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The interference component of the angular distribution of the backscattering of charged particles 
from disordered 3 0  and 2 0  systems in a uniform magnetic field is calculated under weak- 
localization conditions. In addition to rounding of the peak in the angular distribution, as a result 
of the disruption of the coherence of the forward and backward waves, there may also be an 
asymmetry of the spectrum. If the magnetic field is directed parallel to the surface of the medium, 
the peak in the angular distribution of the backscattered particles is shifted away from the 
"exactly backward" direction. The magnitude of this shift is determined by the average magnetic 
flux linking a loop formed by the particle paths in the disordered medium. 

1. INTRODUCTION 

During multiple scattering by an ensemble of disor- 
dered centers, waves which are propagating along the same 
paths but in opposite directions acquire identical phase 
shifts. The interference between such waves is known to be 
responsible for a weak localization of waves and particles in 
random media; this localization is in turn associated with 
quantum corrections to the kinetic coefficients of metals and 
semicond~ctors. '~~ The most prominent effect is a coherent 
summation of waves during backscattering from disordered 
media. In this case the interference contribution to the inten- 
sity near the "exactly backward" direction is comparable in 
magnitude to the backscattering intensity 

The coherent summation of waves propagating in dif- 
ferent directions along the same paths is a consequence of the 
symmetry of the scattering process under time reversal. In- 
terference effects are thus exceedingly sensitive to factors 
which would disrupt T invariance: motion of the scattering 
particles, spin-spin interaction with impurity 
 center^,*.^.^.^^ an external magnetic and gyrotropy 
of the medium, which is related to the external magnetic 
field by the Faraday e f fe~t . ' ' . '~  

The violation of the symmetry under time reversal does 
not necessarily cause complete suppression of interference 
effects. If the phase relaxation of the forward and backward 
waves over distances on the order of the mean free path I is 
slight, the absence of T invariance would simply lead to a 
limitation on the number of collisions over which the wave 
functions would retain their coherence. Associated with this 
limitation are a large number of interesting aspects of the 
behavior of the quantum corrections to the kinetic coeffi- 
cients of solids2-' and in the angular distribution of the back- 
scattering intensity. 19320,'33'4 In particular, fine structure 
forms in the angular distribution near the exactly backward 
direction in the case of spin-spin (magnetic) and spin-orbit 
interactions with scattering  center^.^','^ 

The quantum interference accompanying multiple scat- 
tering of charged particles in disordered media is very sensi- 
tive to the application of an external magnetic field.637 The 
anomalous behavior of the magnetoresistance of 2 0  and 3 0  
systems might be thought of as one manifestation of this 
sensitivity.'-' When a magnetic field H is applied, the wave 
function of a particle acquires an additional phase shift. 

Since the wave function transforms in accordance with 
\V7(H) = W*( - H )  under time reversal, the additional 
phase shifts of the forward and backward waves have the 
same sign. The interference component of the backscattering 
intensity thus acquires a phase factor in a magnetic field 
( f i = c =  1): 

AAT=A (H) A* (-H) = A d  $exp (2i(pH), ( 1  

where A and A ?'are the amplitudes of the forward and back- 
ward waves, pH = eq5, e is the charge of the particle, 
q5 = HX, is the magnetic flux through the loop formed by 
the particle paths, and Z, is the area of the projection of this 
loop onto the plane perpendicular to the vector H. The phase 
pH in ( 1 ) is a random quantity, which depends on the shape 
of the particle path. The coherence of the wave functions is 
disrupted over distances 

(p, ,  is the momentum of the particle, and r, =p,,/lelH is 
the Larmor radius), over which the phase shift p ,  -eHs2 
reaches a value on the order of unity. 

Under weak localization conditions (p, 1% 1 ), the most 
interesting case of quantum interference is that in a weak 
magnetic field, 

in which case the coherence of the wave functions is disrupt- 
ed after many elastic-scattering events. Quantum effects 
dominate the situation under condition (2) .  The corrections 
of classical origin, which stem from the curvature of the par- 
ticle paths in the magnetic field, are on the order of 
I /rH &p, I '/rH and can be ignored. 

The disruption of the quantum interference of charged 
particles in a magnetic field has been discussed previously 
only in connection with an analysis of the behavior of global 
quantities: corrections to the conductivity2-' and to other 
kinetic coefficientss and the dispersion of the conduc- 
t a n ~ e . ' ~ , ' ~  There has been no study of how a magnetic field 
affects the coherent enhancement of the backscattering of 
particles from disordered media. 

Below we use assumption (2 )  to derive an analytic solu- 
tion of the problem of calculating the angular distribution of 
the backscattering of charged particles from disordered 3 0  
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and 2 0  systems in a uniform external magnetic field. We 
analyze in detail features in the angular distribution of the 
backscattered particles which stem from disruption of the 
interference of the wave functions in a magnetic field. We 
find that the angular distribution at angles other than the 
exactly backward direction, 9 5 (port, ) - depends on the 
orientation of the magnetic field. We find that the rounding 
of the peak in the backscattering spectrum, which stems 
from a loss of coherence of the forward and backward waves, 
may be accompanied by a shift of the intensity peak with 
respect to the exactly backward direction. In  the back- 
scattering of charged particles in a magnetic field directed 
parallel to the surface, the peak in the angular distribution is 
shifted an angle 

A 9  ,,.,, -0.75(p,,rII) ' I2 

away from the backward direction. The physical reason for 
this shift is the nonzero average phase shift of the wave func- 
tions of the interfering particles. This shift is proportional to 
the average magnetic flux linking the loop formed by the 
particle paths. The direction of this shift (clockwise or coun- 
terclockwise around the field H )  depends on the sign of the 
particle's charge. 

2. GENERAL RELATIONS 

Let us consider the motion of a nonrelativistic charged 
particle in a disordered system of small-radius scattering 
centers, withp,,a< 1. We assume that the medium occupies 
the half-space z > 0 (the lower z axis runs perpendicular to 
the surface). 

To calculate the flux density of backscattered particles 
we need to find the one-particle density matrix averaged 
over the positions of the centers: 

< p ( r , r ' ) > = < Y  (r) Y *  (r')). ( 3  

If we ignore the recoil in the collisions with the incident 
particle, the density matrix can be written27 

p (r,, rz) =p(') (r,, r2) + j  . . .I dR, dRz dr,' drzf 

where G(r,r l)  is the Green's function of the scattering prob- 
lem, and p'O'(r,r') is the density matrix of the particles 
which have not undergone incoherent interactions in the me- 
dium (this is the density matrix of the coherent wave field). 
For the case in which there is a source at the point R,, 
p ( O '  ( r , r1) is 

p(O) (r, r') = G (r, Ro) G* (r', Ro) . ( 5  

If there is no magnetic field outside the medium (at  
z < 0; this situation is possible if the field H inside the medi- 
um is directed parallel to the surface), the source can be 
specified as a unidirectional particle flux incident on the sur- 
face of the medium. We can then write 

pl0' (r, r') =Y (r) Y * (r') , ( 6 )  

where Y ( r )  is the wave function of the scattering problem. 
This wave function corresponds to the case in which a plane 
wave with a momentum p, is incident on the vacuum-medi- 
um interface from z = - co : 

The function Y ( r )  satisfies a Schrodinger equation in a mag- 
netic field with a non-Hermitian potential. The imaginary 
part of this potential is related to the scattering cross section 
by the optical t h e ~ r e m . ~ ~ . ~ '  

Under weak localization conditions, with p,,l% 1, the 
function T ( r ,  ,r; ;r2 ,r; ) is dominated by the series of ladder 
and fan (maximal-crossing) 

The sum of the ladder-diagram series corresponding to 
a sequence of independent incoherent-scattering events can 
be written in the form 

Z ( r , ,  rl1; r2, rz'~=~nnu/mz)6(rl-r2)6(rfr-rZt) 
x[6(rl-rfi1) +FS (r,, r r l ) l ,  ( 8 )  

where n is the number of scattering centers per unit volume, 
a is the cross section for elastic scattering by a center, and m 
is the mass of a particle. To  avoid unimportant complica- 
tions, we assume that the scattering is purely elastic: 
w = u/a,,,, = 1, whera,,,, is the total interaction cross sec- 
tion. The results derived below can be generalized without 
difficulty to the case w < 1; this is in fact done at the end of 
Sec. 5. 

The first term in (8 )  is the distribution of singly scat- 
tered particles. The second term in ( 8 ) ,  

corresponds to multiple scattering. The propagator 
F,  (r , r l )  in ( 8 ) ,  (9 )  describes the spatial distribution of 
particles which have been scattered incoherently by a point 
source of unit intensity. I t  satisfies the equation 

nnu 
Fz (r, r' ) = - l G ( r , r ' ) 1 2 + ~ ~  dRlG(r,R)12Fg(R,r').  

mZ v 

The integration on the right side of ( 10) is carried out over 
the volume Voccupied by the medium. 

We know that the series of fan diagrams corresponds to 
interference of the wave functions of particles which have 
passed by the same scattering centers, going in opposite di- 
rections. The sum of the fan-diagram series ( a  "Cooperon") 
is 

where the propagator F, ( r , r l )  satisfies the equation 

nnu 
F c  (r, r') = - G (r, r') G' (r', r) 

m2 

+ E j  dR G (r, R)  GS(R, r) F c  (R, r') 
m2 v 

Equations (8)-(12) have been written for a 3 0  system. I n  
the case of multiple scattering of particles in a disordered 2 0  
medium, the factor rnu /m2  in (8  )-( 12) must be replaced 
by nupo/m2, where u is now the scattering cross section in 
the 2 0  case (it has the dimensionality of a length), and n is 
the number of scatterers per unit area. 

The reciprocity theorem for the Green's function in an 
external magnetic field H is known to be 
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C (r, r', H)  =G (r', r, p H ) .  (13) 

Accordingly, G(r,rl)  loses its symmetry under a simple in- 
terchange of its arguments: G(r , r l )  # G(rl,r) .  Because of 
this aspect of the motion of charged particles in a magnetic 
field, expression ( 1 1 ) for the sum of the fan diagrams cannot 
be reduced to expression (9 )  through any interchange of 
arguments. The diffusion and the interference of particles in 
this case are described by quite different equations of mo- 
tion. The physical reason why the symmetry which existed 
between L ( r ,  ,r; ;r, ,r; ) and C( r ,  ,r; ;r, ,r; ) in the case H = 0 
(Ref. 21) no longer exists is that the T invariance of the 
scattering process is violated in an external magnetic field. 

In a weak field, such that the Larmor radius is far larger 
than the wavelength of a particle (r , ,  $ A  = 277/p0 ), we can 
use the semiclassical approximation for the Green's function 
of the scattering problem. Under the condition jr - r'/ 4 r,,, 
the function G(r,rf)  (z,zl > 0) can be written in the formZ9 

G(r, r') =exp[icp(r, r')] G,((r-r' i 1, (14) 

where Go ( / r  - r'l) is the Green's function of the scattering 
problem in the absence of a magnetic field.27,2"n the 3 0  
case, for example, we would have 

(15) 
and the phase p ( r , r l )  would be given by 

where A(r )  is the vector potential, and the integral in ( 16) is 
evaluated along the straight line connecting r and r'. 

Under the approximation ( 14), Eq. ( 10) for the func- 
tion F, (r,rl)  goes over to the corresponding equation de- 
scribing diffusion of particles in the absence of an external 
magnetic field. All the results derived in Ref. 21 for the sum 
of the ladder series, 9 ( r ,  ,r;;r2 ,r; ), thus remain valid. 

After ( 14) is substituted into ( 12), the equation for 
F, (r ,r l)  becomes 

n m  
FE (r, r') = - ( Go ( 1 r-r' I ) I exp[2icp (r, r') I 

m2 

Using inequality (2 )  along with ( 14), we can transform the 
integral term in Eq. ( 17) as  follow^:'^ 

where 

A I d  p=---2  eA (r) (div A=O). 
i dr 

Now substituting (18) into (17) for the propagator 
Fc (r ,rf) ,  we find the equation 

nno 
= -J dR, (Go(R,) ~ ' e x ~ [ - r l l , i l  [B(r-rf)+Fc(r, r')]. 

m2 

(20) 

The angular distribution of the backscattering in a mag- 
netic field can be determined by the method of Refs. 2 1 and 
22. However, we must allow for the circumstance that the 
magnetic field may be nonzero outside the medium, and in 
general we cannot ignore the effect of this field on the motion 
of the particles on the ballistic part of their paths. 

We assume that the source and detector of the charged 
particles are far from the surface of the medium, at the points 
R,, and R , ,  respectively (Fig. 1). In this case we need to 
substitute p(0 )  as in ( 5 )  into expression (4 ) ;  here G is the 
Green's function of the scattering problem in the vacuum- 
medium system with a given configuration of the magnetic 
field. Assuming, as above, that the condition for the semi- 
classical approximation is satisfied, we write the product of 
Green's functions G(r,R,, )G *(rl,R, ) in (4 )  near the inter- 
face as 

G (r, R,)G* (r', R,) =aa* exp [-ip, (r-r') 
-i[q(r, Ro) -cp(r', Rn) I -'IZ(noIpO) (z+z') I ,  (21 

where p, is the momentum of the incident particles at 
the vacuum-medium interface (z = O), given by p, 
= (VS - eA) 1, = o = mv,. Here S(r,R, ) is the semiclassi- 

cal action; v, is the velocity of the particle; p, = coseo 
= poZ/po, p(R,  ,Ro ) are some additional phase shifts of the 

wave functions of the incident particles which result from 
the external magnetic field, given by 

'P (Ra, Rg) = e dRA(R). (22) 
%R,. Rs) 

and the integral in (22) is evaluated along an arc of the parti- 
cle path 2(R, ,RI, ) (Fig. 1 ). An expression like (21 ) can be 
written for the product G(R,  , r )G *(R, ,TI). . 

By writing GG* as in (21), we can find the angular 
distribution of the backscattered particles with a "resolu- 
tion" 

AS=p,'IApl S l / r , .  
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The reason for this limitation is the error in the determina- the particles and by the line segment connecting the points of 
tion of the direction in which the particles incident on the entry into the medium and of exit from it (more precisely, 
surface of the medium (and also the backscattered particles) connecting the points of the first and last collisions), R and 
are moving in the representation (21 ) : An uncertainty in the R': 
momentum stems from the rotation around a magnetic field 
line as the particle moves between the vacuum-medium in- 40.1= $ A (R) dR. 

k.9, 

terface and the first (or last) collision with a scattering cen- 
ter. 8,=i?(Ro, R', R), It=8(R,, R', R). (29) 

At very small angles between the velocity of the parti- 
cles and the field H, the quantum-mechanical nature of the 
motion in the XY plane becomes important, and we must 
abandon the representation (2 1 ). In this case the uncertain- 
ty regarding the direction of the momentum of the incident 
particles is due entirely to quantum-mechanical effects (Sec. 
4).  

Using relations (9)  and ( 11 ) and representation (21 ) 
in (4),  we find the following expression for the angular dis- 
tribution of the backscattering, i.e., for the ratio of the flux 
density of particles moving in the p direction, across a plane 
oriented parallel to the boundary of the medium, to the flux 
density of incident particles: 

J(p, PO) =I, (p, PO) +Jc (P, PO). 

Here 

is the angular distribution of incoherently scattered parti- 
cles, and 

Y' (R', -p) Y (R', po)exp[iG (&R,; RR') 1 (25 ) 

is the interference component of the backscattering intensi- 
ty, where p, = (po l  ,p,, ) and p = (pi, g,) are the momenta 
of the incident and backscattered particles at the vacuum- 
medium interface (z = O), and 

The function \V(r, p) in (24), (25) is given by 

Y (r, p) =exp(ipr-noz/2(p1 ). (26) 

The propagators F,  (R,R1) and Fc (R,Rf) satisfy Eqs. ( 10) 
[with Green's function ( 14) ] and (17) [or (20) 1, and Z is 
the surface area of the medium. 

The phase shift @(R,R, ;RR1) in the argument of the 
exponential function in (25) is 

where p(R, ,Rp ) is given by (22). The phase shift @ can also 
be written in the form 

~ = e ~ o + e @ t - 2 ~ ( ~ ,  R'), (28) 

where 4, and 4, are the magnetic fluxes linking the closed 
loops 2, and 2 ,  , formed by the ballistic parts of the paths of 

The quantity p(R,R1) is given by the integral in ( 16). 
Under conditions (2) ,  the incoherent-scattering inten- 

sity (24) is given by the same expression as in the case H = 0 
(Refs. 21, 31, and 32). In contrast with the situation in the 
H = 0 case, examined in Ref. 21, the interference compo- 
nent in (25) is not the same as the multiple-scattering com- 
ponent in (24) in the case p = - p, (the exactly backward 
direction). The reason is the violation of Tinvariance of the 
scattering of the charged particles in a magnetic field. 

The expression for J,  (p,p, ) in (25), which depends on 
the magnetic field, is gauge-invariant. This invariance can be 
verified directly, by comparing (25) with ( 17) [or (20) 1. 

In order to experimentally observe features of the back- 
scattering angular distribution which are directly related to 
the quantum interference of particles in the disordered medi- 
um, it would be necessary to cancel the phase shift of the 
wave functions due to the motion of the particles in the mag- 
netic field on the ballistic parts of their paths. Determining 
the best experimental arrangement for canceling this ballis- 
tic phase shift is a separate problem, which we will not dis- 
cuss further here. We would simply like to point out that the 
simplest approach would seem to be to bring the boundary of 
the spatial volume occupied by the field H into coincidence 
with the surface of the disordered medium. Such a configu- 
ration is possible only if the field lines of H run parallel to the 
vacuum-medium interface Hn = 0, where n is the inward 
normal to the surface). In this situation we would have 
H = 0 outside the medium, and there would be absolutely no 
magnetic flux linking the loops 2, and 2 ,  (Fig. 1 ) formed by 
the ballistic parts of the paths. 

In the case of complete cancellation of the ballistic 
phase shift" (4,  + 4, = 0), we can write 

,. 
cp=-2cp(R, R') (30) 

and from (25) we find the expression 

This expression gives us the quantum-interference contribu- 
tion to the backscattering angular distribution formed di- 
rectly as a result of multiple collisions of particles with ran- 
domly positioned, small-radius centers. It is not distorted by 
the effect of the magnetic field on the motion of the particles 
outside the medium. 

Expression (3  1 ) is written for the 3 0  case. For the re- 
flection of particles from a disordered 2 0  system (in the YZ 
plane), the expression for the angular distribution J, (p,p,, ) 
differs from ( 3  1 ) only by a common factor: (4n-Z) - ' must 
be replaced by (277L) I, where L is the length of the vacu- 
um-medium interface. The only interesting case of 2 0  mo- 
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tion is that in which the magnetic field is oriented perpendic- 
ular to the scattering plane. If the vector H lies in the yz 
plane, the magnetic field has no effect on multiple scattering 
in the medium. 

3. ANGULAR DISTRIBUTION OF THE BACKSCATTERING OF 
PARTICLES IN A MAGNETIC FIELD ORIENTED PARALLEL TO 
THE SURFACE OFTHE MEDIUM 

Let us consider the reflection of a flux of charged parti- 
cles which are incident on a disordered system of isotropical- 
ly scattering centers. We assume that a uniform and constant 
magnetic field is directed along the X axis [H = (H,O,O) ] 
and is zero except inside the medium. We choose the vector 
potential 

According to expression ( 2 5 ) ,  the problem of calculating 
the interference contribution to the flux density of the back- 
scattered particles reduces to one of finding the propagator 
Fc (r ,rl) .  

In the case under consideration here, with the magnetic 
field oriented parallel to the surface of the medium 
(Hen = 0 ) ,  Eq. ( 2 0 )  for F, (r ,rl)  cannot be solved analyti- 
cally in its general form. However, in order to calculate the 
backscattering spectrum at angles from the exactly back- 
ward direction at which the magnetic field is influential we 
do not need to know the behavior of F, (r,rf) over the entire 
range of the variables r, r'. Since the magnetic field affects 
the interference of the wave functions of the particles only 
after many collisions [N- ( r,/p,l 2, $ 1 ] with scattering 
centers, it is sufficient to calculate the asymptotic behavior 
of the function F, (r,rl) at large Ir - r' I $1. For this purpose 
we can use the diffusion approximation in Eq. ( 2 0 )  (Ref. 6 ) .  
In this approach, the equation for the asymptotic behavior of - 
Fc (r,rl) = Fc (r ,rl)  at lr - r f l % l  is 

where d is the dimensionality of the system. 
Equation ( 3 3 )  must be supplemented with a boundary 

condition. The usual approach is to use a condition of the 
type (Refs. 18 and 28, for example) 

where n is the inward normal to the surface, and I,, is the so- 
called extrapolated length. In the 3 0  case this length is 
l,, z 0.7 1041. 

We could take a different approach to calculate the an- 
gular distribution of the backscattering, J, (p,p, ), in a weak 
magnetic field [inequality ( 2 )  1. Specifically, we could re- 
quire, as an additional condition on Eq. ( 3 3 ) ,  that the spec- 
trum found in the diffusion approximation for angular de- 
viations ( p  r ) ' < < ( p  I) ' from the exactly 
backward direction agree with the exact result found for 
H = 0 in Ref. 21. In this angular region, we can use the 
diffusive asymptotic behavior of the exact solution 
[a< (pol) ' 1, and at the same time the magnetic field does 
not affect the interference between the wave functions of the 
particles [ a )  (p,r, ) -- ' I 2 ] .  

The solution of Eq. (33 ) is 

d =-(li 8d12 p, )"' jj dp. dp, erp[ip.(z-~')+i~,(~-~')~ 

(35)  
where 

Here D,. ( T )  is a parabolic cylinder function;" the Wrons- 
kian W = W [D,, (T) ,D,. ( - T) ] is given by 

where T ( x )  is the gamma f~nc t ion ;~ '  and d is the dimen- 
sionality of the space. In the d = 2 case, the function Fc ((r,rl) 
does not depend on the variables x, x',  so we can set p, = 0 
a n d v =  - 1/2in ( 3 7 ) .  

The unknown constant of the diffusive solution, a, 
which appears in (36)  is determined by the condition at the 
boundary of the medium. For boundary condition ( 3 4 )  we 
would have 

where 

Substituting solution ( 3 5 )  and ( 3 6 )  into ( 3  1 ), we find 
the following result for the interference part of the back- 
scattering angular distribution: 

where the universal function @(q)  is defined by 

Since ( 4 0 )  was derived with the help of the solution for 
F, (r,rl) in the diffusion approximation, the range of appli- 
cability of ( 4 0 )  is limited by the inequality / (p, + p) ,, Ilg 1. 

The constants A and B in ( 4 0 )  do not depend on the 
direction of the magnetic field. They are determined only by 
the additional condition on Eq. ( 3 3 ) .  

For the case of a condition of the type ( 3 4 )  at the sur- 
face, the coefficients A and B are precisely the same as the 
known values of the universal constants which appear in the 
diffusion solution in the case H = 0 (Ref. 18).  For normal 
incidence (p, = 1) in the 3 0  case, for example, we would 
have 

A=3 (1+2l0/1) =7,26, 
( 4 2 )  

B=6(1+10/1)2=17,55. 
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Another way to calculate the coefficients A and B is to 
compare (40) with the diffusion limit of the exact expression 
for the backscattering angular distribution in the absence of 
a magnetic field which was found in Ref. 21 for 2 0  and 3 0  
disordered systems. That approach makes it possible to find 
the exact values of the coefficients A and B. 

At angles (r,p, ) - 'I2 <64 (p, I )  - ' from the exactly 
backward direction, the magnetic field does not affect the 
shape of the backscattering angular distribution, so expres- 
sion (40) should become the corresponding expression de- 
rived in Ref. 2 1. Again in this angular region, using the Dar- 
win expansion33 for the function D,. (T), we can put Eq. (40) 
in the form 

Comparing (43) with expression (50) from Ref. 21, we find 
the following expressions for the coefficients A and B: 

where the function Z(p,  1 ) in the 3 0  case is the same as the 
Chandrasekhar function H(p ,  1) (Refs. 31 and 32). In the 
2 0  case, it is the same as its 2 0  analog h(p, 1 ) (Ref. 21 ). 
According to (44), the values of A and B for normal inci- 
dence (p, = 1) are 

Expression (41 ) for the universal function @(qI1 ) can 
be simplified if one of the components of the vector qI1 van- 
ishes. In the case of backscattering of particles in the plane 
parallel to the magnetic field lines (q, = O), we would have 

If the momentum transfer (p + p, is perpendicular 
to H, the angular distribution of the reflected particles can 
be expressed in terms of the function @(q, = O,q, ), given by 

(47) 
where I,, ( x )  is the modified Bessel function.33 

The linear decrease in J, (p,p, ) with increasing momen- 
tum transfer I ( p  + p,, I which prevails in the absence of a 
magnetic field (Refs. 9, 18, and 2 1, for example) is therefore 
replaced in the case at hand by (40), which is determined by 
the universal function @ (q). 

4. ANGULAR DISTRIBUTION OF THE BACKSCATTERING OF 
PARTICLES IN A MAGNETIC FIELD DIRECTED 
PERPENDICULAR TOTHE SURFACE OFTHE MEDIUM 

In contrast with the case discussed above, in this section 
of the paper we are interested in the reflection of particles 
from only a 3 0  disordered medium. When the field H is 
directed perpendicular to the surface, it has no effect on the 
2 0  motion. 

There is one distinctive feature in the formulation of the 
problem of calculating the backscattering angular distribu- 

tion in a magnetic field oriented perpendicular to the surface 
of the medium. The uniform field H can no longer be as- 
sumed to be zero except inside the medium. By virtue of the 
continuity of the field lines, there is also a magnetic field in 
the vacuum, and it affects the motion of the particles on the 
ballistic parts of their paths. 

In this case, the uncertainty regarding the projection of 
the momentum of the incident particles (and of the back- 
scattered particles) onto the z = 0 plane results from the 
"classical" curvature of the paths in the magnetic field, 
which we mentioned above (Sec. 2) and also from quantum- 
mechanical effects associated with the motion of the parti- 
cles at small angles from the direction of H = (O,O,H). 

We assume that the charged-particle flux is incident on 
the surface of the disordered medium at an angle 8, (8, is 
the angle between the velocity of the particles and the z axis). 

If the angle 8, is small [8, 5: (p,r, ) - ' I 2 ] ,  the quan- 
tum-mechanical nature of the motion in the external field 
leads to an uncertainty on the order of I A ( p, ) l l  I - (p, r, ) 

in the projection of the momentum of the incident particles 
onto the xy plane. It thus becomes impossible to observe 
those changes in the backscattering angular distribution 
which are due to the disruption of interference. 

The effect of the magnetic field on the angular distribu- 
tion can be observed only at angles of incidence 
8, > (p,r, ) - In this case the motion of the particles in 
the external field outside the medium is semiclassical, and 
the uncertainty in the projection of the initial momentum 
I A ( p, ) I I  I - ( r, 8, ) - ' is much lower than the scale value of 
the momentum transfer, 1 ( p  + p,, 1 - (po/rf, ) 
> IA(p, I, which characterizes the shape of the back- 
scattering angular distribution J, (p,p, ) near the backward 
direction. 

For angles of incidence 8, >) (port, ) - 'I2, with complete 
cancellation of the ballistic phase shift of the wave functions, 
we can use (3 1 ) for the interference part of the angular dis- 
tribution J,  (p,p,, ), and we can reduce the problem to one of 
calculating the propagator F, (r,rf ). 

If the magnetic field is oriented perpendicular to the 
surface, we can find an exact analytic solution of Eq. (20). 
The solution method is based on the utilization of the follow- 
ing circumstance. Since the medium is unbounded in the 
plane perpendicular to H, the kernel of the integral equation 
(20) is an even function of the variable ( R ,  The external 
field thus enters the kernel only in the following combination 
with derivatives with respect to p = r I  : 

The fii; dependence of the kernel of the equation allows us to 
seek a solution as an expansion of Fc (r,ri)  in eigenfunctions 
of the operator ti. This approach to the solution of an equa- 
tion like (20) was first proposed in Ref. 30, for the case of an 
infinite medium (one not bounded by a surface). This ap- 
proach has subsequently been taken in several theoretical 
papers on impure superconductors."4.'5 

We choose the vector potential in the form 
A = ( - Hy,O,O). Expanding the propagator F, (r,rl) in ei- 
genfunctions of the operator ti, we find 
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wherex,,,, ( y ) exp ( ip ,x )  are the eigenfunctions of the opera- 
tor fii : 

Here HI, ( x )  is the Hermite polynomial of index n (Ref. 3 3 ) .  
The eigenvalue E,, in ( 4 9 )  is given by 

Substituting expansion ( 4 8 )  into our original equation, 
( 2 0 ) ,  we find an integral equation with a difference kernel 
for F, ( z , z l ,n )  : 

cc 

F.(z,zl, n)=Kn(Jz-z' l  )+ J L'rKn(Iz-zlfI )F.(zl', z', n). 
0 

( 5 2 )  

For the kernel K,, ( lzl ) we can use the representation 

where L,, ( x )  is the Laguerre polynomial." In going from 
Eq. ( 2 0 )  to Eq. ( 5 2 )  with kernel ( 5 3 ) ,  we need to allow for 
the circumstance that the operators j ,  and jy do not com- 
mute: [ j x j y  ] = 2ieH (Refs. 30, 34, and 3 5 ) .  

It is a straightforward matter to solve Eq. ( 5 2 )  by the 
Wiener-Hopf method. Using results from Ref. ( 2 1  ), we find 
the following expression for the Laplace transform of the 
function F, ( z , z l ,  n )  : 

where 
m 

The explicit expression for the function A,, (q, ) is 

6' arctg [I(q: + p o l  ' / r ,  ) '"1 =I--(-I)~.I t d t  Ln(62)exp(-y) 
0 [(q; + p o ~ 1 2 / r H ) " 2  

We can use Eq. ( 5 4 )  to find the final expression for the back- 
scattering angular distribution. Substituting expansion ( 4 8 )  
into ( 4 3 ) ,  and noting that the additional phase shift $ in 
( 4 3 )  is 

we find 

where 

iz-'=t/2( l ~ l - ' + c l o - ~ ) + i ~ o ~ (  I P I  --PO). 

Let us analyze this result. In the situation under considera- 
tion here, in which the inequality ( 2 )  holds, a large number 
of terms, 1 4 n,, 5 r H / p ,  I *, contribute to the sum in ( 4 8 ) .  
At large values of n we can use the following asymptotic 
expression3' for L,, ( x 2 )  : 

We can write the kernel of Eq. ( 5 2 )  as 

There is a slightly different way to derive ( 6 1 ) .  In this ap- 
proach we note that at large values of n  the circumstance 
that the operators j ,  and jY do not commute is irrelevant, 
and we can deal with them as if they were ordinary numbers. 

Integrating over the angle between p and fill, we then 
find 

where E ,  is given by ( 5  1 ). Approximation ( 6 2 )  leads imme- 
diately to ( 6 1  ). 

Evaluating the integral in ( 6 1 ) ,  we find the following 
approximation for the function A, (q ,  ): 
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A comparison of the approximation ( 6 3 )  for the func- 
tion A,, (q, ) with the exact expression ( 5 8 )  reveals that the 
results in ( 6 3 )  and ( 5 8 )  differ by a small quantity on the 
order of (p ,  I ' / r ,  ) < 1 .  Ignoring this difference, we can ex- 
press the function U,, ( I / & ) ,  which appears in the expres- 
sion for the angular distribution, in terms of a "generalized" 
Chandrasekhar function H ( p ,  1 1 v )  : 

where 

For H(p,wlv )  we can use the integral representation2' 
w 

arctg (i2+v2)" 
H ( ~ , o l v ) = e x ~ [ - ~ ~ l n [ l - ~  ( i 2 + v ~ ) 1 , 8  

0 

Substitution of ( 6 4 )  into ( 5 9 )  makes it possible to write 
an expression for the backscattering angular distribution: 

xexp [ --- ', rx ( P + P O ) ~ ~ ~ ] L ~ ( ~ ( P + P ~ ) ~ ~ )  . (67 
2 Po Po 

For angular deviations if< ( p o l )  ' from the backward 
direction, the quantity J,. ( p , p , )  is dominated by the first 
n 5 r,/p,I ' terms. We can therefore use an approximation 
of H ( p ,  1 lv)  in ( 6 7 )  under the condition v<  1 :  

where H ( p ,  1 ) = H ( p ,  1 10) the ordinary Chandrasekhar 
functi~n."? '~ For J,. ( p , p ,  ) under the condition 
I ( p  + p,  ) ,, I g 1 ' we find the expression 

Analysis of the results in ( 6 7 )  and ( 6 9 )  shows that 
the effect of the magnetic field on the interference part 
of the backscattering angular distribution is manifested 
only at angular deviations 

9 < (p,r, ) - ' I 2  ( I ( P  + P ~ ) ~ ~  I < ( ~ o / r ~ ) ' ' ~ )  

from the backward direction. The rounding of the back- 
scattering peak observed in this angular region stems from a 

disruption of the coherence of the wave functions of the par- 
ticles which have traveled a distance s > (r , /p ,  ) through 
the disordered medium. 

With increasing angular deviation, 9 > (p,r,, ) the 
quantity J, ( p , p ,  ) starts to be dominated by the shorter 
paths s < (r , , /p ,  ) the dependence of the angular distribu- 
tion on the magnetic field fades away, and the distribution 
( 6 7 )  becomes the exact ~ o l u t i o n , ~ '  valid for charged parti- 
cles in the case H = 0.  These assertions are easily verified by 
using the well-known representation of Laguerre polynomi- 
als with n $ 1  in terms of Airy functions" and by replacing 
the summation over n in ( 6 7 )  by an integration and then 
evaluating the resulting integral by the stationary-phase 
method. 

5. DISCUSSION OF RESULTS 

The expressions derived above for the interference con- 
tribution to the flux density of backscattered particles, ( 4 0 )  
and ( 6 7 ) ,  make possible a detailed study of how the disrup- 
tion of the coherence of the particle wave functions in a mag- 
netic field affects the shape of the angular distribution of the 
backscattering. 

Analysis of the results above shows that a magnetic 
field "deforms" the peak in the angular distribution at angu- 
lar deviations 9 < (p,,r,, ) '" from the backward direction. 

When H is directed parallel to the surface of the medi- 
um, a structural feature appears in the angular distribution 
J, ( p , p ,  ) which has no analog in the backscattering of scalar 
waves, of light, or of particles with spin s = 1/2 (Refs. 9- 
24) .  The backscattering peak is shifted with respect to the 
exactly backward direction and is observed at 

According to (701, in the reflection of electrons ( e  < 0 )  the 
maximum moves clockwise away from the direction 
p = - p, around the direction of H, through an angle 
AS ,;,, -- 0.75 ( p ,  r ,  ) - 

The reason for this shift of the peak is quantum interfer- 
ence. This shift is totally unrelated to the curvature of the 
particle paths in a magnetic field. 

When an external magnetic field is applied, the ampli- 
tude of the reflected wave acquires an additional phase fac- 
tor 

AH@,  ~ ' ) = A H - O ( P ,  p') exp Iie#(p, p ' )  I ,  ( 7 1 )  

where q 5 ( p , p 1 )  is the magnetic flux linking the loop formed 
by the particle path in the medium and the straight line seg- 
ment which connects the points at which the particle inter- 
sects the boundary plane ( z  = 0 )  as it leaves ( p )  and as it 
enters ( p ' ) .  The interference contribution to the back- 
scattering intensity is, according to (71 ), 

AH ( P ,  p ' )  exp [ i~op'- ippIA~*(p,  p ' )  exp [ -ipop+ipp'l 

+ C.C. =(A,=,(p,  p') 1' exp[Zie4(p, p') -i(p,+p) (p-p')] + c.c., 

where 
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is the probability density for the particle transition p -. p' in 
the absence in a magnetic field. Taking an average of (72) 
over all possible particle paths, we find the backscattering 
intensity to be 

x cos[ (p+po) (p-p') -2e<@>,,l, (73 

HereF, = , (p,pl) is the probability density for the transition 
of a particle between p and p' in the absence of a field, and 
(4) ,,, and ( ( 4  - (4) pp, )2)pp, are the average value and 
dispersion of the magnetic flux linking the loop formed by 
the surface of the medium and the path of a particle moving 
from the point p' to the point p. Expression (73) is valid 
under the condition that the motion of the particles is in the 
way of a diffusion, and the phase 4 can be treated as a ran- 
dom quantity with a normal distribution. 

By writing the interference contribution as in (73) we 
easily see the reason for the shift of the backscattering peak. 
It follows from (73) that the shift of the J,  (p,p, ) peak stems 
from a phase shift of the wave functions of the interfering 
particles, which is proportional to the average value of the 
magnetic flux, (4)pp,. Since the value of (q5),,, is deter- 
mined by the average area of the loop formed by the bound- 
ary and the particle path connecting the points p' and p, we 
can write the following in the gauge (32): 

where (z) is the average depth to which the particles pene- 
trate into the medium. Substituting (74) into (73), we find 
that the backscattering peak should be observed in the direc- 
tion 

Comparison of (75) with (70) yields (z) ~ 0 . 3 8  (r , /p ,  ) "*. 
As can be seen from the expression for the distribution 

in (73), the rounding of the backscattering peak stems from 
the dispersion of the magnetic flux linking the loop formed 
by the particle paths. The increase in this dispersion with 
increasing length of the paths establishes a limiting path 
length over which the coherence of the particle wave func- 
tions will be preserved. The fact that the linear paths no 
longer contribute to J,  (p,p, ) leads to a rounding of the peak 
in the backscattering angular distribution, in accordance 
with the general 

It follows from expression (40) that the backscattering 
intensity at the peak is given by 

where expressions (44) can be used for the coefficients A and 
B. 

In the case in which the momentum transfer is perpen- 

dicular to the magnetic field, ( p + p, ) ,, .H = 0, the angular 
distribution of the backscattered particles for a 3 0  medium 
is as shown in Fig. 2. The backscattering angular distribu- 
tion has a similar shape for scattering from a 2 0  disordered 
system. Near the peak, the distribution J,  (p,p, ) can be writ- 
ten 

With increasing angular deviation from the exactly back- 
ward direction [a% (p ,r ,  ) - "*) ], the effect of the magnet- 
ic field falls off, and the angular distribution approaches that 
in the case H = 0: 

The angular distribution of the backscattering intensity in 
the case ( p  + p, ) ,, .H = 0 is thus characterized not only by a 
shift of the peak but also an asymmetry, which is also a con- 
sequence of the effect of H on the interference of the particle 
wave functions. 

For reflection of the particles in the plane parallel to the 
magnetic field ~ e c t o r , ~ '  i.e., p, = - p,,, the angular distri- 
bution is symmetric with respect to the backward direction 
(Fig. 2). Near the peak we have 

where J,. ( - p,,,p, ) is the scattering intensity in the back- 
ward direction, given by 

FIG. 2. Angular distribution of the electron backscattering intensity near 
the backward direction in a magnetic field directed parallel to the surface 
of the medium (p,,  = 1) .  I-(p,, + p ) ,  = 0; 2-(p,, + p), = 0; 
3-r,, = 500p,,12; 3-r,, - m ( H  = 0) .  
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The coefficient C in (79) is given by 

where $(x) = T1(x) /T(x )  is the logarithmic derivative of 
the gamma f ~ n c t i o n . ~ ~  

With increasing deviation from the backward direction, 
the dependence of J,  on jp, +pox I approaches linearity; i.e., 
it becomes the result which has been found elsewhere in the 
absence of a magnetic field.103t5-19.2' 

The behavior of the angular distribution J,  (p,p,, ) dur- 
ing backscattering from a disordered medium in a magnetic 
field directed parallel to the surface is qualitatively reminis- 
cent of the dependence of J,, on Ip, + p, I discussed above 
(Fig. 3 ) .  No shift of the J,. (p,p, ) peak is observed. The rea- 
son is that the motion of the particles in the plane perpendic- 
ular to H is not bounded by the surface of the medium in this 
case, so symmetry gives us (# )pp ,  = 0. The rounding of the 
backscattering peak occurs, according to the interpretation 
of (73), because of fluctuations of the magnetic flux linking 
the projection of the loop formed by the particle paths onto 
the surface of the medium. The scattering intensity in the 
backward direction is given by 

where the coefficients A and B are given by (44) for a 3 0  
medium. In the case at hand the quantity J,. ( - po,pi,) is 
simultaneously the maximum value of the backscattering in- 
tensity. 

In all the cases discussed above, the difference 

thus increases with increasing H in proportion to 
(1 2p,,/rtl) I" c J ' F ' I 2 .  

We would simply like to call attention to a slight differ- 
ence between the numerical coefficients of the second terms 
in (76) and (82). This difference stems from the scattering 

geometry: I n  the former case the \:rluc J " " ' (  11 ( 1 )  

- J:" '"(H) is determined by fluctu;ttior~s i n  the ar.c;l o l ' ~ l ~ ~  
projection of the loop formed by the paths onto tlic pl;rric 
perpendicular to the surface, while in the lattcr caw i~ i \  ~ h c  
projection onto the surface of the medium itself. 

We note in conclusion that the results derived above arc 
valid in the case in which the mean free path with respect to 
inelastic interactions which would disrupt the interference 
of the particle wave functions is large: 

where I,,, = na,,,, and (T,,, is the cross section for an inelastic 
interaction. If inequality (83) does not hold, the expression 
found above must be generalized to take the inelastic interac- 
tions into account. In the case of most interest here, that in 
which there is a low probability for inelastic interactions, 
a,,, &u, the generalization procedure reduces to one of mak- 
ing the following changes in the results derived above. 

When a magnetic field is directed parallel to the surface 
of the medium, the only changes are in the index v of the 
parabolic cylinder function D,. ( 7 )  [see (37) 1. We must now 
replace (37) by 

where d is the dimensionality of the system, w = (T/u,,,, , and 

ut<,t = (7 + g,,, . 
For reflection of particles in a magnetic field oriented 

perpendicular to the surface of the medium, the inelastic 
interactions affect the expression for the function A,, in 
(56).  In the case o = 1 we have A,, = 1 - wK,,. Corre- 
spondingly, the function H ( p , l  J v )  in (67) must be replaced 
by H ( p ,  wlv), and in making the transition from (67) to 
(69) we replace the approximation (68) by the more general 
expression2' 

If the inequality (83) is reversed, the effect of the mag- 
netic field on the quantum interference of the particles is 
suppressed. In particular, the effect of the magnetic field on 
the backscattering intensity leads to only small corrections 
which are linear in H a n d  which are on the order ofp,, II, , ,  /rtl . 

We are indebted to V. S. Gorbachev, S. L. Dydarev, and 
S. G. Pozdnyakov for gracious support and valuable advice. 

Note added in proof ( 2  August 199 1 ) . After this paper had 
been sent to press, we became aware of recent work [R. Ber- 
kovits, D. Eliyahn, and M. Kavel, Phys. Rev. C .  41, 407 
(1990) ] which also treated the problem of quantum inter- 
ference when electrons are reflected from a magnetic field. 
The definition of the backscattering angular spectrum used 
there is not gauge invariant and yields an erroneous result 
for the interference contribution J,.. 

FIG. 3. Angular distribution of the backscattering intensity in a magnetic 
field directed perpendicular to the surface for various values of r,,: 
I-/(p,,/r,, ) I" = 0.025; 2-0.05; 3-4.1; 4--0.15; 5-4.2. Here it is as- 
sumed that the inequalities (p,,r,, ) ' < 1 - pII ( 1 hold. 

" In  general, perfect cancellation would not be possible hccnuhc of the 
spread in thevaluesofRand R'due to the u ~ ~ c e r t n i ~ ~ t y  in thc posi t~ol~s of 
the first and last collisions of the particle with sc ;~ l tc r i~~g C C I I ~ Z ~ ~  I I I  

coordinatespace. However, this ib not n point of great tnlport;illc.c. \ill<.< 

the phase shift caused by thc spread in R a l ~ ~ l  R'. I.L. .. 
e(@, ,  + 4 ,  ) ,,,,,, 5 p , , I  / R  - R'I/r,, le:~dh I :III IIIIL.CI.~;IIIII! 
A ( p  + p , , ) ,  I <p,, l / r , ,  which is (111 tllc xanls o r i I~ ,~-  of I I I ; I ~ I I ~ I I I L ~ L .  ;I\ tllc 
"classical" curvature of thc p:wticle 17;1t115 i l l  ;I I I I ; I ~ I I L , ~ ~ C  lir,IcI. 
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"This situation does not occur in the case of backscattering from a 2 0  
system. 
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