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Interband magnetic breakdown (MB) theory incorporating the spin degrees of freedom of the 
conduction electrons is applied to calculating the galvanomagnetic properties of metals whose 
electron trajectories have small triangular orbits under MB conditions. Effective MB-scattering 
matrices of rank six are derived for the small orbits. Expressions for the magnetoresistance and 
conductivity are obtained by the "effective path" method. Quantitative agreement with reported 
experimental data for zinc is obtained. Values for the characteristic magnetic breakdown field, 
the electrong-factor of the "whiskers" and the spin-orbital interaction parameter are derived 
from a fit of theory to experiment. 

1. Conduction electron tunnelling between the trajec- 
tories of different bands in a strong magnetic field, which has 
come to be called "magnetic breakdown" (MB),' has been 
the subject of comprehensive theoretical and experimental 
re~earch .~-~  However, the spin of the conduction electron 
has only been incorporated formally in most theoretical stu- 
dies, even in the most comprehensive and consistent theory 
of MB developed by S l ~ t s k i n ~ ~  (see also the references sur- 
veyed in Ref. 3a). 

A recent study6 generalized Slutskin's theory3b to the 
case where both the conduction electron spin and the spin- 
orbit interaction are taken into account. This substantially 
modified the electron dynamics under MB conditions. Spe- 
cifically, it gave rise to a spin-flip probability of the conduc- 
tion electron in MB, with the magnitude of the characteristic 
MB field H, renormalized due to the spin-orbit interaction. 
The electronic spectrum (the MB-spectrum) was also modi- 
fied. Incorporation of the spin degrees of freedom of the con- 
duction electrons therefore made it necessary to reconsider 
the existing theoretical interpretation of experimental data 
for MB metals, particularly those for which the effort of 
spin-orbit interaction on the formation of the band spectrum 
cannot be neglected. 

As previously reported24 the topology of conduction 
electron trajectories is modified under MB conditions: A 
planar network of quasiclassical regions is set up in recipro- 
cal space; such regions belong to different bands and are 
interconnected by small domains (MB-nodes) where the 
MB-induced interband transitions of the conduction elec- 
trons occur. The incorporation of the spin-orbit interaction6 
combines the quasiclassical regions with different electron 
spin projections in a single MB-configuration. In this case 
motion of the conduction electrons through the MB-confi- 
guration acquires a probabililistic character with the elec- 
tron wave functions of the different sections related by MB- 
scattering s-matrices6 which can be used to calculate the MB 
probabilities as well as many macroscopic characteristics of 
MB-metals, particularly galvanomagnetic proper tie^.^^.^ 

Metals whose MB-configurations contain orbits far 
smaller than the reciprocal lattice constant (such as Zn, Mg, 
Al, Be, Sn, etc.) are of special interest. Indeed, the develop- 
ment of small orbits can often be attributed to small cavities 

in the Fermi surgace (FS) in the formation of which spin- 
orbit interaction commonly play a significant role.' This lat- 
ter process will often case theg-factor of the conduction elec- 
trons in such FS cavities to deviate significantly from its go 
value for free  electron^.^ We also know that the coherent 
orbital motion condition of the free electrons3" 

holds for these orbits with significantly less severe con- 
straints on metal purity or temperature, compared to orbits 
with linear dimensions of the order of the reciprocal lattice 
constant (a, is the characteristic cyclotron frequency, T is 
the pulse relaxation time, T,, is the characteristic small-an- 
gle scattering time). The small size of such orbits makes it 
possible to treat such orbits as unique "quantum" switches 
controlling conduction electron motion through the MB- 
configuration. Coherent motion in small orbits under MB 
conditions will produce oscillations of the kinetic coeffi- 
cients with a period corresponding to the area of the small 
~ r b i t . ~ - ~  However, the theory7 explaining the existence, form 
and order of magnitude of such oscillations has not provided 
a correct description of the experimentally observed double- 
peak structure of the oscillations in the galvanomagnetic 
characteristics and is not in satisfactory quantitative agree- 
ment with experiment for zinc." 

Recently it was demonstrated" for the case of a model 
metal with a simple MB configuration containing small 
"crescent" orbits that incorporating the spin degrees of free- 
dom of the conduction electrons in calculating the magne- 
toresistance complicates the form of the MB-oscillations and 
produces a double-peak line shape. 

An MB theory with possible spin-flip of the conduction 
electrons is developed in this paper for calculating the gal- 
vanomagnetic characteristics of a real MB-metal. Both qua- 
lititative and quantitative agreement with the experimental 
data for zinc'' are obtained. This suggests an experimental 
confirmation of the MB theory with spin-flip of the conduc- 
tion electron developed in Ref. 6. 

The magnetoresistance and conductivity were calculat- 
ed by the "effective path" m e t h ~ d ~ . ~ . ~  in the limit of stochas- 
tic motion of the conduction electrons in large orbits and 
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coherent motion of the conduction electrons in small orbits 
for a two-dimensional MB-network with small "triangles" 
(Sec. 4)  for HCP metals (Zn, Mg). The effective s-matrices 
and transmission probabilities were precalculated (Sec. 3) 
for small "triangular" orbits. The results are discussed in 
Sec. 5 and are compared to both experimental data and to 
reported theoretical results. In the following section we 
briefly outline the fundamental concepts of the MB theory 
incorporating the spin degrees of f r e e d ~ m . ~  

2. Many properties of metals are accurately described in 
the quasiclassical approximati~n. '~. '~ In this approximation 
the conduction electrons in a magnetic field H(0, 0, H )  tra- 
vel in reciprocal space along trajectories formed by the inter- 
section of the Fermi surface and a plane perpendicular to the 
magnetic field: 

here n is the band number, a = T, 1 is the "spin" index indi- 
cating the effect of spin-orbit interaction,' E, is the Fermi 
energy, k is the wave vector, and E,, (k)  gives the dispersion 
law of the conduction electrons. 

After solving the corresponding Schrodinger equation 
in the MB domain, Proshin6 determined that incorporation 
of spin-orbit interaction causes the principal dynamical 
characteristic of MU-the s-matrix-to become a 4 x 4 ma- 
trix, which describes the three-channel scattering of the con- 
duction electron under MB, including MB with spin-flip. In 
this case, each quasiclassical segment of trajectory (2) can 
be characterized by the set ia, where i is the "zero-spin" 
number (henceforth, simply the segment number), and a 
defines the spin direction of the conduction electron along 
the trajectory. The band number n is unambiguously deter- 
mined by the segment number i. In this case, the unitary s- 
matrix relates at the MB-node the amplitudes c, of the eight 
quasiclassical wave functions $i, of the conduction elec- 
trons of the two bands undergoing breakdown before and 
after MB-scattering: 

ci,, = x si,, ,ivc,ci n o , .  

i 'a' 

A schematic representation of the MB-node is shown in 
Fig. 1. The primes in Eq. (3)  and the figures label the 
numbers of the outgoing quasiclassical segments from the 
MB-node, together with the corresponding electron spin 
projections; the unprimed designations apply to the incom- 
ing trajectory segments; s,,~ ., , is the matrix element of thes- 
matrix expressed in terms of the dispersion law at the "maxi- 
mum-breakdown" point k, and written as 

z e x p  ( - i n )  0 P / P  
0 z e x p ( - i n )  --ap/P 

-P/$ ap/P z e x p  ( i A )  0 

- a ~ / f J  -PIP 0 z e x p ( i A )  
(4) 

Herep, 7, A  are real functions of H, H,, E,, k, . The function 

FIG. 1 .  Schematic representation of an MB node ( 1 ,  2: Incoming seg- 
ments of quasiclassical trajectories; 3', 4': Outgoing segments). The ar- 
rows indicate the direction of motion of the conduction electron and the 
spin direction a. 

defines the phase jump of the wave function of the conduc- 
tion electrons under MB. Numerical analysis of these results 
requires that the argument of the gamma-function be written 
in terms of elementary functions. From Ref. 14 we easily 
obtain (Im y = 0) 

m 

where H, and a are the characteristic MB field and the spin- 
orbit interaction parameter in MB theory, respectively. 
Their exact form is provided in Ref. 6.' We merely note that 
H, is renormalized from the spin-orbit interaction: H, 
= H;/P, where H; is the characteristic MB field neglect- 
ing the spin-orbit interaction (a = 0, P = 1 ) which 
coincides with the reported value.' An estimate of a demon- 
strates that when the effect of the spin-orbit interaction is 
strong, a is of order unity, while with weak spin-orbit inter- 
action O ( a <  1 (Ref. 6). 

The stationary state of conduction electrons under MB 
conditions is described by the general wave function 

which is a superposition of the wave functions of the indivi- 
dual segments whose exact form is reported in Ref. 6 taking 
the spin of conduction electrons into account. Summation is 
carried out over i in Eq. (5)  through N, the total number of 
nonequivalent segments in the MB-configuration. Figure 2 
shows a schematic representation of certain MB-configura- 
tions. Under coherent MB conditions3" when the phase of 
the wave function remains unchanged from the motion of 
conduction electrons through MB-configuration ( 1 ) the 
single-valuedness (and the periodicity in the case of open 
and periodic MB-configurations) requirement imposes the 
following constraint on the amplitudes c, of the wave func- 
tions3s6: 
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FIG. 2. MB configurations taking account of the spin degrees of freedom: 
a-Closed MB configuration ( i  = 1 , 2  are the segment numbers) with a 
single MB node; b--open MB configuration that is periodic in the k-space 
with small "crescent" orbits. The solid circles represent MB nodes, while 
the shaded regions denote the effective MB nodes. 

Cio  - viljo. erp (iyj,,.) ci,,.=O. 

h 

Here V 0  is a unitary matrix of rank 2N with only three non- 
zero elements in each ju'th column. These elements are in 
the rows iu whose numbers are identical to those of the seg- 
ments connected to segment jut by the common node 

where ?0 is obtained from Eq. (4) if we set all A equal to 0. 
Note that the spectrum of the conduction electrons under 
MB conditions (the MB-spectrum) is obtained from the 
vanishing of the determinant of the system (6). The phase 
yiu for closed MB-configurations appears as6 

where 

is the quasiclassical phase of the wave function $, acquired 
by the conduction electron on the iu-segment between two 
successive MB-scattering events; Si (~,,k, ) is the transverse 
increment neglecting conduction electron spin; 7 is the 
number of the segment into the MB-node from which the i 
segment originates, where n (7) = n (i); Si = f 77/2 is the 
sum of all phase jumps in the i-segment through the classical 
turning points; and the spin contribution to phase yf is deter- 
mined by the relation6 

Here gi (~,,k, ), mCi ( ~ ~ , k ,  ) is the g-factor and the effective 
cyclotron mass of the conduction electron in the i-segment, 

Ti (~,,k, ) is the transit time of the conduction electron 
across the i-section; p, is the Bohr magneton. Here and be- 
low the upper sign in Eq. ( 10) corresponds to u = 7 while 
the lower sign corresponds to u = 1. 

The motion of the conduction electron (the quasiclassi- 
cal wave packet3" ) along the MB-configuration can be re- 
presented as  follow^.^"^^ The conduction electron follows the 
quasiclassical segment of trajectory (2 ), acquiring a phase in 
accordance with Eq. (9) ,  through the nearest MB-node, 
after which it has different probabilities of appearing on dif- 
ferent outgoing segments from the MB-node. The tunnelling 
probabilities to a segment of a different band are determined 
by the square of the absolute value of the corresponding non- 
diagonal elements of the s-matrix describing this MB-node, 
while the probability of remaining in its band is determined 
by the diagonal elements. Specifically, the probability of MB 
with spin-flip of the conduction electron takes the following 
form: 

The energy spectrum and macroscopic characteristics 
of the metal under MB conditions are expressed in terms of 
the s-matrix. The phases acquired by the conduction elec- 
trons on the equivalent segments can be differentiated by' 
small angle scattering with zero interference3 in the case of 
stochastic MB (T) l/w, ST,, ); mathematically this is de- 
scribed by phase-averaging the results obtained for the case 
of coherent MB.4,15 

3. The Fermi surface of HCP metallic zinc is well- 
known. l6 The following parts of the Fermi surface intercon- 
nected under MB will be important in our analysis: The 
"hole monster" in the second band with characteristic di- 
mensions comparable to those of the Brillouin zone, and six 
small electron cavities ("needles" in the third band along the 
vertical edges of the Brillouin zone). A schematic represen- 
tation of the MB-configuration obtained for the case where 
the magnetic field H runs along the axis of symmetry of a 
sixth order crystal is shown in Fig. 3 (neglecting the spin 

FIG. 3. Schematic representation of the cross section of the Fermi surface 
of Zn in the plane k, = 0 (the z axis is parallel to the hexagonal axis), 
which forms the MB configuration with small triangular orbits from the 
"whiskers" and large orbits from the "monster" (bold); P A ,  P, , PC are 
the effective MB probabilities. 
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degrees of freedom for purposes of simplicity). This MB- 
configuration contains small "triangular" orbits. The char- 
acteristic cyclotron frequency of such a small orbit 0," is far 
greater than the cyclotron frequency of a large orbit w: 
which in this case applies to the "monster" conduction elec- 
trons. The coherence condition ( 1 ) in this case can be trans- 
formed to 

i.e., the conduction electrons travel stochastically along the 
large segments of the MB-configuration (the phase of their 
wave function wanders!) while the conduction electrons tra- 
vel coherently along small orbits. This corresponds to the 
actual case of the intermediate MB state. Since the "trian- 
gles" are also substantially smaller than the " m ~ n s t e r , " ~ ~ ' ~  
this MB-network can be replaced by a reduced MB-confi- 
guration in which effective MB-nodes (Fig. 4) ,  described by 
effective s-matrices bff, are substituted for all small orbits. 

In our case the unitary matrix bff has a rank of six in- 
cluding the spin degrees of freedom. The expression for its 
matrix elements can be obtained from the general system ( 6 )  
by eliminating from this system the amplitudes c,, applying 
to the small orbit sections kg (for the "zero-spin" case this 
procedure is described in Ref. 3a for a matrix of rank three) : 

Here iu( j'u') are the numbers and projections of the elec- 
tron spins of the large orbit segments interconnected by a 
small orbit (Fig. 4). Summation is carried out over all possi- 
ble A-paths in Eq. ( 13) (Ref. 3a) that connect the incoming 
segment iu to the outgoing segment j ' u ' ,  passing only 
through the MB-nodes of the small orbit. 

The structure of the s-matrix (4)  is such siIJi. 
= silJ,. -0) that there will be no MB-induced spin-flip of 

the conduction electron as it travels along the small orbit. A 
spin-flip is possible only upon entering or exiting a small 

FIG. 4. The effective MB node from a small "triangular" orbit taking 
account of the spin degrees of freedom. This node connects the large seg- 
ments A, B, C via the small segments a, b, c. The arrows indicate the 
direction of the conduction electron and the spin o. 

orbit. It is therefore clear that there are only two possible sets 
of A-paths for any small orbit with arbitrary iu and j'u': A 
conduction electron can traverse a small orbit either with an 
up or a down spin. Within each set, the A-paths differ from 
one another only by the number r of revolutions along the 
small orbit, i.e. (see Fig. 4),  by either (a,-b,-c, )' or by 
(a, -b, -c, ) ' . Therefore, each A-path is determined by the 
numbers of the incoming and outgoing segments of the large 
orbits ( i  and j ') ,  the spin state of the small orbit 77 and the 
number of revolutions r. 

In Eq. ( 13) a&, is the product of the corresponding 
matrix elements of thes-matrices 3' of all MB-nodes encoun- 
tered on the given A-path. For example, for the symmetrical 
case when all MB-nodes of a "triangular" orbit are equiva- 
lent 

where a, p and T are determined by Eqs. (4)  and (4a). 
The phase ?(~,,k, ) acquired by the conduction elec- 

tron on the A-path is determined by Eqs. (8)-( lo), which 
require the following redesignation: y,-t"fl, 
A = A (i, j',g,r); then 

where 

is the phase acquired by the conduction electron in a single 
revolution on the small orbit ( k  adopts the three values a, b, 
c ; see Fig. 4). Here 

eH 
A.  (e,, k,) = - - Xsh  (er ,  k z )  

ch2 

is the "zero-spin" area of the small orbit; the spin contribu- 
tion y',, is determined by Eq. ( 10) with i substituted for m 
to denote that it belongs to the entire small orbit; 7;. , is the 
incomplete phase (8) acquired during electron motion along 
the segments of the small orbit; forj = i (Fig. 4) we have 71f, 
- 
- Ym,. 

In the general case, when we assume that conduction 
electrons travelling along different segments of the small or- 
bit acquire different phases, while the MB-nodes connecting 
such segments are treated as nonequivalent nodes, the 
expression for the effective s-matrix becomes cumbersome 
and of little use. We therefore only provide results for the 
symmetrical case when y,, = y,, = y,,, where all three 
MB-nodes are treated as equivalent (see the Appendix). 
This also corresponds to the Zn case for which the experi- 
ment was cond~cted . '~  

Our calculation of the galvanomagnetic characteristics 
of MB-metals will require the effective probabilities of the 
conduction electrons traversing the small orbits (the effec- 
tive MB-node). Thus, a conduction electron approaching a 
small orbit along a "large" quasiclassical segment with a 
specific spin u will have probabilities of traversing the orbit 
(P, and PC) or reflection off the orbit PA both with 
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(a' = - a) and without (a' = a) a spin flip. The probabili- 
ties Pzd, Pgd, and Pzu' are defined by the square of the 
absolute values of the corresponding mstrix elements 3 eff 

(A2) in a manner analogous to Eq. ( 1 1 ) . 
4. It is convenient to use the "effective path" method 

initially developed in Refs. 7, 17 and discussed in detail in 
Ref. 4 to calculate the galvanomagnetic characteristics of 
zinc which has a two-dimensional MB-network with small 
orbits. Slutskin's indisputably more general approach'' 
based on a consistent derivation of kinetic equations has not, 
unfortunately, been developed for the quantitative analysis 
of two-dimensional MB- configuration^.^" 

We generalize the effective-path method to the case of 
the probability of MB with a spin-flip (spin-orbit interaction 
taken into account, a # O )  and spin-splitting (g, # O )  for 
the intermediate MB-state defined by condition ( 12). In this 
analysis we make the natural assumption for pure metals and 
low temperatures that the characteristic spin relaxation time 
7;- is much greater than any other time characterizing the 
problem (7, T, , W, I ) .  

In the conduction calculation, the electron is treated as 
a charge carrier. Hence, neglecting coherent effects on large 
orbits, the total probabilities of traversing the orbit or reflec- 
tion off the orbit are important for a conduction electron 
approaching a small orbit with a specific spin a (see Figs. 3 
and 4) : 

where 

using the notation of Eq. (A1 ) it is easily determined that,  

The results from the effective-path method7.I7 are easily 
written out by means of the complex coordinate x + iy. In 
this case the conductivity takes the form 

Since the layer of MB-configurations along k, has a finite 
thickness 2k,,, while the parameters of the MB and the 
cross-sectional area of the small orbit A ,  are generally func- 
tions of k, , the expression for the conductivity tensor 6 can 
be written as an integral:' 

Here we have written { = exp( - i?~/3)  and n (k, )dk, de- 
fines electron density per unit volume in the elementary FS 

cross-section; a is an empirical parameter. Unlike Ref.7, the 
spin index was used in Eq. ( 18). 

In the absence of MB all electron orbits (2)  are closed, 
and they make the primary contribution to a,, -a/H2 for 
W ,  T>) 1 (Refs. 12, 13). The second term in Eq. ( 18) there- 
fore describes the contribution to the conductivity from all 
closed orbits outside the MB-layer. The resulting narrow 
layer of open MB-configurations (k,, z0.04kF for zinc2) is 
accounted for by the first term in Eq. (18). It is this term 
that makes the dominant contribution to the galvanomagne- 
tic characteristics in the case of well developed MB 
(H)H,). In the limiting case of vanishing MB, a,, -0, i.e., 
for H<H,, the metal is completely compensated. 

The expression for the total conductivity 6 is obtained 
after averaging Eq. ( 18) over the initial spin states (an ana- 
logous procedure is used in calculating the Rondo effect13) : 

In the general case, Bin Eqs. ( 18) and ( 19) depends on 
the magnetic field H; the microscopic parameters of the MB 
nodes (the characteristic MB field ,FI, and the spin-orbit in- 
teraction parameter a) ; the characteristics of the small orbit 
(the "zero-spin" area A, ,  theg-factorg, , and the cyclotron 
mass m,, ); and the thickness of the MB-layer 2k,, and the 
fitting parameter a. Estimates suggest that the area of the 
"triangle" has the strongest dependence on k, in the inte- 
grand 

where A, is the extremal cross-sectional area of the whisker 
for k, = 0; the whisker tapering parameter 

was estimated frcm a variety of theoretical models. Refer- 
ences 2 and 7 report the following estimates for {: 
{, = - 1.13.10-2a.u. ar.df2 = - 1.77-10-2a.u. 

Note that the integrand in Eq. (18) has a periodic de- 
pende:lce on the phase y,, (k, ) in Eq. ( 14). If the conduc- 
tion electron were to manifest stochastic behavior along the 
small orbit (w," < T; I), this would induce stochastic beha- 
vior of the phase y,, in Eq. ( 18). It is therefore possible to 
obtain the result in the limit of stochastic MB (see, for exam- 
ple, Ref. 15) by averaging Eqs. ( 18) and ( 19) over this 
phase. 

We average 6H to compare these results to the reported 
experimental data: 

h 

where (...), represents phsse-averaging; D, [y,, (k, ) ] is 
determined by Eq. ( 18 ) accounting for Eqs. ( 16) and ( 16a), 
while 

kzm 

Allowing for the fact that 6nec/n- changes slowly with k,, 
we can write 
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The components of conductivity~ensor B are determined by 
the components of the tensor D in Eq. (23). Using Eqs. 
(21a), (18a), (16) and (16a), we find 

Obtaining & from Eq. (23), we easily find the compon- 
ents of the resistance tensor: 

5. In this section we discuss our results and compare 
these results to reported e ~ ~ e r i m e n t a l ' ~  and theoretical7 
data. The technique for calculating the galvanomagnetic 
characteristics of zinc from the equations derived in the pre- 
ceding section reduces to determining the parameters of the 
theoretical model, comparing such parameters to known va- 
lues, and deriving the theoretical dependence of the un- 
knowns on the external magnetic field H. 

This process is most easily carried out in two stages. We 
initially find the empirical parameter a and the parameter b 
for Eq. (22) from the nonoscillating functions (u, ,H ), and 
(u12H ), (2 1 ) and then determine the optimum values of the 
microscopic parameters of the problem H :, a, A, [see the 

FIG. 5. Theoretical and experimental (circles) relations of the averaged 
quantities (uH),: a-The diagonal component of the conductivity tensor 
(u, ,H) ,  = (Sz2H ) . b-the nondiagonal component (uIZH),  = - 

?'  
<u2,H ) , . The exper~mental points are taken from curves reported in Ref. 
7. The table lists the parameter values used in the derivation of the theore- 
tical curves. 

discussion of Eqs. (18), (19)]  and the spin parameter 
g = g, m,, /2m, from a fit of the theoretical and experimen- 
tal galvanomagnetic oscillating characteristics. A least- 
squares computer fit of the theoretical curves to the experi- 
mental data was used in this case; the simplex method was 
employed to identify the optimum parameter  value^.^' The 
results of this procedure are shown in Figs. 5-8, while the 
resulting parameters are compared to previously reported 
values in the table. 

The theoretical relations ( a ,  ,H ) and (a12H ), (21 ) 
were fitted to the experimental data over a broad range of 
Hg (2-6 kG). We found from (u12H ), that the value of b 
characterizing the electron and hole disbalance resulting 
from MB lies in the range (0.67-0.695). lo8 kG/fl.cm. 
Equation (22) can then be used to derive an "experimental" 
estimate of the half-width of the magnetic breakdown waist 
of the "whiskers" k 2; z ( 1.8-1.9) lo-' a.u.: This is close to 
the theoretical estimate of the half-width of the waist around 
the midsection of the "monster" k tk z 1.95. lop2 a.u. 
(Ref. 7 ) .  This agreement supports the model used here. 

The next step is to find a possible value of the empirical 
parameter from a fit of the theoretical and experimental va- 
lues (u l ,H) , :  a = (0.17 - 0.14).108 kGZ/fl-cm. 

The oscillating characteristics determined by Eqs. (23 ) 
and (25) for the conductivity and the resistance, respective- 
ly, were also numerically calculated. Note that the integral 

FIG. 6. Plots of oscillations in the diagonal component of the conductivity 
tensor u, ,Hin Zn: a-Results from Ref. 7; b--our results; c-experimen- 
tal curve from Ref. 7. The parameters used to derive these curves are listed 
in the table. 
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FIG. 7. Plots of the oscillations of the nondiagonal component of the 
conductivity tensor u,,H~n Zn: a-Results from Ref. 7; b--our results; 
c--experimental curve from Ref. 7. The parameter values used in plotting 
these curves correspond to Fig. 6. 

with respect to k, resulting from the calculation of &H was 
calculated by simple summation in Ref. 7. In this case, the 
interval 0 < k, < k,, was divided into 20 equally spaced 
layers. As our calculations demonstrated, such a procedure 
for evaluing the integral (23) leads to errors of order 20- 
40%. We used one of the modifications of Simpson's method 
for the numerical integration (relative error of less than 1 %; 
there were as many as 320 layers in this case for small 
H<Ho) 

Our theoretical curves are given in Figs. 5-8 together 
with existing results. The calculation parameters H g ,  g, a 
and A, are listed in the table. 

Naturally the results reported by Falikov, Pippard and 
Sievert7 can be obtained from our equations if the following 
modifications are made: 

a )  Set a = 0, i.e., assume spin-orbit interaction has no 
effect on MB. 

b) Delete the dependence on the conduction electron- 
spin in all equations, i.e., drop the spin index uniformly and 
do not sum over the spin. In this case the conductivity will be 
calculated from Eq. ( 18). 

C)  Modify the phase (14) acquired by the conduction 
electron in its revolution along the small orbit: 

FIG. 8. Plots of the oscillations in the magnetoresistance p,  , = p,, in Zn 
obtained by inversion of the conductivity tensor. The curves correspond 
to Figs. 6, 7. The parameters used in plotting the theroetical curves are 
listed in the table. 

where yo = - 3.84 is the magnetic field-independent para- 
meter introduced into the theory by the authors of Ref. 7 to 
improve the fit to experiment (see Figs. 5-8) and which they 
used to estimate the g-factor of the conduction electrons g of 
the whisker (see table). 

Since the spin contribution to phase ( 14) is determined 
accurate to 2 m  (n is an integer), it is possible to estimate the 
g-factor of the conduction electrons of the whisker from our 
value of g, if we know m,,/m0 = 0.0075 (Refs. 4, 7): 
g, =: 1009 + 642n. Accounting for the theoretical limit on 
g, < 266 (Refs. 19, 20), we obtain g, -- 109, which is in 
agreement with the estimates reported in Refs. 4,20. 

We emphasize that when spin-orbit interaction is taken 
into account this will increase the interband gap value esti- 
mated from Hg by a factor of ( 1 + a*) 'I4 = 1.1 [see the 
discussion following Eq. (4c) and footnote 1 1. 

The value of the characteristic breakdown field H, that 
is dependent on the spin-orbit interaction parameter a is 
listed in the table and is in agreement with the experimental 
data reported in Ref. 2 1. 

These graphs demonstrate that the consistent theory of 
MB accounting for spin-flip not only provides a far better 
explanation of the behavior of the experimental curves (the 
find structure appearing as a double-peaked structure), but 
also has a quantitative agreement with experiment that is 
quite appealing for such complicated oscillating functions. 
This also suggests that the intermediate MB state is observed 
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TABLE I. 

under these experimental  condition^.'^ Indeed, accounting 
for partial stochastization of conduction electron motion 
along the small orbits flattens out the sharp peaks of the MB- 
 oscillation^,'^ while in the case of complete stochastic MB, 
as we have seen (Fig. 5) ,  the oscillations vanish altogether. 

The authors wish to express their gratitude to B. I. Ko- 
chelaev and M. I. Kaganov for their interest and support in 
this study and to L. M. Falikov for offprints of the author's 
work. 

APPENDIX 

Calculation parameters 

a .  100, kG2/ohms.cm 
b . lo8, kG2/ohms.cm 
Ho (HO0), kG 
Ao.iO-6, a.u. 

We introduce the designation 

Present study Study [ 1 

0,17 
0967 

2,7(-) 
4,24 

ri,:. = exp (ifi;,) 11-9 exp (iy,,) ]-I, (A1 

then the elements of the first column of the effective s-matrix 
take the form 

Calculation parameters 

eff  sit,t-+, = re-"- (rt:t,-rltv), 
l+a2 

0,17 
0967 

3,0(3,7) 
4,05 

Study Present 
171 1 study 

eff  p2 + s ,~ ,~, , ,  = - -(rtTzv+~2rt,z,), 
l+a2 

eff  ap2 r + s ~ ~ . ~ ~ ~ ~  = -(rl.2,-rt,21), 
l+a2 

k z z .  10-9, a.u. 
5.10-2, a.u, - 
g 
a 

eff  
~ , ~ , 3 * , ,  = - = e i ~ L  (r:,3v+ a2ri,3, ), 

l+aZ 

e f f  wZ f + 
= ~e~-(I'~,~.-r~,~,). 

l+az 

2,o 
-1,77 
-1,22 
- 

Having ( A 2  available we easily obtain the remaining 30 
elements of Fff based on symmetry and Eq. ( 13 ). 

1 3  
-1,13 

0,41 
0,75 

"The value of H,, is proportional to the squared interband gap; the para- 
meter a is equal to the absolute value of the ratio of the nondiagonal 
(with respect to band number) matrix elements of the electron velocity 
operator. Both quantities are calculated at k,. 

''The authors thank D. A. Fushman for providing the simplex-method 
algorithm used here. 
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