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A thermal magnetoacoustic resonance is predicted and observed in chromium sulfide, Cr, S,. 
This is a resonant dependence of the propagation velocity and attenuation of ultrasound on the 
temperature in helicoidal magnetic materials. It arises at a resonant temperature To, at which the 
spin-wave velocity, which depends on the temperature, becomes equal to the velocity of an elastic 
wave. This resonance is unrelated to the frequency magnetoacoustic resonance, which does not 
occur, since at ultrasonic frequencies w both elastic and spin waves in a helicoidal magnetic 
material have a linear dispersion law. The temperature To is thus independent ofw. 

1. A periodic helicoidal magnetic structure has substan- 
tial effects on the elastic properties of magnetic materials. 
One mechanism for these effects is quasistatic. Specifically, 
the appearance of a helicoidal magnetic structure is accom- 
panied by a change in the nature of the quasistatic elastic 
tensor. The components of this tensor become periodic func- 
tions of the coordinates. The number of independent com- 
ponents also increases. l v 2  

The first of these circumstances gives rise to two regions 
(bands) of forbidden frequencies in the elastic-wave spec- 
trum and to a region of a repulsion of spectral branches. The 
second circumstance has the consequence that the polariza- 
tion of the elastic waves which are propagating along the 
helicoidal axis and one of the principal crystallographic axes 
are summed. The polarization of each elastic wave has a 
longitudinal component, a right-handed transverse compon- 
ent, and a left-handed transverse component simultaneous- 
ly. These effects are seen in turn in the appearance of struc- 
tural features when ultrasound reflects from either a 
semi-infinite magnetic material3 or a plate4 and also in the 
transmission of ultrasound through a plate.4 For example, 
when linearly polarized transverse ultrasound is incident, 
the reflected ultrasound and the transmitted ultrasound 
have an elliptical polarization. The major axis of the ellipse 
of this polarization is rotated with respect to the polarization 
plane of the incident ultrasound. Longitudinal ultrasound 
may also arise. Some of these effects are of a resonant nature 
near the forbidden frequency bands, where the wave vectors 
of the helicoid, q, and of the ultrasound, k, are comparable. 

Another mechanism is a dynamic interaction between 
the elastic and magnetic subsystems, namely, elastic and 
spin waves which arise in helicoidal magnetic materials. 
This interaction may lead to a distinctive thermal magneto- 
acoustic resonance. The nature of this resonance can be sum- 
marized as follows: In the ultrasonic frequency range, with 
kgq ,  the dispersion relations w(k) for both spin waves5*, 
and elastic waves are linear, and a frequency resonance is not 
possible. The velocity of a spin wave, however, depends on q, 
which in turn may depend strongly on the temperature. At a 
certain resonant temperature To (at any frequency) at 
which the propagation velocities of the spin and elastic 
waves become equal, a thermal magnetoacoustic resonance 
is thus possible. 

2. Let us take a look at the theory of the thermal magne- 

lastic waves in crystals of hexagonal symmetry in which 
there is a helicoidal magnetic s t r ~ c t u r e . ~  For our purposes it 
is sufficient to write the free-energy density in the form 

axj axi 

where M is the magnetization, uv is the strain tensor, 
/3 = 2K, /M ', and K, is the constant of the crystallographic 
magnetic anisotropy. The tensors av and yv characterize the 
nonuniform exchange energies; the tensors bvkl and Auk, de- 
scribe the uniform and nonuniform magnetostriction, re- 
spectively; and the elastic tensors c z ,  describe the elastic 
energy in the case in which the magnetic state of the magne- 
tic material remains unchanged. For brevity we will omit the 
superscript M below. 

Under the conditions a,, = a,, > 0, a,, < 0, y,, > 0, 
and /3 > 0, a helical magnetic structure can arise in a magne- 
tic material. This structure or helicoid is described by 

Mof =Mo exp (hi@),  M * = M, + iM,. (2)  

The equilibrium value of the wave vector q, 

is found by minimizing the free energy @ = ( 1/ V )  $l;iEv. 
To analyze the natural magnetoelastic waves which are 

superposed on the basic state, we must jointly solve the equa- 
tions of motion of the theory of elasticity and of magnetiza- 
tion. As the latter we use the equation of motion in Hilbert 
form. We take the damping in the elastic subsystem into 
account by assuming that the elastic moduli cvk, are com- 
plex: cvkl = cik1 - i ~ ; ~ ~ .  

The magnetization and the strain accompanying the 
magnetoelastic waves as they propagate along the helicoid 
axis are written in the form 

M=Mo+m exp [-i(ot-kz) 1, uij=uijo 

+uijexp[-i(ot-kz)], (4) 

toacoustic resonance. As an example we consider magnetoe- where w and k are respectively the frequency and wave vec- 
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tor of the magnetoelastic waves. 
Substituting (4) into the equations of motion of elastic 

theory and of magnetization, and linearizing these equations 
near the equilibrium position, we find a coupled system of 
equations. As in Ref. 6, we consider the interaction of the 
spin waves with only the longitudinal elastic wave (we ig- 
nore the interaction of the spin waves with the transverse 
elastic waves). The former interaction is due to the nonuni- 
form exchange magnetostriction (Aij,, ), and the latter to the 
uniform magnetostriction (bij,, ), which is of a magnetic na- 
ture. 

The dispersion relation for the system is 

where 

p is the density, g is the gyromagnetic ratio, and a, is a di- 
mensionless constant, which is a measure of the attenuation 
in the equation of motion for the magnetization in Hilbert 
form. Equation (5) can be rewritten as 

where 6 is the magnetoelastic coupling coefficient, given by 

Heresy and s:p are the phase velocities of the elastic and spin 
waves, respectively, in the absence of a magnetoelastic inter- 
action (6 = O), and 

are the velocities of elastic and spin waves, respectively, 
when the interaction of these waves and the attenuation are 
ignored. These quantities are given by 

It follows from (7) that if the phase velocities of the 
elastic and spin waves, sy and s:~, are nearly the same (or if 
the corresponding wavelengths are equal), a magnetoelastic 
resonance may arise. 

In general, the dispersion relation for a spin wave, 
w (k) ,  is n~nlinear,'.~ according to ( 10) and (6), in contrast 
with that for an elastic wave. There could thus be a fre- 
quency magnetoelastic resonance at frequencies such that 
the dispersion branches, i.e., the curves of o versus k for the 
spin and elastic waves (if the interaction between these 

waves is ignored), intersect. However, the wave vector of the 
helicoid, q, is usually much larger than the wave vector of the 
ultrasound, k: Iq( ) 1 k /  . Accordingly, at frequencies in the 
ultrasonic range, both (s:~ ), and g become independent of k 
according to ( lo), (6),  and (8) .  Specifically, we find 

in other words, the dispersion relations for both the elastic 
and spin waves become linear. The dispersion branches do 
not intersect when the frequency changes, so in this case a 
frequency magnetoelastic resonance should not arise. The 
wave vector of the helicoid, however, depends on the tem- 
perature T. As T is varied, a distinctive thermal magnetoe- 
lastic (or magnetoacoustic) resonance can occur at a certain 
temperature To, at which the velocity of a spin wave, which 
depends on q, becomes equal to the velocity of an elastic 
wave. Let us examine this resonance. 

Ifsyp and 6 are independent of k, the solutions of Eq. (7) 
for s,,, = w/k,, are 

These solutions describe two coupled magnetoelastic waves. 
Two cases are possible here, depending on the value of the 
parameter A, which is given by 

For A > 0 we are dealing with the case of strong coupling. As 
T is varied, and we move out of the region with 
(s:~ ), > ( ~ y ) ~  into the region with (s:~ ), < (sy),, the mag- 
netoelastic wave described by the root s, converts from an 
elastic-like wave (by which we mean a wave which carries 
primarily elastic energy) into a spin-like wave (one which 
carries primarily exchange energy). The inverse conversion 
occurs for the wave described by the root s, . The dispersion 
branches do not intersect in this case. 

In the case of extremely strong coupling, in which we 
can ignore the wave attenuation (a, = 0, a, = O), we 
should replace the complex quantities sy and s:p in ( 10) by 
the real quantities (sy), and (s:~ ), . It follows from ( 12) that 
the dispersion branches w (k)  and therefore the frequency- 
independent velocities s, and s, move close together with 
increasing T (if q decreases in the process), as the resonant 
temperature To is approached from the side T <  To. At 
T = To, the distance between the branches is at a minimum 
and is given by 

s,-'-s2-'= [2(1- (I-i)'")l(i-g) ( ~ 1 3 ) 0 ~ 1 ' ~ ,  

Then for T >  To the branches move away from each other. 
This difference does not depend on o. 

In the weak-coupling case, with A <  I ,  we can take 
square roots approximately. In this case the roots s, and s, 
determine the velocities of an elastic-like wave, s,, and a 
spin-like wave, ssp, respectively: 
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Using (9 ) ,  ( lo),  and ( 14), we find the following relations 
for s, = s; - is;' and ssp = s:, - is; under the conditions 
a, 4 1, a,  < 1, {4 1, and w/w2 4 1: 

where 

The parameter a,, is a measure of the attenuation of the 
spin wave in the approximation w/w2 4 1, and a, serves a 
corresponding role for an elastic wave. Thew dependence of 
a, is determined by ( 17) in the case of the Hilbert equation. 
Its w dependence, however, can also be found from experi- 
mental data on the attenuation of spin waves. Expressions 
(15) and (16) ho ld in thecaseA~1, inwhichwehave  

A =2gl (a*) '. (18) 

From these equations we can distinguish the following 
basic features of the thermal magnetoacoustic resonance. 

a )  A necessary condition for the occurrence of this re- 
sonance is that the difference between the phase velocities 
for the propagation of spin and elastic waves vanish at some 
resonant temperature To. 

b) The condition for the occurrence of a resonance and 
the value of the resonant temperature To are independent of 
w in a first approximation. 

C )  The conditions under which the strong-coupling and 
weak-coupling cases prevail are determined by the ratio of 
the magnetoelastic coupling coefficient 6 to the square of the 
constant a *  = a,, - a , ,  which is a measure of the attenua- 
tion of the spin waves (a,, ) and of the elastic waves (a, ). 
These conditions depend on w, because of the strong w de- 
pendence of asp . 

d)  The values of the resonant extrema of the real and 
imaginary (quality factor) terms of the propagation velocity 
and also the widths of the resonant extrema, s;' and s;, de- 
pend on w in the case in which the weak-coupling condition 
holds, because of the w dependence of the constant a. Since 
we have a = (a,, - a, )6, at T = To and under the condi- 
tion a,, > a, we should see a maximum of s;', while under the 
condition a,, <a, we should see a minimum. We should find 

the opposite picture for s:,. 
e) In cases in which the attenuation of the spin wave is 

very strong (and the spin wave does not propagate), the 
existence of the spin wave nevertheless affects the propaga- 
tion velocity and attenuation of the elastic wave. 

From this discussion we find the conditions which must 
be satisfied by magnetic materials with a helicoidal structure 
if a thermal magnetoacoustic resonance is to be observed in 
them. 

First, the condition ssp > s, must hold in a certain tem- 
perature interval. This condition can be satisfied in magnetic 
materials which have large values of q and of the constant 
y,, , which is determined by exchange forces, in this temper- 
ature interval. 

Second, q must depend strongly on T. This condition 
would apparently hold in magnetic materials in which a 
magnetostructural transition from ferromagnetism to a heli- 
coidal magnetism is observed at a certain temperature TI.  At 
T, , the constant a,, changes sign, so q vanishes according to 
( 3 ) .  

It turns out that these conditions hold for chromium 
sulfide, Cr, S, . 

3. Chromium sulfide, Cr,S, (space group g:, ), has 
two magnetic phase transitions, at TI -- 165 and T, -- 305 K. 
As the temperature is lowered, the following sequence of 
magnetic structures is observed in this material: paramagne- 
tism (at T >  T,), a collinear ferrimagnetic structure 
(TI  < T< Tc ), and an unusual helicoidal structure 
( T <  TI ).' 

For a study of the elastic properties, we used polycrys- 
talline chromium sulfide, prepared by the procedure de- 
scribed in Ref. 8. An x-ray diffraction analysis and measure- 
ments of the temperature dependence of the magnetization 
revealed that the alloy which resulted corresponded to the 
Cr, S, phase. 

For the acoustic measurements we used a resonance 
method involving a composite longitudinal-vibration pie- 
zoelectric vibrator working at a frequency of about 87 kHz. 
The measurement procedure and equations for determining 
the velocity of ultrasonic waves and the internal friction in 
the material are given in Ref. 9. A quartz piezoelectric vibra- 
tor used to excite the longitudinal vibrations had dimensions 
of 3 x 3 x 2 8  mm; the test sample had dimensions of 
3 X 3 X 14 mm. The measurements were carried out during 
heating and cooling. The sample temperature changed by 
less than 12 deg/h. 

Figure 1 shows the temperature dependence of the velo- 
city of longitudinal ultrasound (more precisely, of an elas- 
tic-like wave) in Cr,S,. Near the Curie temperature 
( T, -- 305 K ) ,  we see only a small anomaly on the s, ( T) 
curve. The curves of s, ( T) measured during the heating and 
cooling cycles coincide, near TI showing no thermal hyster- 
esis even in the transition region. 

Figure 2 shows the temperature dependence of the in- 
ternal friction Q - ' = 2s;'/s;. We see that there are no sub- 
stantial structural features on the curve of Q - ' (T)  at Tc, 
while there is a rounded maximum at TI .  

4. Let us discuss the results. In the experiments we mea- 
sured the temperature dependence of the phase velocity and 
quality factor. In the theoretical work, these properties have 
been calculated as functions of the ratio of the velocities of 

589 Sov. Phys. JETP 73 (3). September 1991 Vlasov et al. 589 



FIG. 1. Temperature dependence of the velocity of longitudinal ultra- 
sound in chromium sulfide, Cr, s,. 

elastic and spin waves, rather than as functions of T. It was 
thus necessary to convert the experimental results on s, (T)  
and Q - ' ( T )  into results on s, and Q - ' as a function of 
(s:, ),. This conversion requires knowledge of the tempera- 
ture dependence of (s:, ), . 

A slight complication in efforts to compare a theory 
derived for the case of a simple ferromagnetic helicoid with 
experimental data on Cr, S, is that the distribution of mag- 
netic moments of chromium ions in the latter material is 
more complex, as is the magnetic structure. For this reason, 
our comparison of the experimental and theoretical beha- 
vior is only qualitative, and our estimates of the constants 
a,, , y,, ,A,,,, , and a,, (about which absolutely nothing yet 
is known) are merely order-of-magnitude estimates. 

We introduce an effective magnetic order, and we con- 
sider a helicoid which is formed by the resultant magnetiza- 
tion of the magnetic moments of a magnetic cell. Judging 
from the neutron-diffraction measurements of Ref. 7, the 
resultant magnetization of Cr,S, is the sum of two terms, 
M = M ,  +M, .  

The first term arises from ions of types a and c. The 
magnetic moments of the c ions are parallel to each other. 
Those of the a ions are oriented antiparallel to the magnetic 
moments of the c ions. However, the moments do not cancel 

out completely, since certain sites which would ordinarily 
have c ions are vacant. The number of vacancies is equal to 
the number of remaining c ions. For this reason, there is a 
resultant magnetization M I .  This term is nonzero over the 
entire temperature range T <  T,. For T >  TI the magnetiza- 
tion MI is equal to the spontaneous magnetization M, found 
experimentally. In the region T <  T, the temperature depen- 
dence of MI can be found by extrapolating the M, ( T)  curve 
recorded for T >  TI into the region T <  TI ,  under the as- 
sumption of a T~~~ law.'' 

The origin of the term M, is as follows. Magnetic mo- 
ments of b ions are oriented parallel to each other, while for 
0 TI the magnetic moments of the ions of type f are orient- 
ed antiparallel to those of b ions. For T <  TI the magnetic 
moments of the f ions begin to rotate with respect to the 
magnetic moments of the b ions. The angle p through which 
they rotate, varies with the temperature, from p = 180" at 
T = TI to p = 129" at T = 4.2 K. Judging from the experi- 
mental data of Ref. 7, the dependence of cosp on T can be 
described by 

where q, is the value of q for T = 0. 
The resultant-magnetization vector M = M I  + M, 

forms a helicoid in space with a wave vector q for T < TI .The 
axis of this helicoid is oriented along the hexagonal axis. The 
q(T) dependence is as shown in Fig. 3, according to Ref. 7. 
We can find some information about the relationship 
between M and the anisotropy constant K-these quantities 
determine the T dependence of (s:, ), and w , ,  according to 
( 1 1 ) and (6)-from data in theliterature. " It turns out that 
p = 2K/Mg = 21. lo2 is essentially independent of T. The 
value of y,, at T =  To can be found by requiring 
(s:~ ), = (s : ) , ;  the result is y,, = 1.2. cm4. We use the 
approximation that y,, is, like@, independent of the temper- 
ature. We can then plot (s:, ), versus T. Knowing the depen- 
dence of (s:, 1, on T, we reconstructed s; and Q - ' as func- 
tions of (s:, ), (see the experimental points in Figs. 4 and 5) .  
These curves clearly have the resonant shape characteristic 

FIG. 2. Temperature dependence of the internal friction in Cr, S,. 
FIG. 3. Temperature dependence of the wave function of the helicoid in 
Cr,S,, according to Ref. 7. 
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of the case in which the weak-coupling condition holds. 
Further evidence that the weak-coupling condition holds 
comes from the fact that the measurements by the compo- 
site-vibrator method yielded only a single resonance peak, 
which corresponded to a geometric resonance of the elastic- 
like wave. Under the strong-coupling condition, in contrast, 
we should have observed two peaks, corresponding to geo- 
metric resonances of two natural magnetoelastic waves9 

We can draw conclusions about the T dependence of 
(s:~ )0, which we are not showing here, by comparing the 
scales along the abscissa axis for (s:, ), and Tin Figs. 4 and 
5. 

We can draw a basic qualitative conclusion from the 
results shown in Figs. 1,2,4, and 5: The thermal magnetoa- 
coustic resonance arises at a resonant temperatnre To = 132 
K in Cr, S, at T <  TI.  

That the relation (sf, ), > (s?), holds at T <  To can be 
confirmed by an independent estimate based on a,, , y,, ,and 
q, along with relations ( 3 )  and ( 1 1 ). For an estimate of la,, I 
in the limit T-0, we use the method proposed by Lifshitz12 
for the case of ferromagnets. Specifically, we equate the en- 
ergy of the antiparallel spins to the thermal energy at the 
Curie point, T, . We find 

where d is the distance between the magnetoactive atoms, 
and k is the Boltzmann constant. In Cr, S, we have d = c/4, 
c = 11.5- 10W8 cm, and Mo = 38.3 G. Using q(0)  = 2. 10, 
cm- ', and working from (3)  and ( 11 ), we find a,, 
= 2 - l o p 9  cm2, y , , ( 0 ) = 2 5 . 1 0 2 3  cm4, and 
(s:~ = 30. lo5 cm/s. Although this is a very crude esti- 
mate, it does tell us, at the very least, that the condition 
(s:, ) O  > ( ~ 7 ) ~  holds as T-0. 

By comparing the experimental and theoretical curves, 
we can estimate the values of the parameters 5 and a ,  which 
determine ihe effect. In general, these parameters may de- 
pend on Tand thus on (s:~ ), . Estimates show that we have 
w2 - 1012 s and that the condition w,/w I holds for the 
frequency of the ultrasound, w - 5. lo5 s - '. We plotted a 
theoretical curve of s, versus (s:, ), (the solid curve in Fig. 
4), ignoring in a first approximation the temperature depen- 

FIG. 4. Velocity of longitudinal ultrasound versus the spin-wave velocity. 
Solid line-Theoretical; points-experimental. 

FIG. 5. Internal friction as a function of the spin-wave velocity. 

dence of A,,,, , a , ,  and a , .  The best agreement between the 
experimental data (the points in Fig. 4) and the theoretical 
curve was found with the values f = 3.2.10-*, 
a, = 4.8.10 - ', and a = 1. The value of a, was found from 
the attenuation of the ultrasound away from the resonant 
region: a, = 7.10 - ,. 

Knowing [, we can use ( 11 ) to determine the compon- 
ent A,,,, of the tensor Auk[ (which describes the nonuniform 
exchange magnetostriction) in order of magnitude: 

We find A,,,, = 4. lo- '  cm2. 
The value which we found for the quantity a , ,  which is 

a measure of the attenuation in the phenomenological equa- 
tion of motion for the magnetization, turns out to be consi- 
derably smaller than the values which are seen experimen- 
tally for a, for ferromagnets. We might point out in this 
connection that there is a corresponding situation in the case 
of antiferromagnets.l3 The constant which determines the 
attenuation of the spin wave, a,, = a, w2/w- 1, turns out to 
be very large, despite the value S = 1. At this value of a,,, a 
spin wave should be attenuated over a distance no longer 
than the wavelength of the wave. However, despite the 
strong attenuation in the spin subsystem, the latter may have 
a strong effect on the behavior of the elastic subsystem under 
conditions of thermal magnetoacoustic resonance. 

The estimate of a,, from the experimental results on 
s, (T)  is the least reliable estimate. The reason is that the 
theory was derived for a single crystal, while the experiments 
were carried out on a polycrystalline sample. We know that 
in (for example) polycrystalline ferromagnets in which the 
grains can be assumed to be independent the width of the 
ferromagnetic-resonance line is determined, in the case of 
weak attenuation, not by the attenuation but by the spread of 
the resonance fields for the variously oriented crystallites.14 
This width turns out to be on the order of the crystallogra- 
phic-anisotropy field. In an analysis of the thermal magne- 
toacoustic resonance in a polycrystzlline sample, we should 
thus allow for the anisotropy of the propagation velocity of 
the spin wave and of the coupling coefficient. 

With the z axis oriented along the hexagonal axis for 
each crystallite, we find 
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Under the condition k ( q ,  we have, according to ( 2  1 ) 
and (lo), 

where ( s : ~  )A and (sf, )A are the velocities of spin waves pro- 
pagating respectively perpendicular to and parallel to the 
helicoid axis. 

The coupling of a longitudinal elastic wave with a spin 
wave, which is determined by the component A,,,, and the 
derivative dM :/dz, is at a maximum when the elastic wave is 
propagating along the helicoid axis. In contrast, when a lon- 
gitudinal elastic wave is propagating perpendicular to the 
helicoid axis, the coupling with a spin wave is zero, since it is 
determined by the component A,,  , , , and we have 

A slightly unexpected result was that the magnitude of 
the increment ( A Q  - ' ) = Q - ' - Q ; ' at resonance found 
experimentally is an order of magnitude smaller than the 
maximum value 2s;'/s; - a,. Here Q , ' is the internal fric- 
tion away from the resonance, which is due to the elastic 
subsystem. 

In summary, it follows from this comparison of experi- 
mental data and the theoretical results that a thermal mag- 
netoacoustic resonance is observed in Cr, s,. We have found 
order-of-magnitude estimates of the thermodynamic para- 

meters a,, , y,, , and A,,,, , about which absolutely nothing 
was known previously. Our estimates of the relaxation con- 
stants a and a,, are problematical. 

We wish to thank V. V. Ustinov for a useful discussion 
and E. V. Ustelemova for assistance in the experiments. 
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