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General expressions are derived for the shifts of individual energy levels of a quasicontinuous 
spectrum and for the perturbations of the wave functions of a large system for the case in which 
arbitrary fragments are attached locally. A method of quantum Green's functions is used. 
Relations between the additive effective parameters and the Green's functions of the end groups 
are derived for long-chain polymethine dyes. 

1. INTRODUCTION tems with a quasicontinuous spectrum. This circumstance 

Problems in the theory of crystal defects are basically substantially expands the range of applicability of this aP- 

classified as either descriptions of vibrational and electronic preach in the direction of short polymethine chains, which 
states of intrinsic defects (local and resonant states), along are the Ones in practical chemistry. 

with their contributions to the macroscopic properties of the - - - 
crystal, or analyses of how the defects influence individual 
energy levels of the crystal.' Problems of the first type have 
been developed most extensively for macroscopically large 
systems (containing N, - atoms) with a quasicontin- 
uous spectrum.'" For systems in which the number N of 
atoms is large but smaller than N, (1 < N <  N, ), and in 
which the energy levels are not spaced too closely together, it 
is useful to solve problems of the second type.5 Important 
entities of this type are macromolecules in which electronic 
transitions observable in the optical range are sensitive to 
structural modifications induced by attaching fragments lo- 
 ally.^ 

The standard methods for describing crystal defects are 
based on I. M. Lifshits' ideas of degenerate regular perturba- 
tions,' which incorporate the changes induced by a defect in 
the matrix elements of the original unperturbed Hamilton- 
ian, written in the basis of the numbers of the atoms. A dif- 
ference between a crystal defect and an attached fragment is 
that the latter introduces a topological change in the original 
system which is characterized by an eigenenergy spectrum 
and which cannot be classified as a degenerate regular per- 
turbation. Nevertheless, the results derived in the present 
study show that the perturbation of this spectrum caused by 
locally attached fragments in certain parts of the quasicon- 
tinuous spectrum can be analyzed at a general level in terms 
of Green's functions of the defects. The simplification is 
achieved by focusing on the rapidly varying (cotangent) 
contribution of the Green's functions of a large subsystem 
(as in Refs. 7, 8)and of comparatively small fragments. The 
shifts of the perturbed energy levels and the corresponding 
wave functions are expressed in terms of the well-deter- 
mined Green's functions of the fragments and the retarded 
Green's function of a subsystem with the quasicontinuous 
spectrum. 

To illustrate the approach, we discuss the derivation of 
optical and chemical properties of a class of macromolecules 
of practical importance: polymethine dyes. The exact 
expression for the Green's function of a one-dimensional po- 
lymethine chain contains a cotangent contribution, as do the 
approximate expressions for the Green's functions of sys- 

2. GENERAL DESCRIPTION OF THE SPECTRUM OF LOCALLY 
COUPLED SUBSYSTEMS 

It is often necessary to work from information on the 
spectra of individual subsystems to estimate the properties of 
an overall system. In other words, if we are given, say, the 
spectra of the Hamiltonians of the subsystems A and T, 
which are int%acting with each other through a perturba- 
tion operator V, then we need to determJne the eigenvalues 
and eigenfunctions of the Hamiltonian H of the overall sys- 
tem: 

A general solution of problems of this type can be written 
most simply in the formalism of Green's functions. Using the 
Dyson equation 

~ ( z ) = g ( z ) + g  ( z ) P c ;  ( z ) ,  (2)  

which relates the Gree2's operators o f̂ the system A + r 
when it is perturbed, G(z) = ( z i  - H) I ,  to the corre- 
sponding* opzrator for the unperturbed system, 
g(z) = (z 1 - H, ) - I, we easily find the equations 

h h 

and corres~onding equ2tions for G,, (2) and G,, (z). The 
operators GAA (z)  and GrL (z) here correspond to blocks of 
the matrix of the operator G(z) in tlye basis of theAvariables of 
subsystems A and T; the operators GA, (z )  and G,, (z)  cor- 
respond t%the nongiagonal blocks of the same matrix. The 
operators VAr and V,, c o r ~ s p z n d  to n2ndiagonal blocks of 
the matrix of th%operator V ( VA, = V,, = 0 by virtue of 
the definition of V) . 

Equation (3)  determines the energy spectrum z and the 
wave functions \V, ( I )  : 

det B ( z )  =det DA ( z )  =det DT ( 2 )  =0, (4 )  
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( w h e r e I = a ~ A , I =  y~T) .Equat ions  (4)  and (5)  areina 
form more convenient than that of ,(l ) for casesAof locally 
attached subsystems, because det?, (z) = detD, (z) re- 
duces to the determinant of a matrix D of low dimensgnality 
(the same as the rank of the matrix of the operator V,, ). 

The Green's-function formalism makes it simple to fol- 
low the changes in the density of states 

p (z) =-n-I I m ~ p  ~ (z+ iO)  (6)  

as the subsystems interact with each other. Specifically, we 
have 

p (z)  =-n-' Im[Sp GAA(z+~O) +Sp 6rr  (z+iO) 1 ,  ( 7 )  

where, according to (3)  

s p  GAA (Z) =SJl DA-' (z) ga (2) =Sp &A ( 2 )  

+ SP kA2 (z) PAr$r (z) P T A D A - '  (z) . (8)  

h 

?sing the identities & (z) = - g'(z) and SplnM = 

lndet,M (the prime means the derivative with respect to z, 
and Mis an arbitrary o~erator) ,  and writing the correspond- 
ing expressions for SpG,, (z), we find the expression which 
we need for the density of states of the overall system: 

T (z) =-n-' Irnlndet D (z+iO) . (10) 

The last term in (9)  describes the change caused in the den- 
sity of states by the interaction between the subsystems. The 
integer quantity T(z) changes abruptly with increasing z 
when levels of either the perturbed or unperturbed system 
are crossed. In the former case, the abrupt change is an in- 
crease, and in the latter case a decrease, by an amount equal 
to the degree of degeneracy of the level. 

We turn now from the general formulation of the 
method to an analysis of the perturbation of the spectrum of 
system A by fragments T, which are attached locally and 
which do not interact with each other. We assume that sub- 
system T is a set of such fragments ( r = Z j  l?, ). The Green's 
operator k, (z) is then equal to the direct sum of the g,, (z). 
If we also ignore the interaction between fragments via sub- 
system A (because of the "large distances" between attach- 
ment points), we find that the effects of the individual frag- 
ments on the spectrum of subsystem A are additive: 

From this point on the analysis can be restricted to the case 
in which only one fragment r is attached locally (we will 
now omit the index j) . 

We will use the words "local attachment" of subsys- 
tems A and r to mean the very simplest connection of the 
two: between and atom a, E A and an atom y, E I?. The 

h 

matrix elements VAr in the basis of the numbers of the atoms 
aEA and YET are thus 

(p  is a coupling constant). In the same basis, the matrix 
elements of the Green's operator become 

g , l r (z )=(~l i (z )  C *4(O*4-(lt) 
z-h, 

4 

where A, and $, (I) are the eigenvalues and eigenfunctions 
of the unperturbed Hamiltonian HA (I  = a)  or H, (I  = y). 
Equation (4),  an eigenvalue equation for the Hamiltonian 
H, defined in ( 1 ), is transformed as follows: 

If we express the Green's function in terms of the ratios of 
the correspozding cofactoz and the determinants of the ma- 
trices z i  - HA and zi - H,, relation ( 14) reduces to the 
Heilbronner f o r m ~ l a . ~  Figure 1 shows a graphical solution 
of Eq. ( 14) for the case of nondegenerate unperturbed levels. 
Far from points ~ i t h g , ~ , , ~  (2) = 0, the perturbed levels alter- 
nate with the unperturbed levels of the subsystem A. Treat- 
ing degenerate levels as the limit of closely spaced levels, we 
easily see that the position of an n-fold-degenerate unper- 
turbed level (n>2) is the same as that of an ( n  - 1)-fold- 
degenerate perturbed level.' 

The wave functions of the two subsystems are related by 

Using these relations, the normalization condition 

and the identity used above for derivatives of a Green's oper- 
ator (or function), we find an explicit expression for 
vz(al ): 

FIG. 1. Graphical determination of the energy levels of a system per- 
turbed by the local attachment of a fragment. Solid line~-g,~,,,, ( z ) ;  

dashed lines-D 'g,;,!, ( z ) ;  dot-dashed lines-asymptotes at the points 
of poles ofg  ,,,, ( z )  and zeros of g,,,., ( z ) .  
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Y , ( U ~ ) = I  -". (17) 
In the last equation we have used Sokhotskii's formula, and 
up is the root of the equation A (up ) = A,. Comparing (20) 

Using (15), we can reconstruct the wave function of the with (22),  we conclude that 

system. 1 
(ZP)" I!Igaa, (hp)+gLpa (hp)] 

3. QUASICONTINUOUS SPECTRUM OF ONE SUBSYSTEM 

Analytic expressions for the solutions of Eq. ( 14) and i 
+T[bar(hp)-l:-a(hp)l ctgnt,, 

the explicit expressions for the wave function in ( 15) and 
( 17) are pertinent to the case (of practical importance) in 
which one of the subsystems has a large number of atoms and (,P) = R ~  la, (ap) lam (hp) . ctg ntp. (23 
a quasicontinuous spectrum. Following Ref. 7, we introduce 
the concept of a quasicontinuous spectrum in the following 
way. We number the energy levels of the subsystem A which 
correspond to states q with wave functions $, ( a )  by means 
of the index m, in such a way that we have A, + , >A,, . We 
denote the degree of degeneracy of level A,, by 29,. We intro- 
duce the small parameter E = N ' (N is the number of 
atoms in the subsystem A ) ,  which determines the structure 
of the energy spectrum. We say that the spectrum A, is, for 
sufficiently small E ,  "quasicontinuous with respect to E" if 
there exist &-independent, piecewise-continuous functions 
A(u) and a,,, ( u )  which have piecewise-continuous deriva- 
tives at the points of discontinuity and which are such that 
for u,, = m& the following relations hold: 

An additional summation over a = a' in ( 19) gives us the 
degree of degeneracy of 9,. 

The Green's function ( 13) for subsystem A can be writ- 
ten 

where the limit E + O  has been taken in the last equation, as in 
Ref. 7, and where ZE [A, ,A, + , ] : 

The Green's function written in this manner varies sub- 
stantially (with <, ) over energy intervals on the order of 
M,. However, it is convenient to work with a Green's func- 
tion which varies smoothly over intervals on the order of the 
width of the zone of quasicontinuous spectrum. We accord- 
ingly introduce a retarded Green's functiongcz,. (2) which is 
smoothed over intervals AA, : 

Saa, (u)du *aa' (u)du n*aa, (UP) 
gas* (ap)= J = f - i 

A,--h (u) +iO hp-h(u) (dhldu), , 

While the microscopically exact density of states p (z )  
of the subsystem A with the Green's function (23), which is 
determined by a relation like (6 ) ,  gives us the peaks de- 
scribed by a &function at the levels A,, the coarse density of 
statesp(z) is equal to the average number of levels in a unit 
energy interval: 

Let us find the change in the coarse density of states associat- 
ed with the local attachment of a small fragment l- to the 
subsystem A. For this purpose we make use of (10) and 
(14), with retarded Green's functions, for which we set 
g,,,,, (A,) =g,,,,, (A, ), because the subsystem l- is small in 
comparison with A: 

T (hp) =-Z-' Imln [1-@2ga,a, (hp) gT,T,(hp) 1=-Gp, (25) 

where the quantity &, introduced in ( 2  1 ) is found from Eq. 
(14) with (23): 

ctg nGp = 
PZg~,,, (hp)Re la ta t  (hp)-l . 
$'~T,T,  (hp)Im Za,at (a,) 

It determines the position of the perturbed energy level with 
respect to the closest unperturbed levels. The change in the 
density of states which we are seeking can then be written 

The maximum value of Ap(A, ) is reached under the condi- 
tions 

B%T,~ , (A~)R~ zaia, (hp) =I,  cp=1/21 (28) 

which determine the resonant states. In the general case of 
arbitrary A,, relations (26) and (27) solve the problem of 
approximately calculating the perturbed spectrum z, [see 
also (21 ) 1 and the energy gaps between neighboring per- 
turbed levels: 
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To find the perturbed wave functions, we should ex- 
press the derivative gLlal (z) in ( 17) in terms of the charac- 
teristics of the quasicontinuous spectrum: 

The partial derivative dgalal/dAp is determined by the fol- 
lowing system of equations, which incorporates ( 14) : 

We thus find 

Substituting (32) into (30), we find 

Calculating dgal,, /a{, from (23 ), using (26), and substi- 
tuting the result for gLlal (z,) into (17), we find the per- 
turbed wave function at atom a,  : 

AZP " sin nbp 
9z(al)= [- n Irn k.,. (hP) 1 i3zg~,~, @P) . (34) 

According to ( 15), the perturbed wave function at subsys- 
tem r is then found by multiplying (34) by flg,,,l (A, ), while 
that at subsystem A becomes 

X { ~ X P [  i infp-arg Zata ( A p )  ) I -exp[ -i(nSp-arg ha, (A,) ) I ) .  

Relations (26), (27), (29), and (35) give an exhaus- 
tive description of the characteristics of a system consisting 
of a large subsystem with a quasicontinuous spectrum and a 
locally attached fragment, in terms of the Green's functions 
of the subsystems. 

4. APPLICATION OFTHE THEORY TOTHE OPTICAL 
SPECTRA OF POLYMETHINE DYES 

Some entities of practical importance whose observable 
spectral properties might be affected substantially by at- 
tached fragments are the so-called polymethine dyes 
r, (CH) ,, in which various molecular fragments r can be 
attached to the ends of the polymethine chains (CH), 
(Refs. 6, 10, and 1 1 ) . An equation for the unperturbed 
Green's functions of the three subsystems (the two end frag- 
ments, which are attached by bonds PI  and 0, to the poly- 
methine chain of N atoms) which determines the energy 
spectrum z of the system can be found from Eq. (4)  if the 

Green's operator g, (z) is understood as the direct sum of 
the unperturbed Green's oxerators of the fragments, and if 
the perturbation operator V links these fragments to the po- 
lymethine chain: 

1- [Bfzgl (z) +Bz2g2 (z) 1 gii (z) 

Here g,  (z) and g, (z) are the Green's functions of the end 
fragments gYlyl  (2) with indices y,  corresponding to the 
atoms of the fragments which are attached to atoms 1 and N 
of the polymethine chain. The energy spectrum and wave 
functions of the unperturbed polymethine chain are given by 

n9 A,=-2 cos - 
N+1 ' 

where the energy is reckoned from the midpoint of the quasi- 
band and is expressed in units of the magnitude of the cou- 
pling constant (P = - 1 ). An explicit expression for the 
Green's function of the unperturbed polymethine chain can 
be found ^directly from the definition g,,. (z) 
= ( a ]  (z i  - HA ) ' (a ' )  or by summing over q in ( 13) and 
using (37): 

sin a'0 
gaav (z)=gcr'.z (z),= - [-cos a0fsin a0 ctg(N+1)0], 

sin 0 

In (36) we made use of the symmetry properties of ga,, (z), 
in particular, the equality g, , (z) = g,, (z). 

A distinctive feature of a one-dimensional chain is that 
the exact expression for the Green's function in (38) con- 
tains a rapidly oscillating function cot(N + 1 )$, just as the 
approximate relation (23) does. The additivity of the para- 
meters in ( 11 ) and (25) for the attached fragments-this 
additivity holds at large N-can be utilized to derive exact 
equations for arbitrary N. 

where the functions 6, (z) ,  j = 1, 2 are determined by (26), 
with A, replaced by z: 

1 
b,=Fj (z)= - arcctg S?g,(z)Re Zlt(z)-l 

n P?g,(z)Im Zit(z) 

- 1 -- 1+$,Zg,(z)cos 0 
aroctg 

n @,Zg, (z) sin 0 ' 

In the last equation we have made use of the explicit expres- 
sion for the retarded Green's function g,,, (z), which fol- 
lows from (38) when we use (23): 
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sin a'f3 8 r ( z )  =- - e f a e  aa , aaa'. 
sin 8 

( 4 2 )  to find the perturbed wave function of the polymethine 
chain: 

2 '12 We can now use ( 3 5 )  (replacing A, by z ) ,  in which, accord- Y ' ( ~ ) = (  N + i + l ( z )  ) sin[nF, ( z ) - a O ( z )  1 .  ( 4 4 )  
ing to ( 2 9 ) ,  we have 

d -' 2n sin 8 
Azp = - - ( 6 1 + C i ) ]  = N+L+l(i)  ( 4 3 )  where 

might be called the "effective length of the end fragments," 
determining that effective elongation of the polymethine 
chain would generate the same energy gaps as the system 
under consideration. 

We wish to stress that relations ( 3 6 ) - ( 4 1 ) ,  ( 4 4 ) ,  and 
(45 ) are valid for arbitrary N.  This point can be verified by a 
direct check based on the correspondence between ( 3 8 ) -  
( 4 1 )  and Eq. ( 3 6 )  and that between ( 4 4 ) ,  ( 4 5 )  and the 
eigenfunction equation of the type in ( 5 )  or explicit expres- 
sions of the type in ( 15)-(  17) ,  with allowance for the addi- 
tional fragment. The additive representation of the contribu- 
tions of the end fragments to the energy spectrum in ( 4 0 )  
and to the wave function in ( 4 4 )  of this system was worked 
out in Ref. 12 by a method of secular-polynomial matrices, 
without the use of the Green's-function formalism. The lat- 
ter makes it possible to relate the particular results for a 
specific system lo the general properties of perturbations of a 
quasicontinuous spectrum caused by locally attached frag- 
ments. The transition to the quasicontinuous spectrum for 
this as given corresponds to fairly large values of N. Com- 
pounds with odd values of N  and a half-filled 71.-electron 
band, so the Fermi level passes through the unperturbed le- 
vel A, = 0  with q = ( N  + 1 ) / 2 ,  are usually classified as po- 
lymethine dyes. The first electronic transition occurs 
between the levels closest to the Fermi level on its two sides. 
The positions of these levels can be found by expanding ( 4 0 )  
in the small parameter E = [N + 1 ] - I :  

f =F ( z )  =F ( 0 )  -2  ( 0 )  ef-nZ' ( 0 )  e2f 2+0 ( e 3 ) .  ( 4 6 )  

arctanx], then we can find the value of the positive level 
(i.e., that above the Fermi level) from ( 4 6 ) - ( 4 8 ) .  The posi- 
tion of the negative level can then be found from ( 4 8 )  by 
replacing F ( 0 )  by F ( 0 )  - ' [as follows from ( 4 1 ) ,  if the va- 
lues o f 4  ( 0 )  for the neighboring levels are determined by the 
multivalued function arcot x ] .  The energy of the first elec- 
tronic transition is then 

We can write an explicit expression for the quantities 
r;; ( O ) ,  I, ( 0 )  and 1; ( 0 )  (j = 1,2), which are, according to 
( 4 5 )  and ( 4 9 ) ,  additive contributions to F(O),  I(O), and 
I ' ( 0 ) ,  respectively: 

Fj (O) ,  =n-' arcctg [j3jZgj ( 0 )  1 -l, ( 5 1 )  

This approach is equivalent to an expansion in the renorma- The approximate expression for the wave function is found 
lized small parameter E = [N + 1 + I (0 )  ] - I: by substituting expansions of 1(z) and ( 4 7 )  into ( 4 4 ) ,  to 

g within terms on the order of 2: 
f = - F ( o )  ~ I - ~ ~ ~ ~ o ~ F ~ o ~ ~ ~ + o ~ ~ ~ ~ I ,  ( 4 7 )  

P. 

Y.(o)= ( 2 ~ ) " '  sin{$ a+ ne[F,  (0)a-F,  ( 0 )  ( ~ + i - a ) ] } .  

z=2 sin ne6=2neF(O) [ 1-n (,!'(o)+ E F ( O ) )  
6 

( 5 4 )  

x F ( 0 )  ez+O (6)  1. (48 The asymptotic ( z -  0 )  molecular orbital in ( 5 4 )  undergoes 
the largest perturbations with respect to the unperturbed 
state $(a)  = (2.5) ' ' 2~ in (~a /2 )  near the ends of the chain, 

If we understand F ( 0 )  as the fractional part of the sum with a - 1 and a - N  under the influence of the fragments 

F  ( 0 )  = (F,(O) +F, ( 0 ) )  ( 4 9 )  with F, (0 )  and F, (O), respectively (this is as it should be). 
The system of relations ( 4 7 ) ,  ( 4 8 ) ,  ( 5 0 ) - ( 5 4 ) ,  written 

[here we have O<F(O) < 1 ,  in agreement with (41 1, which to within terms on the order of 2, has been called the "long- 
determines F, (2) in this interval, by virtue of the range of chain approximation" of polymethine dyes." A surprising 
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property of this approximation is that it is valid for short 
chains with N = 3 and even N = 1, which are the most typi- 
cal chains for real polymethine dyes.I3 This property of the 
approximation follows from estimates of the corrections of 
order E2 in (47) and (50): For small fragments, the coeffi- 
cient of E2 turns out to be numerically small, while for large 
fragments of n atoms this correction corresponds in order of 
magnitude to 

even at small values of N (this result is actually due to the 
switch from the parameter E to the even smaller 2). On the 
other hand, the range in which this approximation is valid- 
as is true of any approach which ignores the interelectron 
repulsion-is limited to values of N which are not too large, 
so that one may ignore the energy gap which arises in the 
spectrum of infinite one-dimensional systems. It follows 
from the results of Ref. 10, for example, that as the limit 
N -  co is approached an antiferromagnetic state with a gap 
becomes preferable from the energy standpoint to the gap- 
less solutions only for N 2  10. The construction of a Green's 
function from the wave functions of antiferromagnetic states 
in Ref. 10 would make it possible to extend the method deve- 
loped here to chains of arbitrarily great length. 

In summary, compact equations relating the additive 
parameters of the end fragmentsi2 to their Green's functions 
have been found in this section of the paper. These equations 
can be used to analyze various perturbations of the states of a 
polymethine chain. They simplify the search for end frag- 
ments which would impart particular optical and chemical 
properties to polymethine dyes. In particular, the parameter 
F(0)  characterizes the ability of a molecule to acquire or 

give up electrons: The molecule will act as an electron accep- 
torifO<F(O) < 1/2 and as adonor if 1/2<F(O) < 1. It re- 
mains in a form stable with respect to oxidation-reduction 
reactions at F(0)  = 1/2. A search for stable molecules of 
this sort was carried out in Refs. 14 and 15 in the long-chain 
approximation. On the other hand, the same condition cor- 
responds to a resonant state, according to (28).,Resonant 
states near the Fermi level thus acquire a nontrivial chemical 
interpretation. 
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