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Exact scaling equations are derived for the elements of the S-matrix describing the scattering of 
electrons in a disordered conductor. Localization in a 2 0  system is analyzed in the weak- 
scattering case. A Fokker-Planck equation is derived for the parameters which determine the 
scaling of the conductance. This equation contains only one scaling parameter, the localization 
length 1. The latter is determined by the correlation function D of the random potential and by the 
number of channels, N I= Nk ' / D  for N% 1, where k is the wave vector. The growth exponents of 
the resistance and the conductivity are found and are expressed in terms of I. 

1. FORMULATION OFTHE PROBLEM 

Several methods have recently been proposed for de- 
scribing the localization of electrons in disordered conduc- 
tors: localization field the~ries , ' .~  the random-ensemble 

and approximate renormalization-group equa- 
tions6,' (see the review by Lee and Ramakrishnan8 ). Con- 
ductance fluctuations in the weak-localization regime are of 
a universal nature. In the formulation of a scaling theory of 
localization, various assumptions are made regarding the 
scale of the splitting of the correlations. The number of effec- 
tive scaling parameters and the limiting distribution of the 
conductance (or resistance) of a macroscopic sample are 
under debate. 

The scaling properties of the conductance of a 1D disor- 
dered conductor are well under~tood .~- '~  In the 1D case it is 
possible to formulate a Cauchy problem for the parameters 
which determine how the conductance depends on the 
length of the conductor. A method based on the Fokker- 
Planck equation can be used to solve the Cauchy problem for 
equations with random coefficients. 

It is important to generalize the method which has been 
worked out for 1D systems to the cases of 2 0  and 3 0  conduc- 
tors. The conductance g of a conductor of finite dimensions 
can of course be expressed in terms of the elements of an S- 
matrix: 

which relates the amplitudes of the incident and scattered 
waves. If there are a large number of open channels, g is 
given by the Landauer equationL5 (in units of e 2 / 2 d )  

The scaling properties ofg can be described by formulating a 
scaling equation for the matrix t .  

In the present paper we use a method developed by 
Wigner and EisenbudL6 in nuclear theory to derive exact 
scaling equations for the elements of the S-matrix. As in the 
1D case, these equations constitute a Cauchy problem. To 
illustrate the use of these equations, we analyze the case of 
localization in the finite-dimensional approximation, i.e., 
the approximation of a finite number of channels. We con- 
struct a Fokker-Planck equation for the parameters which 
determine the scaling of the conductance. This equation con- 
tains only one scaling parameter: the localization length. We 
derive an exact expression for the localization length, which 

holds for an arbitrary number of open channels. We examine 
the scaling of the statistical moments of the conductance and 
the resistance. 

2. SCALING EQUATION FOR THE S-MATRIX 

We consider a conductor which occupies the interval 
(0, L )  along the x axis, while it is unbounded in the other 
dimensions (in the z direction in the case of a film; in they 
and z directions in the case of a 3 0  layer). The relationship 
between the amplitudes of the incident and reflected waves is 
determined by the S-matrix in ( 1 ). To study the scaling of 
the conductance it is sufficient to write equations for rand t .  
The matrices r' and t ' can be expressed in terms of r and t by 
using the conditions for unitarity and symmetry under time 
reversal. 

For definiteness we consider a 3 0  layer. Inside this 
layer the wave function satisfies the equation 

where 

k,2= (2mE/A2-qZ)'b, 

and V(x, p)  is the impurity potential. We write the general 
solution of (3  ) in the form 

or, in matrix notation, 

A, = ($cq 1. 

Outside this layer we have 

+BqR e x p [ i k , ( x - L ) ]  )exp ( i q p ) ,  x>L. 

d s  Y = B,L exp (-ik.x+iqp) , x t O  
k, 

Introducing the operator 
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we write the matching condition at x = L: 

At x = 0 it is sufficient to write 

Introducing the matrix 

we can put (5 )  and (6)  in the following form, after we eli- 
minate A R :  

From (7)  and (3)  we find the following equations for R: 

where V, is the matrix Vat x = L. Differentiating (8)  and 
(9) with respect to L, and using ( lo) ,  we find 

. - 1  
t = itk + - t i  -'I' vLi-lb (I+?-) .  

2i 

Equations ( 1 1 ) and ( 12) describe the evolution of r and t as 
a function of the layer thickness L. The initial conditions are 
found at L = 0: 

From the symmetry under time reversal we have 

The unitarity condition gives us 

and the relations 

These relations impose constraints on the elements of the S- 
matrix and can be used to express r' and t ' in terms of r and t. 
Equations ( 1 1 ) and ( 12), along with ( 13 )-( 16), are scaling 
equations for the S-matrix and constitute a Cauchy problem. 
An equation like ( 1 1 ) for the reflection amplitude r was 
derived previously by Babkin et a/." by an embedding 
method. 

3. FINITE-DIMENSIONAL APPROXIMATION IN A 2DSYSTEM 

Attempts to analyze Eqs. ( 11) and ( 12) in the general 
case run into serious difficulties, since the Fokker-Planck 
equation is a functional-derivative equation. Let us consider 
a 2 0  system (a film) with a finite dimension L, in the trans- 
verse direction (O<z< L,). For a given E, equal to the 

Fermi energy, there is a finite number of open channels 
n = 1, 2 ,..., N, where 

In this event, 
.. 

( k )  nn=kn6nn ,  kn2=2mh'/A2-En, 
En=z2k2n2/2mLz2. 

The conductance component coming from virtual transi- 
tions accompanying scattering into higher-lying bands with 
En > E is small by virtue of the inequality 

where r is the collision time; interband transitions are taken 
into account here. This point can be verified by analyzing the 
Green's functions, which have poles for E< En but not for 
E > E n .  The time r i s  determined by the imaginary part of the 
eigenenergy of the average one-particle Green's function. 
Assuming that the scattering is weak, we ignore virtual tran- 
sitions to high-lying levels. Under this assumption, the ma- 
trices r and t have N X Nelements. The wave functions of the 
transverse motion, qn (z), are real if we impose the boundary 
conditions I/, (0)  = $, (L, ) = 0. In the basis $, (z), rela- 
tions (14)-(16) become 

We introduce the parametrization r = vTAv, t = UZV, where 
A and 2 are real diagonal matrices, related by A2 + E2 = I, 
and v and u are unitary matrices: v + v = I ,  u + u = I. We set 

then the conductance is given by 

From the equations for rand t we have 

where the matrices Fand Mare  given by 

Equations ( 18 )-(20) describe the dynamics of a system on a 
manifold which is parametrized by the angles {x,), 
O<xn <m,andthematricesvandu ( v + v = I ,  u + u = I ) .  
To construct a Fokker-Planck equation we need to make a 
further reduction, parametrizing each of the matrices v and 
u by sets of N 2  real variables. As can be seen from (17)' 
( 18), and (2 1 ), to calculate the conductance it is sufficient 
to analyze the equations for {x,) and v only. We write v as 

where is the diagonal matrix an,, = (Snn, exp(iqn,, 1, and 
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h depends on N(N - 1 ) real parameters. From ( 19) we have 

iOnS,,r 4 F,,,,,@,,, 
(hhC) ,,, = --- +- On = exp (icp,/z), 

@,-@,- 2i mT,-@,, ' 
( 2 4 )  

- 
where it = hih  +, F= hFh +. We denote by 6, ,..., ON(,- ,, 
the angles which parametrize h, and we introduce 

All the matrices in ( 2 4 )  and ( 2 5 )  are expanded in a com- 
plete set of orthogonal N x Nmatrices r,, which are norma- 
lized by 

Equation ( 2 4 )  then becomes 

where 

From ( 2 6 )  we have 

where 

Equations ( 1 8 ) ,  ( 2 3 ) ,  and ( 2 7 )  are thus stochastic equa- 
tions in real variables. They give a complete description of 
the scaling properties of the conductance. A Fokker-Planck 
equation is derived for these equations in the foilowing sec- 
tion of this paper. 

In the case N = 1 we find 

VL VL cos (p 
x=--sincp, Q = ,  

k 2k ch2 ( ~ / 2 )  ' 
@=2k- (VJk) (l+cht cos 9 ) .  

These equations are the well-known equations for the 1D 
case. They were analyzed in detail for various random pro- 
cesses in Ref. 14. 

4. FOKKER-PLANCK EQUATION 

In principle, we could work from Eqs. ( 18 ), ( 2 3 ) ,  and 
( 2 7 )  to find the exact distributions of the parameters {x,), 
{p, 1, and 10, ) are thus determine the statistical character- 
istics of the conductance. However, the Pokker-Planck 
equation which results does not lend itself to a general analy- 
sis, even in the case N = 1 .  Simplifications are found in the 
case of weak scattering, in which the characteristic matrix 
elements fi21 ( VL ) n n ,  1/2m are small in comparison with the 
spacing of the transverse-quantization levels, I En - En, 1 .  

We begin with a qualitative analysis and a geometric 
interpretation of the parameters {x, >, {p,, >, and (8,). The 
angles X, and p, can be treated, as in the 1D case, as the 
coordinates of a "particle" on a hyperboloid of index n. The 
angles 6, are responsible for the interaction of such parti- 
cles. At L = 0, we have X, - 0 for all n. As the size of the 
system increases, the scattering by the impurity field V ,  
gives rise to diffusion of the particles among the hyperbo- 
loids. It can be seen from (23) that the angles p, rotate with 
characteristic frequencies - k, as L varies. Corresponci- 
ingly, we see from (27) thai for 13, these frequencies are 
- lk, - k,, I. When the size of the system, L, becomes sub- 
stantially greater than k ; ' and lk, - k,, / - ', the distribu- 
tion of {p ,  ) and {O, > becomes uniform, because of the com- 
pactness of these variables. In the weak-scattering case, the 
variables {p , )  and {O,) are thus fast, while the iX,> are 
slow. In the 1D case, this circumstance is utilized in the fol- 
lowing way. The joint distribution function of the angles x 
and p can be expanded in eigeilfunctions which realize a 
representation of the rotation group on a circle [isomorphic 
to the group U( 1 ) ] ; then the coefficient of the zeroth har- 
monic can be distinguished. It is this coefficient which deter- 
mines the distribution function of the slow variable X .  This 
procedure is effectively equivalent to taking an average of 
the Fokker-Planck equation over the angles p, i.e., integrat- 
ing over the rotation group. In the multichannel case, the 
distribution function must be expanded in the group U(N), 
and the Fokker-Planck equation must be averaged over the 
group measure of the U(N) group in order to distinguish the 
slow variables. 

We consider a Gaussian random field V ( x , z )  with the 
correlation function 

< V (x, z) V (x', z1))=2D6(x-x')b(z-z') 

In the basis 4, (z), the correlation function for V ,  can be 
written 

where 
Lz 

Dn,,,mm.=D dZ $.(z)$.L' ( ~ ) ( p n ( ~ ) * ~ ' ( ~ ) '  
0 

Writing the Fokker-Planck equation with the help of Eqs. 
( 1 8 ) ,  ( 2 3 ) ,  and ( 2 7 ) ,  and taking an average over the fast 
variables, we find 

where 

f ((Re (vndVnrf)Re (vnrevnb)  ))I, ( 3 2 )  

598 Sov. Phys. JETP 73 (3), September 1991 A. M. Satanin 598 



The double angle brackets ( (  ...)) in ( 3 0 ) - ( 3 3 )  mean an 
average over the angles {p, ) and {O, ). Since {p, ) and {O,) 
are parameters of the group U ( N ) ,  this average actually 
means an integration over the group measure of U ( N ) .  

The group average can be carried out with the help of 

((u,,uCdu$~p*9)) ' ( N Z - 1 )  -'X (6~6br6~~6dq 
+Gop6bq6eeSdi) --N-'X ( 6 a e 6 b q 6 , i 6 c p + 6 a ~ 6 c c 6 b + 6 d q ) .  ( 3 4 )  

Equation ( 3 4 )  can be proved by direct evaluation, through 
an expansion of the product of group matrices in irreducible 
representations" or through the use of the generating func- 
tion. Using ( 3 4 ) ,  we find from ( 3 0 ) - ( 3 3 )  

D,,,=6,,*/1, R,,--I,,,= (1+6,,'j/21, 

The Fokker-Planck equation thus becomes 

where 

~ n + ~ n  Xn-Xn' I,, = cthXn -tLZ[ cth (+)+ ~ t h ( - ~ ) ] .  ( 3 7 )  
n + n r  

The Fokker-Planck equation has a single scale I, the localiza- 
tion length. Using the explicit expression for the functions 
$, (z), we find from (35 ) 

At large N, we easily find from this expression the result 

5. ANALYSIS OFTHE FOKKER-PLANCK EQUATION 

In the 1D case ( N . =  I ) ,  Eq. ( 3 6 )  is 

This equation can be solved e~act ly.~."  For comparison 
with the multichannel case, we write the solution of ( 4 )  in 
the form 

m 

1  L  
~ ( ~ . ~ ) = ( s h ~ ) ' ~ ~ d s e r p [ - ( A . + - ) - ] c . Y . ( x ) .  ( 4 1 )  

0 
4 1 

where V I ,  ( x )  is the solution of the equation 

F ( a ,  /3, y, z) is the hypergeometric function, and C, is found 
from the initial condition P ( x ,  0 )  = S ( X )  Using (41  ), we 
can easily calculate the probability distribution for the resis- 
tance and the c o n d u ~ t a n c e . ~ ~ ' ~  In the 1D case, according to 
Landauer, we should consider the reflection of electrons 
from a disordered region. The resistance is then given by 

and the resistance distribution is 
m 

exp( -L /U)  j dx x  erp (-x2L/41) 
W ( p ' L ) = ( 2 n ) ' ( L / 1 ) Y '  ZP+I [ c h ~ - c h ( 2 p + l ) ] ~  

Under the condition L  ) I ,  the distribution x -- lnp obeys a 
normal law. To make a comparison with the multichannel 
case, we follow Abrikosov," introducing a different defini- 
tion of the conductance, which holds for the case of a barrier 
with a small transmission:' 

The moments (g")  have a finite value even for integers." 
From ( 4 1 )  we find ( L ) l )  

where r ( x )  is the gamma function. The scale of tile varia- 
tion in the moments is determined by the lower boundary of 
the spectrum of the operator H, which is 1/4,  according to 
( 4 2 ) .  

We can draw the following conclusions from an analy- 
sis of the 1D system. Under the condition L)  I the variables 
x are Gaussian, and the decay index of the moments is relat- 
ed to the lower boundary of the spectrum of the operator H. 
Let us attempt to find the corresponding properties of the 
multichannel system. 

For N > 1, the Fokker-Planck equation can again be re- 
duced to a Schrodinger equation with an imaginary time, if 
we use the substitution P  = exp ( - G)VI, where the func- 
tion G  is determined by the solution of the equation 

If ( 4 4 )  is to have a solution, the following integrability con- 
dition must hold: 

It is a simple matter to verify that this condition holds for the 
function f, in ( 3 7 ) .  Solving ( 4 4 ) ,  we find 

As in the single-channel case, we thus have 
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The operator H can be written in the form 

where 

It follows that H has positive definite eigenvalues. In the 
limitx, - w (n = 1 ,..., N), u-u,, we have 

The continuous spectrum of H thus begins at u,. We write 
the general solution of (36) in the form 

where TI,) and A{,] are the eigenfunctions and eigenvalues 
of the equation 

The Hamiltonian H in (47) describes a system of Ninteract- 
ing particles which are moving in the half-space 0 < x ,  < w . 
If the spectrum of H of the system of particles has no bound 
states in the interval (0, u, ), as is true in the case N = 1, the 
asymptotic behavior of the moments of the conductance, 
(gn ) ,  can be found from (49): 

( g n ) z B n , N  exp ( - U , L / L ) ,  (51) 

where B , , ,  are power functions of L. 
This assumption can be verified only for N = 2. Analy- 

sis of u in (47) shows that the potential of the interaction 
between particles contains, in addition to the nonuniform 
field (terms of the form - l/sinh2x, ), some terms which 
describe two- and three-particle interactions. To trace the 
evolution of an initial distribution P( CX},O) = ITS(x, ) over 
the entire range of the length (L < I  and L > I), we need to 
know the exact spectrum of H. 

Certain conclusions regarding the limiting behavior of 
the resistance can be drawn by considering the system of 
stochastic equations to which Eq. (36) corresponds. We in- 
troduce Gaussian random forces with a correlation function 

( E n  ( L )  E n r  (L ' )  )=21-'6,,,6(L-L'). (52) 

It is simple to verify that Eq. (36) corresponds to the system 
of stochastic equations 

where 6, are defined in accordance with (52). In the N = 1 
case, we have 

and the evolution of x is as follows. In the region L < I, the 
average value ofx increases linearly with the length. If L > 1, 
then the force cothx/I pushes the particle out of the region 
~5 1. Later, for x )  1, it becomes independent of X. The 
mean value here is (x) = L /I, and the measure of the disper- 

sion is also proportional to the length. In typical realiza- 
t i o n s , ~  increases in proportion to the length. Under the con- 
dition L & I, the logarithm of the resistance, ~ ~ l n p ,  obeys a 
normal law. 

For N)1, the evolution of the system is considerably 
more complex. If L$l, the particles which start from the 
origin, X, = 0, are moved by the forces - cothx, / I  into the 
regionx, 2 1. Forx, > 1, they become ordered. By virtue of 
the mutual repulsion -coth [ (x, - x,. )/2 ]/I, they diffuse 
under the influence of the random forces 6,. Their order of 
occurrence, determined in the region X, 5 1, cannot change. 
Let us assume that for L > I an order 

has been established. For the mean value X, = 2,y,/N we 
find the following exact expression from (53): 

i.e., the center of the distribution, (x, ) = NL /21, shifts into 
the regionx$l at L $1. The relative distance between parti- 
cles also increases in proportion to the length of the system. 
Under the condition X, ) 1 we find from (53) 

The channel with the smallest value of n thus contributes to 
the conductance at L $1. The resistance of the overall sys- 
tem, which is determined primarily by this channel, as in the 
ID case, will have a log-normal distribution. Similar argu- 
ments were offered by Dorokhov, l 2  who studied localization 
in a system ofweakly coupled conductors with 1D topology. 

6. CONCLUSION 

The scaling equations derived here are exact. They are a 
natural generalization of the method developed in Refs. 9- 
14 for 1D systems. In addition to the conductance, one can 
express the transmission coefficients, the delay times, the 
density of states of the open system, and other properties in 
terms of the S-matrix. Since the scaling equations constitute 
a Cauchy problem, one can calculate statistical characteris- 
tics from them by means of the sophisticated apparatus of 
the theory of Markov processes and the efficient numerical 
methods for solving the Cauchy problem. 

The method developed in this paper differs from the 
approach taken in Refs. 3-5, where the random nature of the 
T-matrix was postulated, and the scale of the splitting of the 
correlations was not clear. The method of this paper is based 
on exact scattering characteristics in a random potential. 

Let us consider the conclusions which follow from an 
analysis of localization in a 2 0  system. As was shown in Sec. 
5, the Fokker-Planck equation for the parameters which de- 
termine the scaling properties of the conductance contain a 
single scaling parameter, the localization length I. An expli- 
cit expression for this length has been derived in terms of the 
correlation function of the scattering potential, and the de- 
pendence on the number of channels has been determined. 
The growth exponents of the parameters which determine 
the behavior of the conductance and the resistance, however, 
are characterized by a set of lengths which are expressed in 
terms of I. We have analyzed the structure of the phase space 
of the dynamic system to which the localization problem 
reduces in the multichannel case. We are thus able to find a 
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qualitative picture of this phenomenon and to study its rela- 
tionship with other many-particle problems. 

A nontrivial behavior of the system arises in the limit 
N -  W .  This limit can be taken at the outset, by treating the 
equations for r and t in the Fourier representation in the 
transverse coordinates. In this parametrization, it is possible 
to study the scaling equations for averages of the form 
( ( t  + ) V " ) .  
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