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The vortex fluid in high- Tc superconductors has two temperature ranges with different resistivity 
vs temperature relations. Pinning is insignificant at high temperatures; the resistivity is equal to 
p,,, and manifests a power-law variation with temperature. At low temperatures, the resistivity 
is proportional to the plastic strain time of the vortex fluid and has an activation-law dependence 
on temperature. The preexponential multiplier in this law is determined by the pinning force. 

1. INTRODUCTION 

One of the most interesting properties of high- Tc super- 
conductors is the strong broadening of the resistive transi- 
tion as the external magnetic field  increase^.'.^ The width of 
the resistive transition in zero magnetic field is ordinarily 
below 1 K, at the same time that in a field H- 10 T this width 
is of the order of 10-20 K for YBaCuO and -40 K for the 
bismuth superconductors. Such broadening is independent 
of crystal quality and represents a fundamental property of 
high-Tc superconductors in the mixed state. The first de- 
tailed studies of the resistive transition in a magnetic field2*3 
demonstrated that the resistivity is independent of current 
and is thermally activated, p -po exp( - UJT), with a 
characteristic energh Uo varying from lo4 K in a magnetic 
field of H z  10 T to lo5 K at a magnetic field Hz0 .1  T for 
YBaCuO. Subsequent research4s5 identified a shift of the 
current-voltage characteristics (CVC) on a certain Tg (H) 
line on the H-T phase diagram, specifically: the CVC for 
T >  Tg (H) varies linearly with a resistivity, manifesting an 
exponential temperature depencence; for T <  Tg (H) the 
voltage V has a highly nonlinear dependence on the current. 

This behavior has been attributed4 to a transition from the 
vortex fluid state (where no pinning occurs; vortex motion 
takes the form of viscous flux flow, and the CVC is linear) to 
the pinned vortex glass state which has a highly nonlinear 
CVC. The Tg (H)  line is close5 to the so-called "irreversi- 
bility line" that can be measured from system responses to a 
variety of actions (changes in external field; microwave field 
absorption; mechanical probes, etc.).6.7 

It is, however, possible to identify two different regions 
in the "vortex fluid" phase ( T >  Tg ( H )  ) [ 1-5,8,9]. The re- 
sistivity decays rather slowly with temperature down to a 
certain temperature Tk > Tg ( pTk ) z (0. 1-0.2)pn, where 
p, is the resistivity in the normal state. The resistivity decays 
exponentially between Tk and Tg, although the CVC re- 
mains linear: p -po exp( - UJT) where Uo( T, ) ) Tk 
(Ref. 9 )  (this impliesp,)p, ) (Refs. 2,3). Occasionally this 
transition from one regime to another will manifest itself as 
an inflection point on the resistivity  curve^.^*^ 

Melting of the vortex lattice and formation of a vortex 
fluid has been analyzed in the absence of pinning by a 
number of  author^^^'^ by application of the Lindemann cri- 
terion. The high critical temperature of high-T, supercon- 
ductors, the large value of the Ginzburg-Landau parameter 
x and the strong anisotropy all cause the melting line of the 

vortex lattice to lie significantly below the H:2 (T) line cal- 
culated in average field theory. 

In the absence of pinning, both the vortex lattice and the 
vortex fluid are driven by the Lorentz force generated by  
application of electrical current, which produces a flux flow 
with a resistivity p,,, z p ,  B /Hc, (Ref. 13). The interaction 
between the vortices and superconductor defects (pinning) 
generates energy barriers to vortex motion. Three different 
cases may arise depending on the size of such barriers: 1) 
The energy barriers lie below the temperature and can there- 
fore be neglected whenpzp,,, ; 2) the barriers have a char- 
acteristic magnitude Uo) To which is independent of applied 
current. This corresponds to the so-called thermally-activa- 
ted flux flow (TAFF) regime. l4 In this case the resistivity is 
exponentially small: p a exp ( - Uo/T) (Ref. 15); 3) the 
U( j) barriers grow without limit as the current j decreases, 
while the vortex velocity and the electrical field decay ex- 
ponentially to zero as the current approaches zero, i.e., the 
linear resistivity 

d E ( i )  
pi,, = lim ------ - - 0. 

,-.o d j  

Such a state is called the vortex glass state. 
It has been argued16 that a pinned vortex lattice is a 

vortex glass. The collective creep theory17 describing the 
dynamics of the vortex glass resulting from weak disorder 
predicts that the activation barriers U( j) to lattice motion 
grow as U( j) a j - " ,  which leads to an CVC of the form 
V a  exp( - A /ja). The exponent a was calculated for differ- 
ent collective creep regimes.I7 

Vortex hopping over distances shorter than the lattice 
period has been analyzed in Ref. 17. At high temperatures, 
strong magnetic fields, and moderately low currents we have 
a = 7/9 in this regime. Hopping over a distance correspond- 
ing to the lattice period becomes significant at the lowest 
currents. SuCh creep has been analyzed in Ref. 18, which 
derived a value a = 1/2. Both values are in reasonable agree- 
ment with e~periment .~ 

Elastic strains are considered in the collective creep 
theory. It has been claimed7,19 that plastic strains may sub- 
stantially modify the result. This indeed occurs in the two- 
dimensional case, when the activation barriers to plastic 
flow driven by dislocation pair motion are independent of 
current as j + O  and hence the linear resistivity is finite at any 
(nonzero) temperature, and no vortex glass state oc- 
c u r ~ . ~ ~ . ~ ~  In the three-dimensional case the dislocation loops 
lie in the slip plane, cannot convey magnetic flux, and have 
no effect on the exponent a in U( j) aj-a which follows 
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from the collective creep theory. There are no infinitely long 
dislocations at low temperatures, since they have macrosco- 
pically large energy. Vortex glass therefore appears to be 
stable against dislocation formation. 

We analyze the effect of disorder on the properties of a 
vortex fluid in this paper. Some of the results reported here 
have been presented briefly in Ref. 22. For purposes of sim- 
plicity we assume the field H lies along the c axis. We con- 
sider disorder with a spatial scale of variability of the ran- 
dom potential that is smaller than the vortex core radius 6 
(for example, oxygen vacancies). Weak disorder is assumed. 

The present paper shows that weak disorder drives the 
flux lattice to the vortex glass state with a linear resistivity 
plin = 0. The vortex fluid in the absence of a random poten- 
tial remains a liquid with a finitep,,, . The vortex fluid con- 
tains two temperature regions. At high temperatures T >  T, 
disorder has no effect on liquid motion and plin =pflow. 
With diminishing temperature a transition ensues at T- T, 
to a partially pinned regime (the TAFF) with a linear resis- 
tivity far belowpflo, and one that decays exponentially with 
temperature. The assumption of weak pinning appears to be 
more realistic for high-Tc superconductors: The critical cur- 
rent jc lies far below the depairing current j,, and recent 
 measurement^^^.'^ have revealed a significant growth of cri- 
tical current in irradiated YBaCuO samples, while the posi- 
tion of the irreversibility line remained unchanged. 

Two regions with different linear resistivity vs tempera- 
ture relations have in fact been observed in experiment. 1-59879 

This paper will focus on an analysis of the boundary between 
these regions. 

The possibility for vortex fluid pinning by a weak, ran- 
dom potential is not obvious. The naive view is that pinning 
in general cannot occur in the liquid state: The interaction of 
the fluxes with an arbitrary potential is much weaker than 
interflux interaction, and since the latter is relatively small 
in the liquid state, the arbitrary potential seems quite insigni- 
ficant. It was therefore determined19 that the existence of 
pinning in a vortex fluid above T,, which is responsible for 
the exponential decay of resistivity with temperature, is in- 
compatible with the assumption of weak disorder. 

We know, on the other hand, that an arbitrary potential 
will be significant at any temperature to such a linear object 
as an isolated vortex.25 It has also been demonstrated that 
disorder determines vortex motion in a weak field at any 
temperat~re.'~ The results of Refs. 25, 26 therefore suggest 
that arbitrarily large barriers to the motion of an isolated 
vortex can exist, i.e., a single vortex is always in the vortex 
glass state. Indeed, if there were to be a finite barrier U,, an 
arbitrary potential would have no effect on vortex motion for 
T >  U,. We then have the opposite question: Why are the 
barriers to vortex fluid motion independent of applied cur- 
rent, at the same time that they grow without limit asj-. 0 for 
individual vortices? 

2. QUALITATIVE ANALYSIS 

In order to understand the nature of pinning in a vortex 
fluid, we initially consider the effect of thermal fluctuations 
on the pinning of an unmelted vortex lattice.26 Above a cer- 
tain depinning temperature T, (an exact expression for this 
temperature will be provided below) the mean square ampli- 
tude of thermal vibrations of the vortex lattice 

up,, = ( u')~' g (TITp) Ib 

exceeds the core radius 6 while thermal motion of the vortex 
lines averages the arbitrary interaction potential of the vor- 
tex core with the defects over the range u;, (the vortices 
largely interact with the defects by means of their core, 
where the superconducting order parameter is suppressed). 
The characteristic averaged scale of the arbitrary potential 
in this case is approximately r, =: (6 + u;, ) 'I2 while the 
critical current jc drops off rapidly with increasing tempera- 
t ~ r e . ~ ~ , ~ '  In deriving an expression for jc ( T) averaging was 
initially carried out over the thermal vibrations and only 
then over the arbitrary potential in Ref. 26. This is a legiti- 
mate procedure if the characteristic time of the thermal 
"phonon" vibrations t,, is much smaller than the character- 
istic pinning time t,,, . As demosntrated below, the charac- 
teristic pinning time satisfies t,,, -r,/vc, where v, is the vis- 
cous flow velocity of the vortex lattice at a current slighly 
above the critical current: vc = jc V/Gs (friction coefficient 
I' =:BHc2 /p, c2 from Ref. 13 ) . Here tph is determined by the 
elastic properties of the vortex lattice and is independent of 
the arbitrary potential. An expression will be derived below 
for tph ; here it turns out that 

t,,, io 
a -  

tph j e  ' 
where j, is the depairing current of the superconductor. We 
therefore have t,,, >) t,, in the case of weak pinning ( jc $ j,) , 
and, consequently, the method employed in Ref. 26 has been 
substantiated. Pinning occurs as a direct result of the inho- 
mogeneous vortex structure. Note here that although the 
thermal fluctuations serve to substantially smooth over the 
vortex cores, the vortex lattice will nonetheless retain its per- 
iodicity and the interaction between this periodic (i.e., inho- 
mogeneous) structure and the arbitrary potential will pro- 
duce pinning at a temperature below the melting point TM.  

We now consider the vortex fluid. Note that in an ordi- 
nary liquid all characteristic times are quantities of the same 
order of magnitude, i.e., -t,, . Therefore by averaging over 
the thermal fluctuations for a period t,,, )tph we obtain a 
fully smoothed homogeneous vortex structure that cannot 
be pinned. 

This result is radically modified for a highly viscous 
liquid where there are two time scales tph and tpl $ tph such 
that the liquid structure is inhomogeneous over times t < t,, . 
If the characteristic smearing time of the structure satisfies 
t,, t,,, , thermal averaging will be incomplete over the pin- 
ning time t,,, , while the vortex configuration retains its in- 
homogeneous structure over such times; such a structure 
can be effectively pinned by an arbitrary potential. 

The exponentially large smearing times of the inhomo- 
geneous structure t,, in the vortex fluid may result from the 
presence of strong barriers Up, to thermally activated plastic 
vortex motion. In this case, tpl - tph exp( Up, /T). The char- 
acteristic value of the plastic barriers was estimated in Ref. 
27. In the anisotropic case, the characteristic energy takes 
the form 

Here m and M represent the effective masses in the ab plane 
and along the c axis, respectively; Q, is the flux quantum; 
a =: (@,,/H) 'I2 is the average distance between vortices; and 
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A is the London depth of penetration for the H JIG field. The 
large barriers Up, may also be associated with entanglement 
of the vortex fluid.12 Relative flux motion in such a liquid 
can be initiated either by reptationI2 or by the breakdown 
and repairing of vortex lines. The latter mechanism would 
appear to be preferable, since the characteristic relaxation 
time for the reptations grows very rapidly with increasing 
sample size L ( a L  according to Ref. 12 and even 
a exp[ (L /a16] according to Ref. 28). The barriers asso- 
ciated with repairing are also given by Eq. (1)  in fields 
H%Hc, - 

Note that the energy ( 1 ) is within an order of magni- 
tude of the energy of a vortex segment of length a, rather 
than f as reported in Refs. 12, 28, since in order for the 
vortices to intersect they must bend and the characteristic 
scale along c for bending is a quantity of the order of a (in the ' 
anisotropic case - (rn/M)"2a), and here the core interac- 
tion energy is a small part ( - f /a) of the total energy ( 1 ). 
The energy ( 1 ) can be assigned to any plastic strains of the 
vortex structure with a spatial scale -a. The Lindemann 
criterion for melting".12 can therefore be written as T, - 1/ 
2cL Up,, where c, -0.1-0.2 is the Lindemann constant. The 
large barriers to vortex motion are retained in a melted li- 
quid given the small value of c, for T -  T, Up, ) T. 

The structural inhomogeneities in the vortex fluid are 
significant as long as tpin (tp, holds. The characteristic mag- 
nitude of the plastic barriers decreases with rising tempera- 
ture and the transition from the pinned to the unpinned re- 
gime occurs at a temperature Tk such that 

tpinztpr-tph exp ( UprlT) 

This transition may appear as an inflection point or a "knee" 
on the resistivity curves. Note that due to weak pinning we 
have tpin % t,, and, consequently, Up, ( Tk ) % Tk , which is in 
agreement with e~per iment .~ .~ .~ . ' ,~  

3. FUNDAMENTAL EQUATIONS FOR PINNING OF THE 
VORTEX SYSTEM 

We use the dynamic approach developed in Ref. 29 for a 
vortex lattice in our quantitative analysis of pinning in the 
vortex system, modifying this approach for the case of vor- 
tex motion in the liquid state. In this approach we consider 
the motion of the vortex structure driven by a constant Lor- 
entz force j x B/c generated by a current j > j, in the pre- 
sence of an arbitrary potential which is treated as a perturba- 
tion. 

The arbitrary potential has little effect for a large cur- 
rent j%j,, and the vortices are driven at a velocity v, = jB / 
c r  (Ref. 13); the CVC is linear and the resistivity is 
p =pflow. The additions to vortex velocity associated with 
the arbitrary potential can be calculated from perturbation 
theory as a function of the velocity v, (or current j). If these 
additions are small compared to the velocity, i.e., 
Sv(v,) g v,, for any (arbitrarily small) velocities, the CVC 
will always be linear and have a constant resistivity p,,, 
with zero pinning. However, the velocity additions grow as 
v,+O for the flux lattice. Pinning becomes significant 
6u ( v,) - vo and Sv (v, ) = v, determines the critical current 
j, = v, r,/B. This corresponds to the onset of nonlinearity 
on the CVC, Sp( j, ) -pflOw . Obviously an arbitrary potential 
can no longer be analyzed by perturbation theory in the cur- 

rent range j < j, , and this approach becomes inapplicable. 
The energy of interaction between a vortex and a random 
potential can be given as 

In this equation V(r) is the "frozen" arbitrary potential 
with the correlator V(r) V(rl) = S( r  - r '); here the prime 
denotes averaging over the inhomogeneities; and p(r,  ) de- 
scribes the interaction of the vortex cores with the arbitrary 
potential,p(r, ) -0 for r, > {. Summation is carried out over 
all vortices, and thez axis lies in the direction of the magnetic 
field. 

The exact form of the function p(r,  ) depends on the 
microscopic nature of disorder.29930 In this case, when V(r) 
represents the deviation from the average of the effective 
electron interaction constant, p(r , )  is proportional to the 
deviation from the average of the square of the absolute 
value of the order parameter near a vortex in the supercon- 
ductor. The coordinate ri of the ith vortex relative to "fro- 
zen" disorder can be given as 

ri=ri(z, t)+vt+upin, i ( ~ ,  t), 

where ri (z,t) is the position of the ith vortex unperturbed by 
the arbitrary potential (although independent of time due to 
thermal fluctuations) in the reference system traveling at a 
constant velocity v relative to "frozen" disorder, while 
is the small correction to the position of the Ph vortex attribu- 
table to the arbitrary potential. The constant velocity 
u = v, + Sv, where v, = j X B/I'c is the velocity of an un- 
pinned liquid driven by the Lorentz force, while 6v is the 
correction to the average velocity attributable to the random 
potential. 

We consider forces acting on the traveling vortices. A 
Lorentz force F, = j X B/c, a viscous friction force F, 
= - r v  and a pinning force fpin = - 6'Upin /hi as well as 

the internal interaction force with other vortices are all act- 
ing on the vortex system. The average vortex interaction 
force is equal to zero and hence (Newton's third law) the 
force equation can be written as 

Here (...) denotes both thermal averaging and disorder 
averaging. Since we have defined the unperturbed velocity as 
v, = FL/r we obtain an equation for the velocity correction: 

We consider weak pinning when the vortex-defect in- 
teraction force is substantially weaker than the vortex-vor- 
tex interaction. In this case, u varies slowly from vortex to 
vortex and the index i can be dropped. ExpandingAin in upin, 
we have 

The displacement upin associated with the pinning force 
can be written in a linear approximation as 

upi,, (r, t)  = jar' dt' G(r, r'; t, t f )  fp,,, (r', t'), ( 6 )  
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where G is the response function of the vortex system. Sub- 
stituting upin from Eq. (6)  into Eq. (5)  and averaging over 
the arbitrary potential ( V(r) V(rl) = ys(r-r ') ) we obtain 

X Vp[r,-r,j(t')- vtl, (7) 

where G(0,t '-t) = G(r,r,t,t '). 
Going over to the Fourier components for p in the plane 

perpendicular to the z axis, we obtain 

Averaging over 

(here V, is the volume of the sample) we obtain 

X G (0, t) S (K,, t )  
sin (K,vt) 

v 

Here a is the average distance between vortices; B = @,/a2', 
K, is the component of the vector K along direction v, while 
the structure factor S(K,, t)  is defined as 

where N is the total number of vortices. 
Equation (9) is the primary quantitative result of this 

paper. This equation relates the behavior of the vortex sys- 
tem in an arbitrary potential to the internal (i.e., pinning- 
independent) parameters: The Green's function G(0,t) and 
the structure factor S(K, ,t). 

4. PINNING OFTHE FLUX LATTICE 

Equation (9)  is general in form and can be applied both 
to a vortex fluid and to a vortex lattice. The free energy of the 
vortex lattice as a function of vortex displacement relative to 
equilibrium in an elastic approximation takes the 

where C, ,, C,,, C,, are the elastic compression, bending and 
shear moduli, respectively. Varying the energy ( 11) we ob- 
tain the equation of motion for the lattice: 

au dZu r - - C,, grad div u-C,, ( VLgrad div)u-C4, - = f .  
at  az2 

Going over to the Fourier-components we find the Green's 
function G(K,w) : 

where P, = Ka KJK, and P, = Sap - Ka KB/K, are the 
two-dimensional (a,P = x,y) longitudinal and transverse 
projection operators, respectively. In our fields Hcl 
4H4Hc2 the compression modulus Cll  is far greater than 
the shear modulus C6, and the longitudinal part of the 
Green's function is small compared to the transverse part. In 
this section we therefore only consider transverse vibrations 
to the vortex lattice. The average amplitude of the thermal 
vibrations islo,' 

The integral in Eq. (14) is defined by large K, and 
breaks off at the boundary of the Brillouin zone K, 
- K ,  z ?r/a. The spatial dispersion of the bending modulus 
C,, (K) becomes significant here. In the anisotropic case, the 
moduli C,, and C6, are equal to1' 

The characteristic frequencies used in evaluating the 
integral ( 14) have values of the order of w - (C6S l2  
+ C4,KlZ)/I'. The characteristic time of the short-wave- 

length lattice vibrations will therefore be 

We now find the Green's function G(0,t) in Eq. (9): 

The Green's function G(0,t) will have a rather compli- 
cated time dependence due to the strong spatial dispersion of 
the bending modulus C,,(K). At large times t the momenta 
K that substantially contribute to integral ( 17) are small, 
and the Green's function depends on time as 
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For t < t,, (A '/a2) ( M / m )  dispersion is significant in Eq. 
( 17); we have C,,(K) a 1/K ' and the Green's function is 
equal to 

The finite nature of the limits of integration over K, 
(K, < ~ / a )  becomes significant at very small times t < t,, in 
the integral ( 17) and hence the properties of the lattice are 
no longer important. The shear modulus C6, drops out, and 
the bending modulus C4, reduces to linear stretching of indi- 
vidual vortices [the second term in Eq. ( 15) 1, i.e., the re- 
sponse is determined by the behavior of individual vortices: 

We consider a vortex lattice at low temperatures. Then 
the structure factor S(K, ,t) in Eqs. (9),  ( 10) consists of the 
sum of the delta-function peaks ZS(K - K, ) on the recipro- 
cal lattice vectors K, . Integration over K, in Eq. (9)  is there- 
fore replaced by summation over the reciprocal lattice. For 
large K, summation is cut off by the "form-factor" of an 
individual vortex p (K) - 0 for K > I/{, i.e., Kma, - I/{. 

If we expand the sine (sin(K, vt) z K ,  vt) in Eq. (9)  for 
small velocities v, the time integral 

for the Green's functions from (18)-(20) will diverge at 
large times. This divergence is cut off due to the multiplier 
sin(K,vt) over times t- 1/K,v and hence the velocity cor- 
rection Su/v grows, when the velocity v tends to zero. Since 
Kma, - I/{, the characteristic times contributing to Eq. (9)  
will be -{/v. Due to the complicated time dependence of 
the Green's function G(0,t) in ( 18)-(20), the dependence 
of the corrections Su/u on velocity v will be different for 
different values of v: For 

baZM 
JJ < ----- 

tphhZm 
the Green's function is determined from Eq. ( 18) and Sv/ 
u a U-'I2 for 

the correction satisfies Sv/v a ln (1 / u )  and for v > { /t,, the 
correction is determined by the behavior of individual vor- 
tices and Sv/v cc v- 'I2. Growth of the ratio 6v/v as v-0 sug- 
gests that we have a critical velocity (critical current) such 
that Sv(v, )/v, = 1. This condition will hold in different re- 
gions with different dependences of 6v/v on v depending on 
the value of the arbitrary potential (the parameter y). For 
strong disorder, the condition 6u(vc ) =. v, holds for v, > {/ 
t,, (i.e., for j, >jo{ 2/a2, where 

'Doc 
io = 

12.3'"nh2E ' 

is the depairing current ); the pinning is single-particle pin- 
ning in this case and the critical current will be independent 
of the magnetic field. For weaker disorder, the significant 
times in Eq. (9)  yield Green's function ( 19) and hence 6v/ 
v a In( l/v) while the critical current is exponentially depen- 

dent on the magnetic field and the disorder force y (Refs. 30, 
26). For even weaker disorder, this regime is replaced and 
the critical current has a power law dependence on the mag- 
netic field.30,26 

For T> 0 the thermal fluctuations lead to the Debye- 
Waller factor exp( - K2uih/2) in the structure factors 
S(K, t)  over times t > t,, . As long as u;, < l2 holds, this 
multiplier will not be signifcant, since integration in Eq. (9)  
is cut off at the mulitiplier lp(K) l 2  of the wave vector 
K,,, - I/{. As follows from Eq. (14), at temperatures 
above the depinning temperature 

the mean square amplitude of thermal fluctuations up, ex- 
ceeds the core radius f, at the same time that the Debye- 
Waller factor determines that the primary contribution to 
Eq. (9)  derives from the range K- l/u,,. This means that 
up, is substituted for the effective core r a d i ~ s ~ ~ , ~ '  <, which 
results in a strong temperature dependence of the critical 
current versus temperature relation. The characteristic 
times contributing to Eq. (9 ) for 6v(v, ) z v, will be 

Substituting up, from Eq. ( 14) we can relate t,,, to t,, : 
'I? 

Equation (23) is provided for temperatures T> T, and 
hence for weak collective pinning [which means j, < j,({/ 
a)2] ,  we have tpin % tph . 

One important feature of the crystalline state is that the 
structure factor S(K, t)  is nonzero and does not depend on 
time for tst,,. Thermal fluctuations will therefore not 
change the fact nor the degree of the divergence of the addi- 
tions to the velocity 6v/v, and will only modify the coeffi- 
cient. The condition Sv/u=. 1 is therefore satisfactory and a 
critical current will exist at any temperature. This means 
that arbitrarily weak disorder is significant to a flux lattice at 
any temperature, and a flux lattice in an arbitrary potential 
will be in the vortex glass state (although we once again wish 
to emphasize that if the barriers UU) associated with pin- 
ning remain limited for any current (UU) < U,), pinning 
will not be significant at temperatures T> U,). 

5. PINNING OF THE FLUX LiQUlD 

In the vortex-fluid phase the pinning-induced energy 
barriers to vortex motion are finite (see Sec. 2), i.e., in the 
limit of weak currents j-0 the vortex velocity u is propor- 
tional to j and has a finite linear conductivity a .  Here a may 
be close to uflow (i.e., 6, = (a - a,,, )/a,,, < 1 and dis- 
order can be analyzed by perturbation theory) or o)ofl,, 
depending on the disorder force, and the TAFF regime re- 
sults. In this section we obtain an estimate of 6, and estab- 
lish the conditions for these two regimes to arise. We there- 
fore anticipate that the relative correction lSv/vl'O' to the 
flux velocity is finite in the liquid state as v-0. When ISv/ 
~ 1 ' ~ '  is small, it coincides with the relative correction to the 
conductivity 6,. 

First we show that the wave vector domain 
K, -Ko=.2-rr/a makes the primary contribution to the inte- 
gral (9)  for Sv/v in the case of a vortex fluid. 

Clearly, the domain K, >KO = 2,ir/a is not significant 
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in the integral (9),  since the structure factor of the liquid 
s(Kl, t)  decays rapidly for K1 >KO. A nontrivial contribu- 
tion could arise from the domain of small K, 4 KO, as in the 
case of weak (compared to pinning) interaction between 
vortices. We, however, show that this does not occur. 
Expression (9)  in the limit v-0 can be written as 

where the form factor Ip(K) I is replaced by unity, since it is 
essentially only dependent on K for K- 1/6% KO. The condi- 
tion K, 4 KO makes possible a macroscopic determination of 
the structure f a ~ t o r : ~ '  

s(K,, K,, t) = (6n (K, 0)6n(-K, t ) )  

where n, = B /@, is the vortex density; the structure factor 
S(Kl, t )  entering into Eq. (24) is obtained by integration of 
Eq. (25) with respect to K, [see definition ( 10) 1. We derive 
an upper estimate of the contribution to integral (29) from 
small Kl , assuming G(0, t )  - const for t- cc [in fact, G(0, t)  
decays with t following a power law] : 

As is evident from expression (26) the integral over K, 
clearly converges; this domain makes a relatively small con- 
tribution. 

The primary contribution to the integral (24) therefore 
derives from the domain K, -KO where the static structure 
factor of the liquid S(K, , t = 0) has a peak corresponding to 
the short-range order maintained in the liquid. The most 
significant difference between the liquid and solid phase for 
our purposes lies in the fact that the structure factor S(Kl, t )  
in the liquid decays over time. For K-KO this decay is ini- 
tiated at times t- t,,, when the atomic displacement nears 
the same order of magnitude as the interatomic distance, 
u(t,, -a. 

Here t,, will be significant in a viscous liquid and will 
have an exponential temperature dependence: 

The mean square drift of the liquid particles over time 
u2(t) = 1/2((u(t) - ~ ( 0 )  ) 2 )  is related to the Green's 
function G(0, t)  through the fluctuation-dissipative 
theorem: 

do  
u2(t)= J- ( I u.(2) (I-oos ot)  

2n 

do 2T =I-- Im G (0, o) (1 -COS ot) 
2n o 

The fact that the Green's function G(0, t)  is a retarded func- 
tion, G(0, t )  = 0 for t < 0, was used in the last equality in Eq. 
(28). 

In the small velocity limit (v-0), t- t,, , K- KO, u -a 
are significant in integral (24) and hence subject to Eq. (27) 

This estimate derived from general considerations can 
be reinforced by results obtained from a model in which the 
dynamical structure factor of the liquid is expressed through 
a simultaneous structure factor by the equation 

Relations (27) and (30) permit an evaluation of the time 
integral in Eq. (24) by integration by parts: 

rn 

In evaluating integral (3 1 ) we assume that the integration 
leads to the multiplier t,, , while the result of integration with 
respect to Kis similar to the result obtained for the structure 
factor of the crystal. It is assumed that the structure factor 
S(K, t )  can be represented as in Eq. (30) as K-0 as well in 
Eq. (22); this study also derived the convergence condition 
of the integral for S, in the range of K. Indeed, the hydro- 
dynamic approximation (25) is valid for small K and hence 
the domain of small values of K is indisputably insignificant. 

Equation (3  1 ) was derived assuming Av 4 v, which will 
hold at high temperatures when t,, is not very large. In this 
range, pinning leads to a small conductivity correction and 
ozofl. At low temperatures we have thermally-activated 
flux flow (TAFF). It is natural to suggest that the height of 
barriers defining such flow will be identical to the value in 
Eq. (28) for t,, . Hence, cTAFF o: t,, . Joining this expression 
with Eq. (3  1 ), we have the interpolation equation 

where the coefficient d can be represented as 

j, (0)  is the critical current in the single-vortex pinning 
range at low temperatures (see Refs. 26, 30); jo(0) is the 
depairing current for T-0; Gi is the Ginzburg number de- 
fining the width of the fluctuation range near T,; G i z  lop2 
for YBaCuO compounds. Definition ( 16) of the characteris- 
tic phono~l time t,, was used in deriving Eqs. (32), (33). 

The result (32) therefore shows that the following con- 
dition must hold to realize the TAFF regime in the weak 
current range 

Beiow we see that Eq. (34) in fact coincides with the criter- 
ion t,, > t,, deriving from the qualitative analysis in Sec. 2. 
If the condition (34) holds, the linear segment of the CVC 
with an exponentially small resistivityp,,,, o: t ,; 'will with 
increasing current be replaced by a nonlinear transition re- 
gion and at strong currents j >  j,, will become linear with a 
resistivity pflo,. The valne of the crossover current j,, can be 
estimated in the same manner as the critical current in the 
pinning theory of the flux lattice: We consider equation (9)  
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in the domain Kovtp, ) 1 and estimate the value of v,, for 
which ISvl/u = 1. The time integral in Eq. (9)  converges 
over times t - (Kou) -' (t,, and hence the time dependence 
of the structure factor S(K, t)  can be neglected, and we ob- 
tain 

where G(w) is the Fourier transform of the response func- 
tion G(0, t ) .  To estimate Eq. (35) we need the explicit form 
ofg(w) which we obtain in the Maxwellian model of a highly 
viscous i.e., we assume that the transition from elas- 
tic to viscous behavior of the vortex fluid can be described by 
replacing the shear modulus C,, by an interpolation expres- 
sion of the type 

Expression (36) reduces ;o the ordinary shear modulus C6, 
for at,, ) 1; the inverse limit corresponds to a liquid of visco- 
sity 7 = t,, C,,. We then obtain 

A value K, s ~ / a ,  i.e., the boundary of the Brillouin zone in 
the corresponding crystal, is used as the upper integration 
limit in integration over K, in (37). There are two compet- 
ing contributions to ImG(w) in the frequency range 
t ; ' 4 w 4 t G'. One such contribution is the same as in the 
case of a flux lattice proportional to all2; the second contri- 
bution reflects the breakdown of crystalline order over large 
time periods and is proportional to (wtpl)-'. In the fre- 
quency range 

the second term is the principal term, which leads to a 
Im G(w) of the type 

Expression ( 35 ) for velocities v = a w / 2 ~  satisfying Eq. 
(38) therefore takes the form 

where TM is the melting point of the flux lattice, T/TM 9 1. 
The CVC of the flux lattice with weak pinning in the 

strong current domain therefore takes the form 

where the characteristic transition current to the nonlinear 

regime j,, is equal to (recalling that v,,, = jB /cT) 

where jo is the depairing current; jc (0)  and jo(0) are deter- 
mined in Eq. (33). Note that j,, grows with diminishing 
plastic time t,, . 

Note also that the CVC enters the TAFF linear regime 
with a conductivity u determined from Eqs. (32), (33) at 
currents j significantly less than j,, . The determination of the 
corresponding characteristic current j, lies beyond the 
scope of this study, since it requires a detailed analysis of the 
flux flow mechanism in the TAFF domain. 

Expression (41 ) in the TAFF domain will be valid as 
long as j>j,, holds, i.e., as long as the relative correction is 
small; the correction is always small in the flux flow region 
and is given by Eq. (41 ) for j>jcr (dtp l / tph  ) 'I2 or by Eq. 
(32) for small currents. 

6. CONCLUSION 

We have demonstrated that the concept of collective 
pinning by a highly viscous vortex fluid at weak defects can 
explain the temperature behavior of the linear resistivity 
p (  T) of high-Tc superconductors in a strong magnetic field 
that is characterized by a sharp transition from the flux flow 
regime for D T k  to the thermally activated flux flow 
(TAFF) regime with an activation decay ofp(T) with tem- 
perature for T, < T< Tk . The T, regime crossover tempera- 
ture is given by 

st%= stex!,[ I - I ?  (43) 
t P h  Tk 

where the coefficient d is determined in Eq. (33), while the 
plastic strain energy Up, ( T )  is estimated in Eq. ( 1 ) . Condi- 
tion (43) coincides with the condition t,, z tp in  obtained in 
section 2 on the basis of a qualitative argument, if the esti- 
mate of vc from Eq. (40) is used to determine tpin za/vc.  
The sharpness of the transition between the two regimes of 
p ( T )  predicted by the inequality d( 1 can be attributed to 
the weakness of the pinning process, i.e., the small value of 
the parameter y characterizing the degree of disorder. The 
disorder force can be characterized by the ratio of the critical 
current to the depairing current jc (O)/j,(O) measured at 
low temperatures and in weak fields. The ratio lies below 
lop2  for YBaCuO compounds. The resistivity p ( T )  in the 
TAFF domain takes the form 

u (TI 
P (T) =pil.-i"-* exp [- L] T 

Note that the preexponential multiplier in Eq. (44) far ex- 
ceeds the value of p,,, , which was determined experimen- 
 tall^.^,^ Expression (32) is an interpolation between the flux 
flow and the TAFF regimes. It is important to point out that 
the linear relation between a ( T )  and t,, in the TAFF do- 
main has not been proved: This is only one possibility that we 
believe is the most probable. Hence, the possibility for an 
experimental test of this relation is of special interest. Such a 
test could possibly make use of the fact that, as follows from 
Eqs. (32) and (42), the product uj:, does not contain tpl, 
i.e., it has a relatively slow (nonactivation) temperature de- 
pendence: 
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In this case j,, can be determined by measuring the CVE in 
the high current range. As follows from Eq. (41) a linear 
relation between the squared currents and voltages must be 
observed in this case: 

Note that this CVC wasaresult ofEq. (39): ImG(w) a w-', 
which was obtained using Maxwellian model (36) describ- 
ing the shear resistance of a highly viscous liquid. If this is 
not a valid assumption, it may turn out that 
ImG(w) a a"'- ' with a' > 0. In this case we obtain in place 
ofEq. (41) 

while the combination oj;; "' will be independent oft,, . It is 
therefore possible in principle to use a measurement of the 
corrections to the linear CVC for j%jc, to test Maxwellian 
model (36) for a vortex fluid. 

These results allow us to predict the variation of the 
temperature dependence of the resistivityp ( T) with increas- 
ing degree of disorder y (from, for example, irradiating a 
 ample'^,^^). In the flux flow region T% Tk , p (  T) zpRow 
and is only weakly dependent on y. In the TAFF domain the 
resistivity decays with increasing y: p a y- ' [see Eq. (44) 1, 
where the activation exponent is independent of y. The Tk 
regime crossover temperature grows logarithmically with 
increasing y. At the same time the transition temperature Tg 
to the vortex glass state below which the linear resistivity 
vanishes, will always be close (to the degree that disorder is 
weak) to the melting point of the flux lattice TM, and hence 
will be weakly dependent on the degree of disorder. The 
weak dependence of Tg on the magnitude of disorder is in 
agreement with the results of Ref. 23 which demonstrated 
that the transition line to a phase with irreversibility of the 
magnetic response remains unshifted upon irradiation of the 
crystal. 

We thank S. Doniak for calling our attention to 
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