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Those terms in the equations of dissipative two-fluid hydrodynamics formulated by Nemirovskii 
and Lebedev which arise from superfluid turbulence are subjected to a comparative analysis. 
Their main features are identified. The system of equations for heat propagation in helium at rest 
is expanded in the Mach number of the relative velocity of the motion of the components. For 
second-sound waves, a supercritical heat flux represents an anisotropic medium with an 
anomalous dispersion, which does not disappear even for waves propagating across the flow. A 
region of strong absorption for low-frequency waves is identified. This region lies adjacent to the 
direction of the supercritical heat flux. Outside this region, the absorption and attenuation of 
sound are determined primarily by the steady-state heat flux. They depend only weakly on the 
parameters of the waves. In an analysis of the propagation of a square-wave heat pulse in a broad 
channel with a weak initial turbulence, a boundary-value problem is solved. The transient process 
which culminates in a steady-state heat flux is analyzed. The conditions for several experiments 
which would be capable of testing this theory are formulated. 

There is flagging of research interest in the behavior of 
superfluid helium as a heat-transfer medium under condi- 
tions such that there is a supercritical thermal load. This 
interest arose, in particular, from problems involving the use 
of helium I1 in cryogenic devices. Comparisons of theoreti- 
cal and experimental work have been the subject of many 
reports at recent conferences and meetings on cryogenics. 
The theoretical ideas based on the two-fluid model with a 
well-developed superfluid turbulence are reflected most 
comprehensively in the equations of motion of superfluid 
helium which have been formulated by Nemirovskii and Le- 
bedev. ' 

In Sec. 1 of this paper we analyze the equations formu- 
lated in Ref. 1, and we derive equations for heat transfer in 
helium I1 at rest. These equations are expanded in the Mach 
number of the velocity amplitude of the counterflow of the 
normal and superfluid components. Terms up to first order 
are retained in this expansion. In Sec. 2 we examine the prop- 
agation of second sound in the case of a supercritical steady- 
state heat flux. In Sec. 3 we take up the two-dimensional 
problem of the propagation of stepped heat pulses in the case 
of homogeneous and weak initial turbulence. 

1. HEAT PROPAGATION EQUATIONS 

In order to analyze the effect of superfluid turbulence, it 
is useful to single out in the equations of motion formulated 
for superfluid helium by Nevirovskii and Lebedev' the lead- 
ing parts of those terms which are related to this turbulence. 
Since the vortices of the superfluid turbulence draw energy 
from the kinetic energy of the superfluid component, it is 
natural to assume that the vortex energy density is much 
lower than the kinetic-energy density of the superfluid com- 
ponent. We also assume that the work density per unit time 
of the force of the friction with the frozen system of vortices 
is much higher than the corresponding change in the vortex 
energy density. Under these assumptions approximate equa- 
tions of motion of superfluid helium can be written as fol- 
lows (see the Appendix for the notation): 

* + div j=O. 
at 

fV,, @ + div ( p ~ , )  = - 
at T I 

av, f 
- + ( v . v ) v , + ~ ~ = -  at 

P a  

Equation (5) is the renormalized Vinen equation. We need 
to supplement these equations with the thermodynamic rela- 
tion' 

d~=p dp+pa d~ + f i d ~ , , ~ .  
2 ( 6 )  

Here Y = aZL, L is the total length of the vortex filaments in 
a unit volume, a is a dimensionless empirical parameter of 
the Vinen equation, V, = b V,, is the average velocity of the 
vortex formation, V,, = V, - V,, b = b( T) is the known 
function of the temperat~re,~ v = v(T) is a renormalized 
empirical parameter of the Vinen equation, 
f = Ap,p, 9 Y V,, is the force density of the mutual friction 
between the normal and superfluid components, A = A(T) 
is the Gorter-Melink constant, and p, a, and p, = p, /p are 
known (tabulated) functions of the temperature T and the 
pressure P. The dependence ofp and o on V:, is found from 
the Maxwell relation, which follow from (6). The depend- 
ence of p, on V:, is not known, but in practice it can be 
ignored.' 

The time scales in Eqs. ( 1 )-(4) are the periods of the 
sound waves or the time taken by the sound to traverse a 
length scale of the system. A time scale in Eq. (5) is 
T = v/V:,. We wish to stress that the turbulent-friction 
force is proportional to the parameters A and .$ and also to 
the product YV,, . The time scale of the variation in Ymay be 
much longer than that for V,, . In the steady state, in which Y 
reaches Y, = Vi,/.$, we have f =Ap,p,V:,V,,. For 
V,, 1 cm/s this quantity is given by a known expre~sion.~,~ 

We will be interested below in problems involving heat 
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propagation under conditions such that there is no mass 
flow, i.e., with 

j=p(p,V, +p,V,) = O .  

At T>  0.8 K, this case corresponds quite accurately to the 
propagation of sec-ond-sound waves.2 In this case, if we ig- 
nore the dependence ofp on T, P, and Vi, , and if we consider 
only the functional dependences a = a (  T, V;, ) and 
p, = p, ( T ) ,  we can reduce Eqs. ( 1 )-(4) to two equations 
for T and V,, by using (6), making the substitutions 
v,= - -  p, V,, and V, = p,V,,, and eliminating P and p. 
Solving these equations for aT/at  and VT, and using ( 5 ) ,  we 
find a system of equations describing heat propagation in 
superfluid helium at rest. We write this system of equations 
in the approximation linear in V,,/C2 
[C2 = (p,u 2/i5n UT) is the second-sound velocity] and in 
dimensionless form: 

Here 

y =  C2t/h, U =  V,,/V, G =  ( T -  T0)uTC2/a~,V, 
= Y/Y,, Y, = V2/g, E~ = h /rLC2, rL = v/V2, 

2y =pAv2y,h/C2, E = V/C2 (1, 
q = u , , ~ / u ~ P ,  = 1, UT = a ~ / a T ,  pnT = dpn / d ~ ,  

To is the initial temperature, V is the amplitude of the char- 
acteristic velocity of the countercurrent of the components, 
h is a length scale by which the spatial coordinates are divid- 
ed (normalized), and Y, andZI are the unnormalized and 
normalized initial values of the turbulence. All the normaliz- 
ing quantities which depend on the temperature are taken at 
To. In practice we would have E - 10 - 3-10 - I. 

2. PROPAGATION OF SECOND SOUND IN A SUPERCRITICAL 
HEAT FLUX 

Let us use Eqs. (7)-(9) in the zeroth approximation in 
E to analyze the propagation of a small-amplitude, mono- 
chromatic, plane second-sound wave in the case of a steady- 
state supercritical two-dimensional heat flux, in which the 
velocity of the counterflow of the components is V. For uni- 
form waves (Re K/Re K = Im K/Im K),  the dispersion re- 
lation relating the frequency w and the wave vector K takes 
the simple form 

where q, is the angle between the direction of the radiation 
and the heat flux. 

Analysis of this dispersion relation shows that for low 

frequencies there is a strong-absorption region ( I Im K I 
> Re K) adjacent to the direction of the flux. For pAv% 1, 
the frequency region with waves which are not strongly ab- 
sorbed (Re K > IIm K I ) and the phase velocity of these 
waves are given by 

C;,, > C;,, (a , )  =Cz (4/pAv) 'la [cos2 e, -'/&(pAv+2) 1'". 

Under the conditions Iw 1 >pAv/rL andpAv) 1, the so- 
lution of (10) in both the case Im w e O  (traveling waves) 
and the case Im K=O (standing waves) gives us some simple 
equations which determine the basic behavior as a function 
of V, q,, and w or K. The sound velocity C; is given by 

where p = pAv/rL w in the case Im w =O and p =PAY/ 
rL KC2 in the case Im K= 0 (the minus sign in front of the p2 
corresponds to the phase velocity C;,, , while the plus sign 
corresponds to the group velocity C;,). The expressions for 
the damping rates K,  and w2 are 

In the case q, = r/2, Eq. ( 10) becomes quadratic. From its 
solutions we find C ;,, = C, 2If2/ [ 1 + ( 1 + p2) 'I2 ] 'I2 and 
Re K > IIm K I for all w in the case Im w =O, while for 
Im K e O  we find C ;,, = C2 ( 1 - p2/4) 'I2. For 
K > p ~ v / 2 ~ / ~ r ,  C2 we find Re w > Im w, and the damping 
rates are again given by ( 12). 

It can be seen from ( 1 1 )-( 12 ) that for second sound a 
supercritical heat flux represents an anisotropic medium 
with an anomalous dispersion. The dispersion is anomalous 
because of the absorption of sound, which is due primarily to 
the intensity of the steady-state heat flux. The anisotropy 
arises because the longitudinal component of the second 
sound initiates turbulence oscillations according to ( 9 ) 
(Ref. 1 ). At wrL % 1 the turbulence oscillations are weak, 
and they lag behind the oscillations in the velocity of the 
normal component by a phase of nearly r/2. According to 
( 1 1 ), this circumstance reduces the anomalous dispersion 
and thus increases the phase velocity. Under the condition 
wrL 9 1, the turbulence and velocity oscillations are compar- 
able in amplitude and nearly in phase, so there is a region of 
strong absorption. 

The same problem was taken up in Ref. 1. There, a more 
complicated dispersion relation was solved in the case 
Im K= 0 (no expansion in E was carried out). An erroneous 
expression was derived for the functional dependence w (K, 
9 ) .  According to ( 11 ), in contrast with the results of Ref. 1, 
there is also dispersion for sound propagating perpendicular 
to the steady-state heat flux. 

Solving the problem under the condition Im w =O in the 
linear approximation in E adds, in ( 11 ), only a term which 
represents a drift of the sound caused by the heat flux 
V [p, - p, + ( 1 - q )  ] cos p (this term was found in Ref. 
6) and, in ( 12), a term - (pAv/2rL C2 ) 2 ~  [p, + (p, 
- pnT T)u/aT T - b /2 ] cos p. The coefficients of all the 
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terms determined by the superfluid turbulence are of order 
unity. 

It follows from ( 11) that the three second-sound phase 
velocities measured in a heat flux [these velocities are C, ,, 
and C,, which are the velocities of low-frequency "longitu- 
dinal" (q, = 0) and "transverse" (q, = 77/2) sound, and 
Ch ,,, the velocity of high-frequency "longitudinal" sound, 
where oh % (C2 /8pS V) 1 / 2 p A ~ / ~ L  and pAv/rL < or 
4 (C2/8ps V) '/2pA~/rL ] must satisfy the relation 

4 ----=I- CIII - C ~ I I  
PAV c, - c2 

This relation can serve as a test of theoretical ideas or as a 
method for determining AY. 

3. PROPAGATION OF A HEAT PULSE IN A BROAD CHANNEL 

Let us consider the longitudinal propagation of a two- 
dimensional square heat pulse in a broad channel (i.e., in one 
in which we can ignore the lateral walls) of unit length (in 
terms of the unnormalized coordinate of length, h)  under 
the condition E~ ( 1 (h 4 rL C2 ) . Under the condition 
y< l / ~ ,  , in the zeroth approximation in E and E, , we thus 
have 2=3zI from (9 ), and from Eqs. (7)  and ( 8) we find 

These equations describe the initial propagation of the pulse 
in the superfluid helium in the case of well-developed super- 
fluid turbulence. The attenuation is proportional to the ini- 
tial turbulence level Y, (or to the corresponding normalized 
quantity & ) . Eliminating G from ( 13) and ( 14), we find a 
telegraphist's equation for U: 

aZu au a2u 
-+2y------=O. (15) 
dy2 d y  dxL 
We assume that there is a heat source W = p a p ,  VO(y ) 

at the closed end of the channel at x = 0; here O(y) is the unit 
step function. Thex = 1 end of the channel is open, connect- 
ed to a vessel holding helium. We assume that before the heat 
pulse is applied, for y<O, well-developed superfluid turbu- 
lence, of intensity Y, < Y, (y+O), is present in the channel, 
distributed uniformly in x; we assume that the temperature 
is To everywhere; and we assume" V,, = 0. Using (13) and 
( 14) under these assumptions, and noting that the front of 
the pulse propagates along the characteristic y - x = 0, de- 
caying in accordance with the value of y (Ref. 7),  we can 
write the following boundary conditions for our problem: 

The conditions on the characteristic y - x = 0 have been 
replaced by the initial conditions U(x, 0 )  = 0 and G(x, 
0 )  = 0, while the conditions at x = 1 are a qualitatively justi- 
fied extrapolation of the corresponding conditions for the 

steady-state problem. The problem under consideration here 
thus reduces to one of finding a solution of Eq. ( 15) in the 
region O<x< 1, y>x under the boundary conditions ( 16) and 
then using the solution found for U to find a solution for G on 
the basis of Eq. ( 13 ) and the boundary conditions ( 17). 

We partition the range of U (and thus that of G) into 
triangular subregions by means of the characteristics 
y + x = 2m and y - x = 2m (m is an integer). We denote 
these subregions by a sequence of integers in such a way that 
in the odd-numbered (2m - 1 )-subregions adjacent to the 
part of the contourx=O we have 2(m - 1) + x < y < 2 m  
- x, while in the even-numbered (2m) -subregions adjacent 

to the part of the contour x = 1 we have 2m - x < y  
<2m +x .  

The solutions are of the form 

in the odd-numbered subregions and 

in the even-numbered subregions. Here R2, + , = Fk,  
Q2k+ = Hk for yk = 2k + x, k>O; and R2, = - Fk,  
QZk = Hk for yk = 2k - X, k> 1 (below, the series in Fk is 
term-by-term differentiable), where 

m 

and I,, are modified Bessel functions. On the characteristics 
y + x = 2m and y - x = 2m the solutions have discontinui- 
ties: 
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FIG. 1. Abrupt oscillations in the normalized heat flux U( 1,y) (solid 
lines) and in the normalized temperature excursion G(0,y) (dashed 
lines) for the value y = 0.25. 

Solutions ( 18 )-( 19 ) represent the propagation and 
evolution of the primary wave, described by R,  and Q, , and 
of the reflected waves, described by R,, , Q,, and R,, + , , 
Q,,,, at k)l. The quantities R,,, Q,, describe waves 
which are reflected at x = 1 when waves R,, - , , Q,, - , are 
incident, while R,, + , , Q,, + , describe waves which are re- 
flected at x = 0 when waves R,, , Q,, are incident. Equations 
(20) and (21) describe the propagation of the reflected 
wave- front along the characteristics. The reflection condi- 
tions are R,, = R,, - , , Q,, = - Q,, - , at x = 1 and 
R,, + , = - R,, , Q,, + , = Q,, at x = 0. The amplitude of 
the wavefront decays at e - w ;  the sign of the wave is deter- 
mined by the expressions sign R,, , = 
signsin[(2k+ 1)1~/4], sign Qk + I 
= sign cos [ (2k + 1 ) ~ / 4  I ,  where k is the index of the re- 
flection. We see that the cycle of reflections has a period of 4. 

Analysis of the resulting solutions shows that the tem- 
perature of the superfluid helium behind the front of the 
primary wave increases by an amount AT= W/pu,TC, 
(G- 1 ). When the wavefront reaches the open end of the 
channel, a reflected wave appears. This wave tends to oppose 
a temperature rise. During subsequent reflections, there are 
damped abrupt oscillations in U and G with a period of 4 
(Fig. 1 ). The oscillation amplitude decays as e - W ,  and we 
find U(x,y) + 1 and G(x,y) + 2y( 1 - x) .  In other words, 
the quantities tend toward the known steady-state solutions. 
This process is illustrated well by the quantities SU = U - 1 
and SG = G - 2y(l - x),  which can be written as follows 
for y & 1 and y2m < 0.5: 

These expressions show that there are basically damped os- 
cillations with an initial amplitude of 1: oscillations in the 
normalized temperature in the odd-numbered subregions 
adjacent to the source (x = 0) and oscillations in the nor- 
malized heat flux in the even-numbered subregions adjacent 
to the open end of the channel (x = 1 ). These temperature 
oscillations can be interpreted as mutual damped oscilla- 
tions in the concentration of the components with an initial 
amplitude Q, -p,p, V/C, , which are not initially accom- 
panied by oppositely directed flows of the components. Ac- 
cording to (20)-(2 1 ) these oscillations stem from discon- 
tinuities in the concentration and the flow at the wavefront 
and reflections of this wavefront. 

Solutions ( 18)-( 19) are based on the boundary condi- 
tions ( 16)-( 17) at x = 1 and also on the reflection condi- 
tions at the open end of the channel, which follow from those 
boundary conditions. These boundary conditions are valid 
experimentally for a steady-state heat flux in this approxi- 
mation. Although there is qualitative justification for extra- 
polating these conditions into the region y> 1 for a pulsed 
flux, an experimental test is required. 

Solutions ( 18)-( 19) are valid under the condition that 
a significant increase in z, which is proportional to the 
damping according to (8), occur over a time y > l/y. The 
change in z is described by the Vinen equation (9). Setting 
U = 1 in it, we find a single-valued relationship between II  
and y in the zeroth approximation in E (we assume E 4 E, ) : 

where TI < 1 corresponds to the time y,. At small values of z 
(Ex 4 1 ), relationship (22) can be approximated by 
z :/,E, (y - y, ) = 2( 1 - z :/,/z I / , ) .  The condition for the 
applicability of solutions ( 18)-( 19) then becomes (we are 
assuming y, = 0) 

This condition depends only on the parameters A and v of 
the theory. Let us assume that this condition holds. Then the 
solutions (18)-(19) reach U =  1, G = 2 y ( l  - x )  over a 
time y - I/&,. 

At times y > 1 / ~ ,  the problem is described by Eqs. (7)- 
(9) .  Analysis of solutions of these equations shows that, in 
the zeroth approximation in E and E, , we have 

where is given by (22), and under the condition y% l / ~ ,  
we have z2: 1. 

The nature of the solution of this problem does not 
change substantially in nature if E, is not small and if condi- 
tion (23) does not hold. In other words, this process is first 
described by ( 18)-( 19) and ultimately by (24) in all cases. 

The observed magnitude of the process (i.e., the tem- 
perature excursion near the source) is characterized by the 
following quantities: the initial temperature drop 
TI = (u/u,) (p ,  V/C2 (this expression has solid experi- 
mental support9 ); the oscillation period r, = 4h /C2; the 
time scale of the decay of the oscillations, r, = T,~ /~AV&;  
the time scale of the variation in the normalized turbulence, 
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rL = v/V2 (the increase in z from 0.1 to 0.9 occurs over a 
time - lor,, approximately linearly); and the intermediate 
temperature after the decay of the oscillations (for - 
2 / p ~ ~ L I  < 1 ), Tint = TI rk/2rd = Tk LI, where Tk 
= hpp,A V3/a is the known temperature in the case of a 

steady-state p ro~ess .~  If there is no initial turbulence 
(?J, = 0) , and if the heat fluxes are subcritical or only slight- 
ly supercritical, the process by which a Poiseuille flow is 
established as a result of the viscosity of the normal compo- 
nent is correspondingly characterized by TI, by the oscilla- 
tion decay time rP = pp,d 2/163s7 ( d  is the channel diame- 
ter, and 7 is the viscosity), and by the temperature once the 
Poiseuille flow has been established, Tp = TIrk/2rP. 

Experiments by Peshkov and Tkachenko5 on the prop- 
agation of a heat pulse through a channel (h = 8 m) with 
unexcited helium I1 have revealed rapid formation of a weak 
temperature gradient as a result of the Poiseuille flow (see 
Fig. 3 in Ref. 5). The temporal characteristics of the tran- 
sient process were rk = 1.6 s and rP = 0.8 s, and this process 
was not observed. If the length of the channel had instead 
been 1 m, then at a heat flux density W = 0.045 w/cm2 one 
would have been able to observe, over a time - 2 s, damped 
oscillations around the temperature T, = 0.03 mK with a 
period 7, = 0.2 s and an initial emplitude TI = 0.25 mK. In 
addition, if there had been an initial turbulence in the chan- 
nel it would have been possible to observe the transient pro- 
cess resulting in the formation of a temperature gradient by 
the turbulence. With zI = 0.2 and W = 0.045 W/cm2, for 
example, we would have 7, = 0.2 s, rd = 0.4 s, 107, -3 s 
(see Fig. 12 on p. 48 in Ref. 4),  TI = 0.25 mK, Ti,, = 0.06 
mK, and Tk = 0.3 mK. 

A comparison of the results of an experiment of that 
sort with the results found in this section of the paper might 
reveal whether boundary conditions ( 16)-( 17 ) are appro- 
priate for the experiments, i.e., whether the conditions of 
reflection at an open end of the channel, adopted here, are 
valid. Alternatively, such a comparison might be of assis- 
tance in refining the theory and in identifying different re- 
flection conditions. 

I wish to thank N. B. Rubin for useful discussions, V. V. 
Danilov and I. A. Sergeev for several comments, and L. R. 
Kuznetsov for assistance in this work. 

APPENDIX 

The following terms, associated with the superfluid- 
turbulence characteristic L, were introduced in Ref. 1, 
where hydrodynamic equations for a superfluid turbulence 
were formulated: in Eq. (2) ,  

d (I'L6lk+n>k) 3 7 t h  -- 
ax, dx, ' 

in Eq. (3) ,  

R/T-div Z=Ap,p,V,,z(~Z/a2)L [I- 
- (1-LIL,) xa"p3Ap,] IT-div [SL (VL-Vn) ], 

in Eq. (4),  

X [ ln  ( l / a , ) / l n ( 6 / a o ) ]  ( ( V L - ~ , , ) ,  L, T))V"a/p~v,~ ' ,  

Here dPL = - &,dL is an additional term in (6) (Ref. 1 ), 
E, = (p, (h /m) 2 / 4 ~ )  ln(S/a, ) = psx is the energy per unit 
length of a vortex thread, ri, is the viscous stress tensor, 
SL E - Lxdps/8Tln(SA)/ln(S/a, ) ,LC = Visa2/P2is the 
limiting steady-state value of L in the coordinate system 
moving with the turbulence drift, S is the characteristic dis- 
tance between vortices, a, is the nominal radius of a core, 
and 1 is the mean free path of the excitations. 

As in Ref. 1, we set rik = 0. From the assumptions for- 
mulated at the beginning of this paper we find the following: 

i.e., a/P( lo3 s/cm2, from the first and 

from the second. Using ( A l )  with @ , ~ / ~ ~ > 1 / 4 ,  we see 
that (A2) definitely holds. We also assume 

where d, and d, are the sizes of the temperature drop and 
the source ( Z )  drop, which are found from the conditions 
d, lVT I/T- 1 and d, divZ/IZI -- 1. These conditions usual- 
ly hold quite well. A special analysis of these conditions is 
required near T, and in an analysis of thermal shock waves. 

Under these assumptions it is legitimate to retain the 
terms associated with L in Eqs. (3)  and (4)  alone. Here we 
have, approximately, 

f =Apsp,(P2/a2)LVns =Ap,p,?YVn,, ( v = P / a 2 ) ,  

R /T- divX = fV,,/T. 

The energy flux associated with the vortex formation 
has also been ignored in the equation expressing energy con- 
servation. 

" A similar problem was analyzed in Ref. 8. Equations like (13) and ( 14) 
were used there-As canbe seen from (7) and (a) ,  the right sides are 
proportional to LU2and LU, respectively.' According to (9), although - 
L does tend toward LC = U2 in the coordinate system moving with the 
turbulence drift, it does so slowly. In Ref. 8, the right-hand sides were 
erroneously written as proportional to U4 and U3. According to (9), 
that behavior is valid only at times y% l/cL. In accordance with the 
discussion above, the solution found in Ref. 8 is based on incorrect 
equations and is physically meaningless. 
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