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The transition from a spinodal regime to a binodal regime is treated as an event in which a 
stochastic system loses its ergodic nature. The parameter A, a measure of the extent to which the 
system has lost its ergodic nature, determines the difference between the values of the isothermal 
and adiabatic susceptibilities. The width of the nonergodic region, E,, determines the size of 
region between the binodal and the spinodal on the phase diagram. The quantities A and E, are 
derived as functions of the intensity of the interatomic interaction, the anharmonicity, and the 
anisotropy on the basis of the Ginzburg-Landau model. 

1. INTRODUCTION 

The behavior of an unstable system which is undergoing 
a first-order phase transition is known to depend on the par- 
ticular part of the phase diagram to which the system goes 
when it leaves the homogeneous disordered state. If it goes to 
a binodal region, the classical mechanism of nucleation and 
growth occurs:' First, there is a fluctuational nucleation of 
precipitates of the new phase, with a size R exceeding the 
critical size R,. Then, as the limiting component is supplied 
to the precipitate by diffusion, the immediate vicinity of the 
precipitate becomes depleted of this limiting component. 
Finally, one observes a prolonged coalescence process, in the 
course of which small precipitates are swallowed by large 
ones, and the average precipitate size R ( t )  increases over 
time in accordance with R a t "' (Ref. 2).  A point of funda- 
mental importance is that in the binodal region the nucleat- 
ing regions of the new phase form as a result of stabilization 
(by growing to a supercritical size R > R,) of heterophase 
quasistatic fluctuations which constitute macroscopic re- 
gions of the new phase separated from the old phase by a 
sharp boundary. The order parameter in these regions ini- 
tially takes on a value close to the equilibrium value. The 
system evolves only in terms of the size of the  inclusion^.^ In 
the spinodal region, in contrast, a homogeneous conversion 
occurs throughout the volume in an early stage. In the 
course of this homogeneous conversion, the order parameter 
reaches its equilibrium value. If a deficiency of the limiting 
component prevents the conversion from occurring over the 
entire volume, one should clearly observe a transition from a 
homogeneous regime to a heterophase regime in a late stage 
of the evolution. That transition is the subject of the present 
paper. 

The spinodal and heterophase regimes have previously 
been described Specifically, only the evolu- 
tion of the amplitude ~ ( t )  of the corresponding hydrodyna- 
mic mode (e.g., a concentration wave in a decaying solid 
solution) has been studied in the spinodal region, in a ma- 
croscopically homogeneous ~ y s t e m . ~  In the binodal region, 
in contrast, only the evolution of the characteristic size R ( t )  
of the heterogeneous system has been studied, at a fixed va- 
lue of the order parameter 7 (Refs. 1 and 2).  A complete 
description can be achieved by introducing a stochastic 
functional Y{$(r, t)), which determines the probability for 
the realization of a space-time distribution $(r, t )  of an in- 
ternal parameter representing the hydrodynamic mode.6 

The approximation of Ref. 4 corresponds to the approxima- 
tion 

in which the order parameter 7 ( t)  = ($(r,t) ) reduces to the 
first moment of the stochastic field $(r,t). In the hetero- 
phase region, the functional Y{$(r,t)) is a step function, 
which takes on the value 1 in the region r - r, < R, (t) ,  cor- 
responding to inclusion i, and the value 0 for other r. The 
moment ($(r, - t ) )  - = p  reduces in this case to the volume 
fractionp = (R /L)%f the precipitated phase, which is de- 
termined by the average inclusion size E ( t )  and by the aver- 
age distance z ( t )  between inclusions. 

Recent years have witnessed substantial progress in fill- 
ing in the kinetic picture of the phase transition, covering the 
most important of these features in both the spinodal and 
binodal regions.'-l2 For example, the wave representation 
$, ( t )  of the coordinate dependence $(r, t)  was used in Refs. 
7-9 to analyze the late stages of the phase transition after a 
stage of spinodal decay. It was shown that the correlation 
function Ck ( t )  = ($, ( t )  1 $, (0) )  has the form of the Orn- 
stein-Zerne distribution at sufficiently large values of the 
wave vector k, with a correlation length f .  At small k, on the 
other hand, one observes a scaling Ck ( t )  a f [kL(t) ] with a 
scale L ( t )  a t  ", where n = 1/2, 1/3, 1/4, which is much 
greater in magnitude than f .  An analysis in Ref. 10 was car- 
ried out in r space, but in addition to the binary function C(r, 
t)  the third-order moment g ( t )  was taken into considera- 
tion. This moment represents the asymmetry of the 9{$(r,  
t ) )  distribution. It was shown that the correlation radius 
f ( t )  in the spinodal region decreases slightly as time elapses, 
while there is a significant increase in the asymmetry g( t ) .  
As a result, the configurative point on the phase portrait 
reaches an attractive focus. It is perfectly clear that the next 
stage should be bifurcation, which takes the system out of 
the spinodal regime and puts it in the heterophase regime. 

Such a bifurcation has not been described previously, 
but the model developed in Refs. 11 and 12 captures the 
features of the behavior ofthis system at both small distances 
r 2 f and large distances r 2 L ( t ) .  This is achieved, in con- 
trast with Refs. 2-4 and 7-10, through an analysis of not 
only the moments of the stochastic functional of the type 
C(r, t )  and g ( t )  but also the form of the functional Y{$(r, 
t ) )  itself. The random field $(r, t)  is broken up into a deter- 
ministic component ~ ( t )  and a fluctuating component ((t) .  
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The former varies over distances L ( t ) ,  while the latter is 
correlated over distances -{. Introducing the conjugate 
parameter of 7-the field m-we can find a self-consistent 
description of the kinetics of the transition in both the early 
stage, characterized by the quantity {, and the late stage, 
associated with the evolution of the characteristic size L ( t )  
(Refs. 11 and 12). 

There is an obvious gap in this description. The descrip- 
tion covers only the early and late limiting stages, not the 
transitional stage. It is the description of this transitional 
stage which is our goal in the present study. We start from a 
formal representation of the transition between these stages 
as a process in which the stochastic system loses its ergodic 
nature." Evidence in favor of using a representation of this 
sort comes primarily from the following obvious fact: In the 
early stages of the conversion, the field $(r ,  t )  can take on 
arbitrary values at any spatial point r, while in the late stages 
large values of $(r ,  t )  - 7 ( t )  are reached only inside the 
inclusions (at Ir - r, 1 < R , ) ,  and outside them we have 
$(r , t )  ~ < ( t )  < q ( t ) .  The disruption of the supersymmetry 
which results from the loss of ergodic natureI4 takes the 
following form in our case: Isolated excitations represented 
by occupation numbers n ( r )  = 0  and 1 and collective excita- 
tions described by density waves of the atomic distribution 
$, ( t )  lose their mutual equivalence in the late stages. In the 
homogeneous state in the early stages one can use either of 
these representations, which are linked by a lattice Fourier 
transformation, but when the macroscopic inhomogeneity 
arises in the late stages the system becomes represented by a 
modulated wave $,. ( r , t )  (Ref. 15 ). The meaning here is that 
a hierarchical relationship is established among the collec- 
tive excitations, with the result that they take on the proper- 
ties of isolated excitations at large distances - L.  

This loss of ergodic nature can be represented in a su- 
persymmetric theory14 or by the coupled-mode method.I6 
Here we take the more graphic second approach, in which 
the loss of ergodic nature is represented by the appearance of 
a pole in the Laplace transform C, ( 2 )  of the binary correla- 
tion function C, ( t )  at zero complex frequency z .  It thus 
becomes possible not only to reproduce the theoretical re- 
sults of Refs. 1 1  and 12 but also to describe the features of the 
transitional regime. 

2. BASIC RELATIONS 

We start from the anisotropic model described by the 
Ginzburg-Landau Hamiltonian: 

where a repeated Cartesian index a means a summation; the 
coefficient A is zero on the spinodal line; and B and P, are 
positive constants. In the linear approximation A = ae, 
where a > 0  is a constant, the quantity E = T / T ,  - 1 deter- 
mines the magnitude of the excursion of the system from the 
spinodal line. Ignoring the cubic anharmonicity corre- 
sponds to the symmetric dome of the spinodal. 

Let us consider the technically simpler case of an un- 
conserved order parameter') $ ( r , t ) .  The stochastic equa- 
tion of motion corresponding to Hamiltonian ( l ) takes the 
following form in this case:" 

$=[ (A+BaVa2) -B($I2]  $+f ( r ,  t ) ,  ( 2 )  

where the dot means differentiation with respect to the time, 
and this time is measured in a scale determined by the magni- 
tude of the diffusion coefficient. The stochastic increment 
c ( r ,  t )  represents white noise'' 

whose intensity is determined by the temperature T. 

To describe this system we formally write Eq. ( 2 ) ,  for 
the spatial Fourier transform $, ( t )  of the functional de- 
pendence $ ( r ,  t ) ,  in the form 4, ( t )  = iL $, ( t ) ,  which con- 
tains the Liouville operator L.  The solution of this equation, 
$, ( t )  = exp(iLt) $, ( 0 ) ,  makes it possible to write the re- 
laxation function C, ( t )  = ($, ( t )  1 $, ( 0 ) )  and its Laplace 
transform C ,  ( z )  = ($, ( z )  I$, ( 2 ) )  in the following way:'' 

where $, = $, ( t  = 0 ) .  Introducing the projection operators 

P=l~lk)<$kl$k>-'<~rl3i-Q, 

and using the operator identity 

we find 

The concentration correlation function $, here represents 
the thermal dynamic susceptibility x,, . We are assuming 
that the field $, and the corresponding flux j, = iw,, $, are 
not correlated with each other (wok is the frequency of the 
soft mode). The autocorrelation function of the fluxes is gi- 
ven by 

KI, ( z ) = - < j k  IQ~Z-LQ)-'Qljk), LQ=QLQ. ( 6 )  

Going through calculations for the flux j, ( t )  of the type 
carried out for the original field $, ( t ) ,  we can put expression 
( 6 )  in the form of the fraction ( 5 )  : 

K ~ ( z )  =-oor2[z+Mk ( z ) ] - ' ,  (7  

where the memory function M, ( 2 )  represents the correla- 
tion function of the form ( 6 )  of the generalized forces f,. 
Expressing the force fk cc *, in terms of the derivative of the 
flux, j, cc $,, we can also put the memory function in the 
form of the fraction ( 5 )  or ( 7 ) .  Continuing this operation, 
we find a representation of the initial correlation function 
C, ( z )  as an infinite chain fraction. This technique, deve- 
loped by Mori,I9 offers the convenience that the kernel of 
each fraction, ( 5 )  or ( 7 ) ,  has a completely unambiguous 
physical meaning. For example, we easily see from the con- 
tinuity equation * = - z k j ,  that the flux correlation func- 
tion D, = - ik - ' K ,  ( z  = iO) represents a diffusion coeffi- 
cient, while x, ( z )  = i z  ' D ,  represents the polarizability, 
which describes the correlation between the generalized po- 
larization of the medium, Pk ( z )  = iz -- ' j ,  = i ( k / k  ') $, ( z ) ,  
as a result of a stratification of the system. This circumstance 
allows a transparent interpretation of the physical meaning 
of the procedure of truncating an infinite chain by an expres- 
sion of the form ( 5 )  or ( 7 ) .  
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3. SELF-CONSISTENT REPRESENTATION OF THE 
NONERGODIC SITUATION 

A stratification of the system leads to a loss of ergodic 
nature, with the result that the correlation function C, ( t )  
takes on a finite value A, $0 as t- m. In the frequency do- 
main, this event means the appearance of poles:'6 

Ak = T lim (-zCk (2) ) 
z-i0 

6," lirn (-zMk ( 2 )  ) , 
1 - i o  

where A, and 8, are macroscopic and microscopic para- 
meters of the nonergodic nature, which are related by 

which follows from ( 5 ) ,  ( 7 ) ,  and ( 8 ) .  The physical meaning 
of the parameters in ( 8 )  is as follows: The quantity A, speci- 
fies that difference between the final and mean values of the 
order parameter which is a consequence of the stratification 
of the system. The parameter 8, determines the width of the 
gap in the dispersion relation 

The eigenfrequencies 

where w i  = a&, c = Pa /a&, determine the expressions 

for the nonergodic parameter A,, the isothermal susceptibi- 
lity xok = w& ', and the adiabatic susceptibility X, = 2. 

To determine the parameters ( 8 ) ,  we note that the gen- 
eralized force is proportional to the quantity B 2$accord- 
ing to the Langevin equation ( 2 ) .  The corresponding corre- 
lation function in the r, t representation is then2' 

Splitting the higher-order correlation function up into bin- 
ary correlation functions in accordance with Wick's 
theorem, we find 

where the coefficient specifies the number of such splittings 
possible. Using the expression for the relaxation function in 
terms of the correlation function," 

in the spirit of the basic approximation of strongly coupled 
modes,I6 we take the splitting of the memory function in 
terms of the original correlation function in the form2' 

I / T  

The correlation function here is expressed in terms of the 

Fourier transform C(r,  w )  of the relaxation function by 
means of the spectral representation1' 

n(r, t ) = ~ j  d o  r-'.' IrnC(r, o), 
- ce 

on the axis of the real frequency w. 
As a result, the definition ( 8 )  leads to the self-consis- 

tency condition 

where M;' (z )  is the nonsingular part, and N is the total 
number of atoms. Combining ( 8 ) ,  ( 9 ) ,  and ( 1 7 ) ,  we find the 
basic equation for determining the nonergodic para- 
meters:" 

Let us analyze this equation. We first note that there is a 
trivial root AL3' = 0 over the entire range of values of&. Near 
the spinodal (E  & 1 ) , the thermodynamic susceptibility x,, 
increases without bound, and Eq. ( 1 8 )  is satisfied only 
under the condition Tx,, /Ak 2 1. Near the spinodal we thus 
have a nonergodic region with A, 5 Tx,, , wok <a,; accord- 
ing to ( 9 )  and ( l o ) ,  the isothermal susceptibility x,, and the 
adiabatic susceptibility X, are very different (x,, & x k  ). 
This region obviously corresponds to a two-phase binodal 
region. Far from the spinodal, the ergodic state correspond- 
ing to the trivial root AF' = 0 is the stablest. Here there is a 
homogeneous state. The point at which the ergodic nature is 
lost, E = cg, thus determines the binodal line along our ap- 
proach. In the region bounded by it, Eq. ( 18)  has, in addi- 
tion to A p '  = 0, two other nonzero roots, AL"(AL2', which 
take on the same value AR, at E = E ~ .  With distance from the 
binodal (E  < E , ) ,  the value of A:" <A: decreases, while 
AL2' >A: increases. It can be shownI6 that the root A?' 
corresponds to a stable state. 

To carry out a quantitative analysis of Eq. ( 1 8 ) ,  we 
should take account of the circumstance that both of the 
functions X, ( r )  and A ( r )  vary over short distances r 5 < in 
the coordinate representation, but the susceptibility does so 
near the coordinate origin r = 0, while the nonergodic para- 
meter does so at the surface of ordered domains. In the k 
representation, this situation corresponds to a weak disper- 
sion of the susceptibility x,, . Correspondingly, the nonergo- 
dic parameter A, takes on large values -A, only at points k 
spaced uniformly through the Brillouin zone with a period - 2 r / L  determined by the characteristic size L of a domain. 
The nonergodic parameter 

is thus related to the maximum value of A, on the surface of 
the domains by 

The parameters& 1 here specifies the relative volume of the 
interface, of thickness S = ( P / a )  "* <c. We can thus re- 
duce the integral equation ( 18)  to an algebraic equation: 
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We first ignore the dispersion and the anisotropy, as- 
suming X& ' ZX; ' = a T ,  ( E  + y ) ,  where y  = Pk ; / a T ,  is 
an inhomogeneity parameter, and k ,  is the Debye wave 
number. For the dimensionless nonergodic parameter 
x = ( B  / a T ,  )S - "2A we then find the simple equation 

The solution of this equation is determined by the dimen- 
sionless temperature E,  the nonergodic parameter y, and the 
nonlinearity parameter b = (B / a2Ts  )s I". 

Analysis of the cubic equation ( 2 2 )  shows that the 
boundary value x, = ( 2 / 3 )  b (  1 + ~ ) / ( y  + E )  is reached at 

where c = 2'12/3. A nonzero interval in which the ergodic 
nature is lost occurs at large values of the parameter b and 
small values of y, in regions bounded by the condition 

The binodal regime is thus realized under conditions such 
that the nonlinearity is very influential in comparison with 
the inhomogeneity (Sec. 4 ) .  

According to ( 2 2 ) ,  the dependence of the nonergodic 
parameter x on the distance E from the spinodal line is as 
shown in Fig. 1. We see that an increase in the inhomogen- 
eity parameter y leads to a weakening of the nonergodic na- 
ture, while an increase in the nonlinearity b plays the oppo- 
site role. To demonstrate this behavior, we show in Fig. 2 the 
width E,  of the nonergodic region and the maximum value 
x, of the nonergodic parameter on the spinodal line E = 0 as 
functions of the parameters y  and b. 

These results pertain to the isotropic case, in which all 
the inhomogeneity parameters P ,  in expressions ( 1 1 ) for 
the susceptibilities x,, , X ,  are assumed to be identical. We 
turn now to the effect of a uniaxial anisotropy, determined 
by the value of the parameter A = P, /P , , , ,  where 
P I  = P 2  # P 3 .  Replacing the summation over the Brillouin 
zone in (21 ) by an integration over a cylinder of radius k, 
and height 2kD,  in the standard way, we obtain the transcen- 
dental equation 

-6 arctg 6 - I ,  ( 2 5 )  

A numerical analysis of this equation shows that the system 
behaves like the isotropic case of Eq. ( 2 2 ) ,  but the nonergo- 
dic nature is manifested much more strongly than in the 
neglect of dispersion, as above. That this is true can be seen 
by comparing curves 1 and 2 in Fig. 3, the first of which was 

FIG. 1. The dimensionless nonergodic parameter versus the distance from 
the spinodal. a: For a constant value of the inhomogeneity parameter, 
y = lo - ' ,  and several values of the nonlinearity parameter. I-b = l o - ' ;  
2 -5 .  l o - ' ;  3 -10-2 .  b: At aconstant valueofthenonlinearity parameter, 
b = 5 . 1 0 - ' ,  and at several values of the inhomogeneity parameter. 1- 

= 5 .  lo - ' ;  2-10-'; 3 -5 .  lo - ' .  

FIG. 2. Relative width of the binodal region, E, (a) ,  and maximum value 
of the nonergodic parameter, x, (b) ,  versus the inhomogeneity parameter 
y and the nonlinearity parameter b. 
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FIG. 3. The nonergodic parameter versus the distance from the spinodal 
for the isotropic nondispersive case (curve I )  and for the anisotropic case 
(curve 2; the anisotropy parameter is A = 0.5). For both cases, y = 0.3 
and b=0.1. 

found in the approximation X& ' = aT, (E + y), and the se- 
cond under approximation ( 1 1 ) . 

It can also be seen from Fig. 4 that the growth of the 
anisotropy, reflected by a decrease in the parameter A< 1, 
leads to an intensification of the nonergodic nature. This 
intensification occurs in terms of both the value of the para- 
meter x and the width of the temperature region, E,. There is 
also an expansion of the region of the parameters y and b for 
which there is a nonergodic state. For example, the critical 
value y, of the inhomogeneity parameter, at which the ergo- 
dic nature is restored at once on the spinodal line ( E  = O), 
increases with increasing anisotropy according to Fig. 5. 

4. DISCUSSION OFRESULTS 

The basic assumption of the picture drawn here is that 
the transition from the spinodal regime to the binodal regime 
causes the stochastic system to lose its ergodic nature. As we 
know from the example of a spin glass,22 the characteristic 
feature of a nonergodic system of this sort stems from the 
degeneracy of the ground state with respect to a local gauge 
symmetry.23 The result is a breakup of the phase space into 
"valleys" corresponding to isolated (or only slightly over- 
lapping) sub ensemble^.'^ The energies of all these suben- 
sembles are approximately the same, and the transforma- 
tions of the symmetry group send the system from one of 
these valleys into another.22 

FIG. 4. The nonergodic parameter versus the distance from the spinodal 
for y = 0.3, b = 0.1, and several values of the anisotropy parameter: 1- 
A = 1; 2-0.5; 3-4.1. 
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FIG. 5. Extreme inhomogeneity parameter at  which a binodal region ap- 
pears versus the anisotropy parameter (b  = 0.1 ). 

In spin glasses, the local gauge invariance stems from a 
frustration of constraints, which stems in turn from the ran- 
dom scatter of overlap integrah2' Their role is played in our 
case by the gradient parameters 8, in (1).  Since the quan- 
tity'' 8- va2 is determined by the energy v of the interatomic 
interaction (a  is a lattice constant), it is not difficult to see 
that frustration of constraints also occurs at the interface. If, 
for example, we understand "ordering" to mean the appear- 
ance of a long-range order in an alloy of stoichiometric com- 
position,15 then a normal constraint corresponds to the in- 
teraction of unlike atoms, and a frustrated constraint to the 
interaction of like atoms. It is this interaction which is rea- 
lized at the boundary of an antiphase domain. In contrast 
with the spin glass, however, in which the values of the over- 
lap integrals have a scatter at the outset, the scatter in the 
parameters of the interatomic interaction v in the system 
under consideration here is a consequence of the formation 
of the domain walls themselves. The existence of these walls 
is in turn of a kinetic nature: The phase of the order para- 
meter ~ ( r )  is fixed in a random way at different points r, and 
the growth of nucleating regions of ordered phase is accom- 
panied by the formation of a "foam" of antiphase domains.24 

Along the self-consistent approach which we have been 
taking here, the macroscopic nonergodic parameter in ( 10) 
determines the adiabatic susceptibility X ,  = x,, - A , / T  in 
terms of a given isothermal susceptibility x,, . The absence 
of a nonergodic nature under the spinodal causes these two 
susceptibilities to become the same; when the spinodal is 
crossed, the adiabatic value decreases abruptly. In the 
course of further motion from the spinodal toward the bino- 
dal, the difference AX, = x,, - xk decreases smoothly 
(Fig. 1 ) and then drops abruptly to zero on the binodal line. 
The maximum value of AX, and the width E, (of the region 
between the binodal and the spinodal) decrease with in- 
creasing value of the parameter y (which is determined by 
the strength u of the interatomic coupling,'' and also with 
decreasing value of the anharmonicity constant b (Fig. 2) .  
The anisotropy of the interparticle interaction has a substan- 
tial effect. A strengthening of this interaction leads to a broa- 
dening of the region between the binodal and the spinodal 
and to an increase in the difference between the adiabatic 
and isothermal susceptibilities. Figure 5 shows the limiting 
value y, of the nonergodic parameter, at which the binodal 
splits off from the spinodal, as a function of the anisotropy A.  



An important aspect of this heterogeneous system is the 
weakness of the departure from ergodicity. The reason for 
this situation is that while the number of frustrated con- 
straints in ordinary spin-glass systems is on the order of the 
number of nodes, N (Ref. 22), in the case at hand this 
number is limited by the size of the surface of the domains 
and is thus smaller by a factor of s p  ' % 1. As a result, the 
total number of valleys in this system is smaller by an equal 
factor, and since we haves - ' a L a t I/'+ cc the nonergodic 
nature in ( 19) drops out of the picture as time elapses 
(t-  co ), according to Eq. (20). 

The presence of the geometric factor s = 3S/L in the 
nonergodic parameter A as"' and in the nonlinearity para- 
meter b a s '/' specifies the time dependence of the picture 
we have drawn here, which is determined by the growth of 
domains. On the one hand, there is a decrease in 
Aas'/2aL - ' / la  - ' /4 , because of this decrease in the 
number of valleys in the phase space. On the other hand, the 
increase in the nonlinearity parameter b a s p  a 
L 1/2, 1/4 with time means that condition (24) begins to 
hold only if there are sufficiently large domains. The noner- 
godic nature is thus manifested only beginning at a charac- 
teristic size 

Since we usually have L,/S- 10 - lo4, the meaning of this 
result is that the thickness S of the interface must not exceed 
13,s (BT, ) "4a - 1/2a. In other words, the existence of a non- 
ergodic nature means that the domain size L must be much 
larger than the wall width S and that there must be a strong 
nonlinearity ofB against the background of the thermodyna- 
mic stimulus a to an ordering. 

It can be seen from this discussion that the geometry of 
the problem has an important effect on the nonergodic con- 
ditions. We should point out in this connection that we have 
been discussing a very simple model of identical domains 
here. As in a spin glass,22 however, the nonergodic nature 
may lead to a hierarchical subordination in the ensemble of 
domains. This situation would imply that, because of the 
different sizes, the smallest domains are the first to combine 
as the heterogeneous system evolves; larger domains then 
combine; and so forth. A corresponding description can be 
found by a microscopic approach like that of Ref. 25 or on 
the basis of a phenomenological model.26 

The results found here show why the analytic descrip- 
tion of the time evolution C, ( t )  and L ( t )  (Refs. 1 1 and 12) 
is not the same as is found from the numerical results of Ref. 
27. According to an analysis in Refs. 28 and 29, this discre- 
pancy increases significantly after a long time, while it de- 
creases with increasing noise. Along our approach, the mea- 
sure of this discrepancy is the nonergodic parameter A. The 
magnitude of this parameter determines the difference 
between the dynamic susceptibility measured in the limit of 
an infinitely long experimental time and the thermodynamic 
value, given by a self-consistent theory2' like that of Refs. 1 1 
and 12. The decrease in the parameter A a x  with the temper- 
ature which we see in Figs. 1 and 3 means a decrease in this 
discrepancy with increasing noise intensity. On the other 
hand, the decrease in the maximum value of the nonergodic 
parameter x,, and in the width E, of the nonergodic region 
with increasing value of the inhomogeneity parameter y a p  

(Fig. 2) means a decrease in this discrepancy with increas- 
ing value of the gradient parameter /? in ( 1 ). The latter in- 
crease leads to an increase in the wall with S a p  The 
meaning here is that if this discrepancy is strongly related to 
the nonergodicity, then the assumption28 that the difference 
between the analytic and numerical results may decrease as 
the wall shrinks (6- 0 )  is unjustified. This conclusion is also 
supported by the results of Ref. 29, where the use of a model 
with an infinitely thin wall did not improve the agreement 
(see Fig. 9 in Ref. 29). The discrepancy between the analytic 
 result^'^,^^ and the numerical data27229 may of course also be 
affected by purely technical factors, such as the small step in 
the numerical simulation, the size of the modeled system, 
and so 

From a physical standpoint, the decrease in this discre- 
pancy which results from an increase in the noise can be 
attributed to a restoration of the ergodicity of the system. 
The transition from the spinodal regime to the binodal re- 
gime, represented as a loss of ergodicity, signifies a breakup 
of the complete statistical ensemble into isolated subensem- 
bles.I3 If the initial conditions of a deterministic system are 
fixed, it will evolve in the particular valley of phase space 
which is imposed in this manner. Since a thermodynamic 
representation of the system, which is used in the self-consis- 
tent-field appr~ach," . '~  corresponds to an average over all 
states of the complete ensemble (and thus over all valleys), 
the behavior of a deterministic system in the absence of a 
noise, which is determined by the evolution of some suben- 
semble, will deviate to the maximum extent from self-consis- 
tent evolution. In the absence of noise, the degree to which 
the results of the self-consistent theory disagree with experi- 
ment will thus be at a maximum. As the noise increases, the 
scatter in the initial conditions increases. Consequently, se- 
veral ensembles-the exact number increasing with the 
noise intensity-will contribute to the description of the evo- 
lution of the system. There is, of course, a decrease in the 
difference between the thermodynamic behavior of the en- 
tire ensemble and the dynamic repre~entation'~ of the sys- 
tem, which goes into several subensembles because of the 
scatter in the initial conditions. 

From this point of view we also reach an understanding 
of the effect of the thickness of the interface on the evolution. 
According to Refs. 28 and 29, the self-consistent theory of 
Refs. 11 and 12 yields a scaling C(r, t)  - 1 - constL - ' for 
a smooth boundary, while for a sharp boundary it yields 
C(0, t )  =. 1 - s = 1 - 3S/L (Ref. 29). This discrepancy is 
evidently due to the loss of ergodicity, since a smooth boun- 
dary is realized in the spinodal region, and a sharp one in the 
binodal region. Actually, this theory describes a transition 
from one behavioral regime to another, which occurs upon a 
change in external conditions. With regard to the self-consis- 
tent theory''.'2 (see also Ref. 28), here the thermodynamic 
behavior of a system with smooth boundaries, correspond- 
ing to evolution throughout the phase space, is being de- 
scribed. As the boundary shrinks, this phase space breaks up 
into a set of valleys, and a deterministic system without a 
noise becomes trapped in one of these valleys. Consequently, 
as the thickness of the interface becomes smaller (and thus 
the measure of the deviation from ergodicity becomes 
larger), there should be an increase in the discrepancy 
between the self-consistent theory"." and the numerical si- 
m ~ l a t i o n . ~ ~ ' ~ ~  
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FIG. 6. Dispersion of the hydrodynamic mode responsible for the stratifi- 
cation of the system. Here 7 = - i / o  is the relaxation time in the dissipa- 
tive regime. 

We note in conclusion that the dispersion relation for 
the hydrodynamic mode responsible for the stratification of 
the system exhibits an extremely unusual behavior. While 
there is a gapless mode of restoration of the inhomogeneity 
under the spinodal,15 in the binodal region, for a given wave 
vector k, there is a mode 

which follows from (4)  and (7)  in accordance with the con- 
dition C, (z) = w . In the immediate vicinity of the spinodal, 
with x> ( 1 + E ) / ( Y  + E ) ,  E < E, ,  this mode is dissipative. 
Further on (at E,  < E < E~ ), it is reactive, with a gap deter- 
mined by the width 3w,. Figure 6 shows the behavior w (&). 

We wish to thank the reviewer for comments regarding 
the presentation of these results and also for calling our at- 
tention to the importance of Ref. 28 to the interpretation of 
the results. 
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"To avoid any misunderstanding, we should state that the procedure we 

have used to impose self-consistency determines the nonergodic para- 
meter A, while in Refs. 11 and 12 the procedure determined the order 
parameter 7. 

'Yu. V. Mikhailova and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 59, 1368 
(1970) [Sov. Phys. JETP 32,747 (1971)l. 

'1. M. Lifshits and V. V. Slezov, Zh. Eksp. Teor. Fiz. 35,479 ( 1958) [Sov. 
Phys. JETP 8,331 ( 1959)l. 

3H. E. Cook, Acta Metall. 23, 1027 (1975). 
4J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28,258 (1958). 
'V. P. Skripov and A. V. Skripov, Usp. Fiz. Nauk 128, 193 ( 1979) [Sov. 
Phys. Usp. 22, 389 ( 1979) 1. 

'J. S. Langer, Acta Metall. 21, 1649 (1973). 
7A. J. Bray, Phys. Rev. Lett. 62, 2841 (1989). 
'Z. Y. Chen, Phys. Rev. B &O, 4656 (1989). 
"V. S. Mitlin, Zh. Eksp. Teor. Fiz. 95, 1826 (1989) [Sov. Phys. JETP 68, 
I056 (1989)l. 

I0E. P. Fel'dman and L. I. Stefanovich, Zh. Eksp. Teor. Fiz. 96, 1513 
(1989) [Sov. Phys. JETP 69, 858 (1989)l. 

"G. F. Mazenko, 0 .  T. Valls, and M. Zanetti, Phys. Rev. B 38, 520 
(1988). 

IZG. F. Mazenko, Phys. Rev. Lett. 63, 1605 (1989). 
"R. G.  Palmer, Adv. Phys. 31, 669 (1982). 
I4M. V. Feigel'man and A. M. Tsvelik, Zh. Eksp. Teor. Fiz. 83, 1430 

(1982) [Sov. Phys. JETP 56, 823 (1982)l. 
"A. A. Katsnel'son and A. I. Olezhskoi, Microscopic Theory of Nonuni- 
form Structures, Izd. Mosk. univ., Moscow, 1987. 

'"W. Goetze, Liquid-Glass Phase Transitions (Russ. transl., Nauka, Mos- 
cow, 1990). 

I7W. Horsthemke and R. Lefever, Noise-Induced Transitions, Springer- 
Verlag, New York, 1983 (Russ. transl., Mir, Moscow, 1987). 

"D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Corre- 
lation Functions, Benjamin, New York, 1975 (Russ. transl., Atomizdat, 
Moscow, 1980). 

'"H. Mori, Progr. Theor. Phys. 33,423 (1965). 
"'Yu. A. Tserkovnikov, Teor. Mat. Fiz. 49, 219 (1981 ); 50, 261 (1982). 
"V. L. Aksenov, M. Bobeth, N. M. Plakida, and J. Schreiber, J. Phys. C 

20,375 (1987). 
"K. Binder and A. P. Young. Rev. Mod. Phvs. 58,801 (1986) 
"G. Toulouse, Commun. P&S. 2, 11 5 ( 197;). 
241. M. Lifshits, Zh. Eksp Teor. Fiz. 5, 1354 (1962) [Sov. Phys. JETP 42, 

939 (1962)]. 
'%. L. Ginzburg, Irreversible Phenomena in Spin Glasses, Nauka, Mos- 

cow, 1989. 
"A. I. Olemskoi, Fiz. Met. Metalloved. 68, 56 (1989). 
27T. M. Roger, K. R. Elder, and C. Desat, Phys. Rev. B37,9638 (1988). 
"G. F. Mazenko, 0. T. Valls, and M. Zanetti, Phys. Rev. B 40, 379 

(1989). 
"G. F. Mazenko, Phys. Rev. B 42,4487 ( 1990). 

Translated by D. Parsons 

551 Sov. Phys. JETP 73 (3), September 1991 Olemskoi et a/. 551 


