~0.76,um at T ~ 4 . 2  K and Mo =: 1.5. lo3 G (Refs. 
14 and 19). The linear birefringence in EuSe is determined 
by the value19 An, z 10 - ,. The value of An is slightly lower 
in the slightly anisotropic spinels CdCr, Se, ( T, -- 106 K )  . 
At T Z  11 K and A =. 1 pm we have a,, z i03 cm - and 
M0z300  G, and thevalueof An, is z2.10W2 (Ref. 20). 

Iron garnets have An values smaller than those of mag- 
netic semiconductors. However, the high technological level 
of the synthesis of these materials makes it possible to pro- 
duce high-quality samples with a wide range of parameter 
values." These samples are thus preferable experimentally. 
In iron garnets containing bismuth, at Tz300 K and at a 
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wavelength of 0.63 pm, we have An, z 10- and a,, z lo3 
cm - ' (Refs. 2 1 and 22). The absorption coefficient can be 
lowered to 58 cm-I by adding small amounts of calcium,23 
in which case we obtain An, -AnK. The constants of the 
induced anisotropy and the growth anisotropy can be re- 
duced to essentially zero by choosing the appropriate film 
growth conditions and the appropriate film comp~sition.~'  
The value of M can also be varied over a wide range.22 Using 
the values given above, we find a field gE ~ 0 . 1  Oe, roughly 
the same for all materials, at IZ lo6 W/cm2. Experimental- 
ly, it is completely feasible to stabilize the internal field at 
this accuracy level and thus to approach the phase transition 
in terms of RE. 

The shift of T, can be estimated from 
AT, z4AnI  /cA ' M i .  Using the parameter values given 
above for iron garnets containing bismuth, and assuming 
~ ' ~ l O K - ' a n d M , = : 3 0 ,  we f indATc= :10 -2Ka t I~107  
W/cm2. The magnitude of this shift is comparable to the 
fluctuation region. 

Let us estimate the period and orientation of the do- 
main structure. Assuming that M is deflected from a body 
diagonal through a small angle by the light, we can write the 
relative change in the period as follows, where we are using 
(33): 

where 8, = a rc~os (3 - "~ )  is the polar angle of the [ I l l ]  
axis, and dl  is the period of the domain structure which 
corresponds to the angle 8 , .  Substituting the parameter 
values used above for the iron garnets into this expression, 
and assuming that we have K, ~ 6 -  10' erg/cm3 near the 
phase transition, we find Ad/dl ~ 0 . 0 1  at IZ lo6 W/cm2. 
The rotation of the domain structure caused by the light 
when the vector M deviates very slightly from the [ 11 11 axis 
can be estimated from 

Using the same numerical values as in the estimate of Ad, we 
find AQ,, =: 3.10 -3. At small values of 8,, we find the ratio 
Ad /d z A8,/B0. With decreasing 8,, the relative change in 
the period of the domain structure increases. 

We should point out that a magnetic material can be 
brought toward a phase transition not only by varying the 
anisotropy constants through a change in temperature but 
also by applying external fields. For example, a stress along 
the z axis creates an additional uniaxial anisotropy, which 
shifts the phase diagrams in Fig. 2 along the ordinate, down- 
ward or upward, depending on the sign of the magnetostric- 

tion constant. A light beam can be applied locally to a mag- 
netic material. This capability adds to the experimental 
possibilities. 

I wish to thank V. G. Veselago, A. K. Zvezdin, and F. 
V. Lisovskii for a discussion of this study. 

I '  The interaction of the magnetic component of the field can be ignored 
since the magnetic susceptibility is nearly zero at optical frequencies. 

" The point H ,  = 0 corresponds to a first-order spin-flip phase transition. 
3' A correct description of a first-order phase transition between states 2 

and 3 would require consideration of the higher-order anisotropy con- 
stants. Such corrections require tedious calculations, in which the phys- 
ics of the effects would be obscured. We accordingly treat the transition 
between phases 2 and 3 as hysteresis-free, with the understanding that 
when the additional constants are taken into account the line of this 
transition will split, either on the line of a second-order phase transition 
with a corner phase between them, or on the line of loss of stability 
bounding the hysteresis region. 
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