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Equations are derived to describe the low-frequency dynamics of the uniform texture which forms 
in a plane-parallel layer of helium whose thickness is smaller than the "healing" texture length 
when this layer is in a magnetic field directed parallel to the walls of the vessel. The motion occurs 
from a Leggett configuration, which arises in pulsed NMR experiments after the magnetic 
moment has relaxed to its equilibrium value. Solutions of the equations near equilibrium positions 
of the anisotropy axis of the order parameter are derived for both the case without dissipation and 
the case with a Leggett-Takagi relaxation. 

1. INTRODUCTION 

In the superfluid B phase of 3He, the order parameter is 
proportional to an orthogonal 3 X 3 matrix. This is conve- 
niently thought of as a matrix which ~er forms a rotation 
through an angle 8 around the fi axis: R (6,B). The magni- 
tude of the angle 0 is fixed by the dipole energy: 
0 = 8, = arc cos( - 1/4). In the absence of a magnetic 
field, and far from the walls, the orientation of fi is undeter- 
mined. The dipole energy gives rise to a slight anisotropic 
increment in the magnetic susceptibility, of such a nature 
that ii turns slightly toward a direction parallel or antiparal- 
lel to the magnetic field H. The walls also orient' fi. As a 
result of this competition between two factors, a vessel of 
each specific shape has a corresponding equilibrium distri- 
bution of fi, a so-called equilibrium texture. This texture af- 
fects various phenomena which are observed in 3He-B. Tex- 
tures have been studied for various geometric 
 configuration^.^ 

The simplest case, and that most convenient for inter- 
pretating of experiments, is a uniform texture. A uniform 
texture occurs in a layer of 3He-B sandwiched between 
plane-parallel plates. The distance L between the plates at 
which the orienting effect of the walls is the governing effect 
in the field H is estimated from the inequality L 
(cm) 5 10/H, where L is in centimeters, and H in oersteds3 
At the fields ordinarily used, - 100 Oe, this distance is fairly 
large: L S 1 mm. Under these conditions the orientation of ii 
is determined by the minimum of the magnetic surface ener- 
gy 3-5 

- A  

FHS=-q  (HRs) ', 
where 3 is the normal to the surface. If the field lies in the 
plane of the plates, there are four equivalent minima. In a 
coordinate system with 211 - H and ?I\$, these directions are 
(the notation is that of Ref. 6) 

A a = ( 3 , -  I I - )  b=5(3'".1,1) ,  I  

If ii does not lie along any of these four directions, the order 
parameter moves, ultimately relaxing toward one of the 
equilibrium orientations. 

Significant deviations from equilibrium texture arise in 
a natural way in pulsed NMR experiments with 3He-B in the 
geometry described above. Experiments of this sort were 
first carried out with a stack of plates by Borovik-Romanov 
et UI.;'.~ subsequent experiments were carried out with one 
slit by Ishikawa et ~ 1 . ~  

After the magnetization relaxation, a so-called Leggett 
configuration arises. This is a texture in which ii is parallel or 
antiparallel to the field H. Experiments show that this tex- 
ture relaxes to an equilibrium in a time on the order of 1 ms. 
Ishikawa et also carried out a numerical simulation of 
experiments of this sort, using the complete system of Leg- 
gett equations. They found satisfactory agreement with the 
observations. 

Numerical solutions, however, do not draw a simple 
physical picture of the motion of the order parameter, and 
they do not bring out important qualitative aspects of the 
process. We have accordingly carried out an analytic study 
of the motion of the order parameter and the paths by which 
it relaxes to equilibrium in a geometry corresponding to the 
experiments of Refs. 6-8. We will be talking in terms of the 
motion of the texture, i.e., in terms of motion which is in- 
duced by the orienting effect of the walls after the magnetiza- 
tion has relaxed to its equilibrium value. 

2. EQUATIONS OF MOTION 

Let us consider the problem of the motion of the order 
parameter in 3 H e - ~  in a gap between plane-parallel plates, 
which are separated by a distance which is small enough that 
the motion can be regarded as spatially uniform. We assume 
that the magnetic field H is parallel to the plates and is 
strong enough ( k 20 Oe) that we can ignore the dipole sur- 
face energy. The motion of the spin and of the order param- 
eter in superfluid 3He are described by the Leggett equa- 
t i o n ~ , ~  in which we should include the moment of force set 
up by F&.  Under our assumptions regarding the value ofL, 
we can, as in Ref. 6, "smear" this energy over the volume of 
the helium in the gap. In other words, we can assume that we 
have a bulk energy 

The units which we will be using below are such that the 
magnetic susceptibility of the 3He-B and the gyromagnetic 
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ratio for the 'He nuclei are unity. The energy density has the 
dimensions of a square frequency; the Zeeman energy is on 
the order of the square of the Larmor frequency, wi; the 
dipole energy is on the order of the square of the frequency of 
the longitudinal vibrations; and we have V- m i l  /L, where 
gis a correlation length. We see from these estimates that the 
energy V is substantially lower than the two other energies 
involved in the problem. Its ratio to the Zeeman energy, for 
example, is characterized by the small parameter 

which is on the order of 10 for the experimental condi- 
tions of Refs. 6-8. The frequencies of the motions caused by 
Vshould also be small. To describe these low-frequency mo- 
tions, we will use the procedure proposed in Ref. 10, but with 
some modifications. 

In order to use that procedure, we should express the 
order parameter in terms of the Euler angles a ,  8 ,  y in the 
following way: 

C 

E (ii, 0) = E (a, B, Y) = R~ (a) Zy (0) zz (Y), (1)  
CI 

where the matrix R, (a) performs a rotation through an an- 
gle a around the & axis, etc. The Leggett Hamiltonian should 
be written in terms of the angles p, y, Q, = a + y and their 
canonical-conjugate spin projections, Sg, Q = S, - S,, and 
S,, respectively, where S, is the spin p ro j~ t ion  onto the t 
axis, Sc is the projection onto the = R t  axis, and Sg 
is the projection onto the line of nodes [&, k]  : 

The dipole energy U, does not depend on y ; the explicit 
expression for it will not be needed below. The energy V is 
given by the following expression in terms of the Euler an- 
gles: 

We break up the Hamiltonian (2)  into a "main" Hamil- 
tonian A?"' and a perturbation W, in which we include the 
last two terms: 

Here we are assuming motions for which these two terms are 
comparable in magnitude. The energy (S, - w, )2/2 was in- 
corporated in A?'0' in Ref. 10. The grouping which we have 
used here is more convenient for describing the motion of the 
order parameter near singular points of the unperturbed so- 
lutions. Now following the procedure of Ref. 10, we write 
equations of motion corresponding to the Hamiltonian (2),  
moving to the right side all the terms which contain Wand 
derivatives with respect to the energy, which are assumed to 
be small quantities of the same order of magnitude: 

awe) a s ,  a w  -- 
aP at ap ' 

a%'0' dS ,  -=-- 
a@ at ' 
a w O )  ay -- -- 

aQ a t '  
a w O )  acD a w  -- 
a s ,  at  a s ,  ' 

a m w  aap -=- 
a s ,  at ' 

Assuming in a zeroth approximation that the right sides 
of this system of equation are zero, we find a system of equa- 
tions which determines steady-state solutions of the unper- 
turbed Hamiltonian. These solutions have been found pre- 
viously. '' The motion of the texture is described as a change 
in the adjustable parameters of the solution la  of Ref. 11: 

'/2-cos p 
Sp=O, Q=S, (COS p - l  ), cos @ = 

l+cos p . (11) 

In contrast with Ref. 11, the quantity S, is not fixed in this 
case, and the solution ( 11 ) is degenerate in terms of three 
parameters: y, S,, and one of their angles, Q, orp. Our prob- 
lem is to derive equations of motion for these parameters. 

As variables we introduce (for example) y, u = cos P, 
and a = (S, - w, )/m,. One of the three equations is found 
by substituting ( 11) into Eq. (5): 

Two more equations are found from the conditions that the 
right sides of Eqs. (6)-( 10) are orthogonal with respect to 
the tangent vectors of the degeneracy space of the solutions 
( 1 1 ) . As these vectors we adopt 

and 

The order in which the variables appear corresponds to the 
order in which Eqs. (6)-(10) are written." All the vari- 
ables which appear on the right sides of Eqs. (6)-(10) 
should be expressed in terms of y, a ,  and u in accordance 
with ( 1 1 ) . As a result we find 

Equations ( 12)-( 14) constitute a closed system of equa- 
tions in the variables y, u, a. The derivative d@/du has a 
singularity at u = - 1/4: 

For orbits which do not pass through the singularity, Eqs. 
(12)-(14) can be simplified even further. As we see from 
(14), a is a quantity of first order in the derivatives dy/dt 
and du/dt, while its time derivative is a quantity of second 
order. When we omit from Eqs. ( 12)-( 14) all small quanti- 
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ties which are of second order, we find the equations 

This system of equations was derived previou~ly.'~ It is in 
Hamiltonian form, and it conserves the energy 

Two variables are no longer enough for describing the 
motion near u + 1/4-A. With u = - 1/4 (this value corre- 
sponds to a configuration fil~), the frequency of the longi- 
tudinal vibrations vanishes. As a result, a change in S, be- 
comes possible. 

3. MOTION OF THE ORDER PARAMETER 

We now use Eqs. (12)-( 14) to describe the motion of 
the order parameter. The functional dependence @ (u)  is not 
single-valued. The two branches of this function differ in 
sign and merge at u = - 1/4. Consequently, motions which 
may pass through the singularity u = - 1/4 are described 
more conveniently in terms of the variables @, y, a. In terms 
of these variables we have 

('/& + cos a)) 
V= -3hoL%inZ y 

(1 + cos m ) 2  
Treating Eqs. ( 12)-( 14) as an algebraic system of equations 
in terms of the time derivatives, we note that this system of 
equations is consistent only under the condition 

Equation ( 19), along with ( 15) and ( 18), determines a sur- 
face A in terms of the coordinates @, y, a: 

h sin2y (1-2cosm) 
~(o+1)=--(1+4cos @I{-- 

2 
sin2 y} . 

sin 8 (l+cos 0)" 

A direct check shows that Eqs. ( 12)-(14) have an integral 
of motion which represents an energy: 

The orbits of the motion of the image point in the co- 
ordinates @, y, a are the lines along which the surface (20) 
intersects the surfaces (2 1 ). Different initial deviations of 
the order parameter from an equilibrium orientation corre- 
spond to different energies E. Figure 1 shows the surface A 
and the orbits of motion for several values of the energy. The 
angles y and @ vary over the intervals - a( y < a  and 
- 6, <@<6,. Only that part of the surface A which corre- 
sponds to O< y < a  is drawn in this figure. Since Eqs. (20) and 
(21 ) are not changed by a change of m a  in y, the remainder 
can be found by making a shift of - a along the y axis. The 
equilibrium positions correspond to the points with the co- 
ordinates @ = f ~ / 3 ,  y = f a/2, a = 0. [In the notation 
of Ref. 6, the sig!s ( - , + ) correspond to the B orientation, 
( + , + ) to the b ofientation, ( - , - ) to the i? orientation, 
and ( + , - ) to the d orientation. ] All equilibrium positions 
correspond to E /wi = - A. 

FIG. 1. Orbits of the image point in the coordinates @, y, 5 = 0 ( 5 / / 2 )  ' I 2  

for the three values J 2  = $, +, +. The inner curves correspond to larger 
values of J  '. 

Since A is small, the deviation of the surface A from the 
plane a = 0 becomes important only in the region @-A "'. 
Near each equilibrium position there is a region of initial 
values of @, y, a for which the subsequent motion occurs 
along orbits which enclose only the given equilibrium posi- 
tion and which do not venture into the "dangerous" region 
@-A I/'. The equations of these orbits are found by substi- 
tuting ( 18) into (2 1 ) and setting a = 0. The motion along 
such orbits is described by Eqs. ( 16) and ( 17). This motion 
can be interpreted by going over to the variables J and $: 

/=sin f i  sin y, tg I)=--cos y 1g P. (22) 

In terms of these variables, Eqs. ( 16) and ( 17) become 

In other words, J is an integral of motion, and $ is the corre- 
sponding "angular variable," which varies linearly with the 
time. The motion described by (23) and (24) can be inter- 
preted graphically in the coordinate system (%, 4, C),which 
moves with the order parameter. In the basis (g, 4, C;), the 
unit vector P has the coordinates ( - sin fl cos y, sin fl sin y, 
cos 0 ) ;  i.e., J i s  the projection of P onto 4, and $ is theAangle 
between the projection of 4 onto the %e plane and the C; axis. 
The order parameter thus moyes in such a way that the unit 
vector 2 in the related basis (6, 4, C;) undergoes a uniform 
revolution along a cone with axis along 4. The projection of P 
onto 4 is equal to J ,  and the angular velocity of the revolu- 
tion is WJw, . 

For J=: f (15/16) 'I2, the phase orbits enter the dan- 
gerous region, where the difference between a and zero be- 
comes important. For @ = 0 and for y = 0,7~/2, T, the sur- 
face A has saddle points. For J2 < 15/16, the orbits 
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FIG. 2. Phase orbits of the motion of the order parameter in the a, y plane 
for various values of the integral J. The two inner curves correspond to the 
value J *  = +. 

transform into figure-eights, which pass near the saddle 
point @ = 0, y = ~ / 2 ~ a n d  which run around two equilibri- 
um points, e.g., B and b, shown in Fig. 2. To describe the time 
evolution of @, y, and a as we move along these figure-eights, 
we need to integrate Eqs. ( 12)-( 14). Although we have not 
been able to find an analytic solution of this system of equa- 
tions, the corresponding behavior for specific initial condi- 
tions can be found easily through numerical integration with 
the help of the integrals of motion which are present here. 

4. DISSIPATION 

Ifwe wish to describe the relaxation of the order param- 
eter to one of the equilibrium positions, we should add some 
dissipative terms to Eqs. ( 5 )-( 10). For temperatures which 
are not too low, it is sufficient to consider the bulk dissipa- 
tion which arises by the Leggett-Takagi mechanism.12 Dis- 
sipative terms arise from the dipole energy and also from the 
interaction with the walls. In order to write out these dissipa- 
tive terms, we need to add a torque R,--due to the magnetic 
surface energy-to the Leggett-Takagi equations for the 
rate of change of the spin density, S, and the angular rotation 
velocity of the order parameter, v, as was done in Ref. 6. We 
then-need to project these equatio?~ onto the unit vectors & 
and and onto the line of nodes [&:&I. Here we need to allow 
for the rotation of the unit vector & and of the line of nodes. 
In the hydrodynamic limit we find the following corrections 
in Eqs. (5)-(10): 

x{( l+cos  m )  (Qcos fi-S.(l-cosp)) 

+So sin sin 0 )  +2xa{(S,(l-cos p )  -Q cos p)cos sinz y 
+Sg sin p cos f i  sin y cos y) ,  (25) 

x (Q+sz ( I - C O S  p) ) 
+2xa(Q+S,(l-cos p))ctg 8 sin 7 cos 1, (26) 

as, 
-=-- 

am at ' 

a a7 x au 
-=--- sin @ - ~ X U  sin y cos y, (28) dQ dt  2 d(cos 0 )  

aw 
-=----- 31 

au 
sin @ as, at as, ~ ( C O S  0 )  

-2xa(l-cos P) sin y cos y ,  

6'8") d p  x d U  
-=--- sin p (l+cos 0) as, at 2 ~ ( c o s ~ )  

-2xa sin cos p sine y .  (30) 

The effective time x was introduced previously." 
The dissipative terms due to the dipole energy are vastly 

larger in order of magnitude than the "wall" terms, and they 
can be moved to the left-hand side. In the solution l a  of Ref. 
1 1 ,  all the dipole dissipative terms, being proportional to the 
derivative a U / d  (cos 0) vanish and thus do not alter the 
solution itself. They do, on the other hand, change the eigen- 
vectors onto which the right-side is to be projected. As a 
result, increments -xu arise in the equations of motion, and 
increments of the same order of magnitude arise directly 
from the wall dissipative terms. The three equations which 
result, however, do not have an integral of motion, and they 
do not lend themselves to a qualitative analysis like that in 
Sec. 3. 

Here we discuss only the final stage of the relaxation, in 
which the motion of the order parameter occurs about one of 
the equilibrium positions. In this case the motion is de- 
scribed by two equations. In terms of the variables J and $, 
the equations with the dissipative terms are 

These equations can be integrated. As a result we find 

In other words, the relaxation occurs over a time scale 7- 1/ 
d w ; .  The variables u and y are expressed in terms of J and 
Ij, in the following way: 

u= (1-J2)Ih cos 9, 
(I-J2)'" (35) 

ctg y = - ---- 
J 

sin $. 

The initial conditions for the motion of the texture 
which arise under the experimental conditions of Refs. 6-8, 
after an equilibrium magnetization (fillH or - fil(H) is 
reached, correspond to values @ = + O,, i.e., EzO. The 
meaning here is that the motion initially occurs along a fig- 
ure-eight which enclose5either the pair of equilibrium states 
Band b or the pair i? and d, depending on the initial value of y. 
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As the relaxation progresses, the figure-eight shrinks and 
splits up into two loops. The particular loop along which the 
order parameter moves depends strongly on the initial con- 
ditions, so we would expect the relaxation to proceed to dif- 
ferent equilibrium values in different regions of the planar 
layer of helium. In other words, domains would arise, sepa- 
rated by walls (solitons): which woul! make the transition 
from the orientation Ei to b or from 2 to d. It is also clear from 
this analysis that the nature of the relaxation should change 
upon the transition from motion along a figure-eight to mo- 
tion along a loop, but at the present level of experimental 
precision it would not be possible to observe that transition. 

As we mentioned earlier, the conditions for the relaxa- 
tion of the order parameter from the Leggett configuration 
to the equilibrium position determined by the walls which 
were set up in the experiments of Refs. 6-8 are similar to 
those which we have been discussing here. Unfortunately, 
however, no data were reported in Refs. 7 and 8 with which 
we could make a comparison of the results of the present 
study. We can make a comparison with data from Ref. 6. In 
that previous study, the relaxation time of the uniform tex- 
ture, r2 ,  was found as a function of T / T ,  by a two-pulse 
NMR method involving a change in the frequency of the 
free-induction signal. A comparison of r2 with the relaxa- 
tion time found in the present paper, 7 -  l /xAw: (as in Ref. 
6, we take 6 / L  to be 3.10 - 4, shows that r agrees in order of 
magnitude with the experimental value. The shape of the 
curves generated by Ishikawa et al, in the course of their 
numerical integration of the complete system of Leggett 
equations also supports the conclusions of the present study. 
The oscillations of the angle 8 and of the component n, of the 
vector ii over the texture relaxation time indicate penetra- 

tion into the dangerous region and a related change in S, . We 
can thus say that the system of equations which we have 
identified here gives an adequately accurate description of 
the behavior of the uniform texture in a thin plane-parallel 
layer of helium. 
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