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Self-trapped states of charge carriers in 3 0  and 2 0  antiferromagnetic systems of the Hubbard- 
model type in a magnetic field are analyzed. One of these systems is a quasi-oscillator (or string), 
in which an electron is oscillating in space with respect to the center of the state, and there is a 
simultaneous oscillation of a deformation of the magnetic order. A system of equations 
corresponding to the Feynman version of quantum mechanics derived here for the paths of the 
electron motions is used to construct an effective wave equation. This wave equation makes it 
possible to find the energy of the string as a function of the parameters of the system within a 
factor on the order of unity. Another state of this type is a ferron (or large-radius magnetic 
polaron), in which an electron creates a microscopic ferromagnetic region and undergoes self- 
trapping there. Under the conditions considered here, the ferron is fundamentally different from 
that described previously (E. L. Nagaev, Physics ofMagnetic Semiconductors, Mir, Moscow, 
1983). The differences involve the nature of the ferron and the conditions under which it exists. 
Under certain conditions, a ferron may be preferable to a string from the energy standpoint in the 
absence of a field; a field will stabilize it. It is suggested that the anomalous field dependence of the 
electrical and optical properties of a 8 e  and a-Ge might be explained by the presence of pores with 
dangling bonds at their surfaces. This situation would cause these materials to behave as 2 0  
antiferromagnets. Electrons or holes trapped by pores would form ferrons whose energy would 
depend strongly on the field. 

The recent discovery of high T, superconductors has 
breathed new life into the waning research on magnetic se- 
miconductors. The reason is that most of the high T, super- 
conductors and related compounds are degenerate antiferro- 
magnetic or nearly antiferromagnetic semiconductors (in 
the latter case, only a short-range antiferromagnetic order is 
observed instead of a long-range order). Antiferromagnetic 
semiconductors contain self-trapped states of charge car- 
riers, with a disruption of the antiferromagnetic order near 
the point of carrier trapping.' Although the theory for such 
states dates back to the 1960s, it is by no means perfected. 
This theory is not only of independent interest; it is also 
pertinent to high T, superconductivity: Several recent 
papers have proposed explanations for the properties of high 
T, superconductors on the basis of self-trapped states (e.g., 
Refs. 2-4). 

In this paper we would like to suggest that magnetic 
self-trapped states might be capable of explaining the ano- 
malous behavior of such amorphous semiconductors as Ge 
and Si in a magnetic field. Experimental data, which we will 
discuss below, indicate that this behavior is similar to that of 
magnetic semiconductors. Although a-Ge and a-Si are gen- 
erally only slightly magnetic, they do contain regions in 
which there may be a short-range antiferromagnetic order. 
These regions are the inner surfaces of the pores which are 
unavoidably present in large numbers in a-Ge and a-Si sam- 
ples. Each atom at the surface of a pore has a single unpaired 
s-p bond, because there is no neighbor on the pore side. The 
orbits of neighboring atoms at the surface of pores overlap 
somewhat. The exchange interaction which arises between 
the unpaired electrons of these atoms should result in con- 
version of the pore surfaces into 2 0  magnets. These pores 
can serve as donors or acceptors. In addition, self-trapping 
of an electron or a hole trapped by these pores can occur 

there, by the same mechanism as in magnetic semiconduc- 
tors. It would lead to a strong field dependence of the depth 
of the level associated with the pore. 

Various models have been proposed for magnetic self- 
trapped states in antiferromagnetic semiconductors. De 
Gennes5 has suggested that such a state arises from a devia- 
tion of the spin of one single electron from the direction of 
the moment of the corresponding sublattice. However, an 
analysis in Ref. 1 shows that such a state would not be possi- 
ble at realistic values of the parameters of the crystal. In 
particular, the realization of such a state would require huge 
values of the atomic spins-far greater than anything which 
exists in nature. 

A different model for the self-trapping of an electron in 
an antiferromagnetic semiconductor was proposed in Ref. 6: 
An electron creates a ferromagnetic region in the semicon- 
ductor and stabilizes this region by being trapped in it. The 
size of the region is found by minimizing the energy of the 
system. In materials such as EuTe and EuSe, in which the 
existence of such states is implied by experimental data,' the 
region may contain hundreds or even thousands of atoms. 
The results found in Ref. 6 were subsequently reproduced by 
many workers. The term "ferron" was used for such a state 
in Ref. 1, although the term "large-radius magnetic po- 
laron" is often used for it in the current literature.'' 

Bulaevskii et al.' have proposed an entirely different 
model of a self-localized state. They considered a Hubbard 
model or the equivalent limit of narrow conduction bands in 
ans-f model. In this case the spin of a regular magnetic atom 
is 1/2; if there is a conduction electron at this atom, the spin 
of the atom is zero. When the conduction electron makes a 
transition to a neighboring atom, the spin of the atom which 
the electron leaves behind is directed opposite the angular 
momentum of the sublattice to which that atom belongs. 
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Consequently, the longer the path traveled by the electron, 
the greater the disruption of the antiferromagnetic order 
along the path, and the higher the energy of the magnetic 
order. Correspondingly, a quasielastic force arises and tends 
to move the electron toward a certain central atom-an 
atom in a configuration such that if the electron moves there 
the antiferromagnetic order will not be disrupted. As a re- 
sult, the electron oscillates with respect to this atom, and the 
degree of disruption of the magnetic order oscillates along 
with the electron. 

Subsequent papers on this topic have referred to this 
state not as a "quasi-oscillator,'' as proposed in Ref. 7, but as 
a "string." "String" is indeed a more convenient term. A 
string differs from a ferron not having a huge magnetic mo- 
ment. According to Refs. 1 and 7, a string is described by 
electron-path equations which are in a sense analogs of the 
equations in Feynman's formulation of quantum mechanics. 
In contrast with the latter, however, the string equations 
cannot be reduced exactly to a wave equation. It was for this 
reason that reliable estimates of the string energy could not 
be found in Ref. 7 except in the case in which only short 
paths were important. A string in a magnetic field has not 
been studied; we do not even know whether a ferron might be 
preferable to a string from the energy standpoint. 

In the present paper we take a new approach to the 
string problem. This approach leads to an effective wave 
equation for a string. This approach makes it possible to 
derive the nontrivial part of the string energy to within a 
factor of order unity and to find a lower estimate of this 
energy (an upper estimate can be found by a path 
method',' ). The equation derived below can be used to de- 
termine the behavior of the string energy as a function of the 
magnetic field. 

We also calculate the energy of a ferron. A ferron in a 
Hubbard-type magnetic material is quite different from the 
ferrons, described in Ref. 1, in magnetic materials of other 
types. In this case the ferromagnetic region is not a potential 
well for electrons, and the formation of a ferron can be ex- 
plained by saying that the motion of an electron in the ferro- 
magnetic region is not accompanied by deformation of the 
magnetic structure. Correspondingly, the conditions for the 
existence of a ferron in this case are quite different than those 
given in Ref. 1. In contrast with Ref. 1, for example, a mag- 
netic field stabilizes a ferron instead of destroying it. 

It has been found that the string energy is small in com- 
parison with the ferron energy by a factor proportional to the 
parameter (I /B) ", where I is the exchange integral, and B is 
the Bloch integral. For the 3 0  case we would haven = 4/15, 
and for the 2 0  case we would have n = 1/6. As I /B-0, in 
the absence of a field, a string should thus be energtically 
preferable to a ferron. With increasing field, however, re- 
gardless of the value ofI/B, the ferron becomes preferable to 
the string from the energy standpoint. 

At the actual values of1 /B, because of the small value of 
the power n with which I / B  appears in the ratio of the string 
energy and the ferron energy, it may happen that these ener- 
gies are approximately the same. There could even be a situa- 
tion, particularly in the 2 0  case, in which a ferron is energe- 
tically preferable to a string even in the absence of a field. 
This circumstance might lead to an explanation of the ano- 
malous behavior of amorphous semiconductors in a magne- 
tic field. 

EFFECTIVE WAVE EQUATION FOR A STRING 

The concept of a string (or quasi-oscillator) can be ex- 
plained most simply in the Hubbard model. We consider a 
situation in which a crystal initially has an ideal antiferro- 
magnetic order. A second electron appears at one atom of 
the crystal, which we adopt as the central atom. [In the 1D 
case, the ( t ( l ) ( t ( l 1 ( t ) pattern is replaced by 
( t ) ( l ) ( t l ) ( l ) ( t ) .] The extra electron can leave this cen- 
tral atom and go to a neighboring atom. Of the two electrons 
at the central atom, the one which makes the transition is 
that whose spin is opposite the spin of the neighbor [the 
pattern ( t ) ( l ) ( l ) ( t l ) ( T ) 1. After the electron leaves the 
atom, the atom will thus be left with the "wrong" spin-a 
spin directed opposite the moment of the sublattice to which 
the atom belongs. The transition of the extra electron to the 
next atom gives rise to yet another wrong spin, again at the 
atom which the electron leaves. Consequently, wrong spins 
appear along the entire path of the electron. The higher the 
number of these wrong spins, the greater the increase in the 
magnetic energy of the system, i.e., the greater the force 
which tends to return the electron to the central atom. The 
disrupted antiferromagnetic order can be restored if the elec- 
tron moves back toward the center along the same path 
which it took in moving away from the center. The electron 
must therefore oscillate with respect to the central atom. 

In string calculations it is more convenient for technical 
reasons to use an s-f model instead of the Hubbard Hamilto- 
nian. It was proved in Ref. 1 that the s-f model is equivalent 
to the Hubbard model in the particular case in which the) 
spin S is 1/2, and the integral of the s-f exchange, A,,., tends 
toward - co . In this limit one can use the spin-polaron rep- 
resentation described in Refs. 1 and 7. A spin-polaron is ans- 
electron whose spin is strongly coupled to the f-spin of the 
atom at which the electron is residing. In terms of the spin- 
polaron operators a:, a, (g is the site index), the Hamilto- 
nian of the system is 

Fg,#+, =(S+S8z)'h ( s + s ~ ~ ) "  + ( S f  Sgz) -" S ~ + S ~ ~ A ( S + S ~ > A )  -"', 

where S, is the spin operator of atom g, I < 0 is the exchange 
integral for the exchange between nearest neighbors, which 
are connected to each other by the vector A, and h is the 
external magnetic field (expressed in energy units), which is 
directed along the z axis. 

The quantity F incorporates the strong correlation 
between the spin of the carrier and the spins of the magnetic 
atoms. In the methods of Refs. 1 and 7, the atom at which the 
extra electron resides is also formally assigned a spin of 1/2; 
the singlet nature of the state of this atom is taken into ac- 
count by assuming that its spin projection is fixed: S = 1/2. 
The first term in F describes transitions in which the spin of 
the atom which the electron leaves is parallel to the original 
spin of the atom to which the electron moves. The second 
term describes transitions in which these spins are in oppo- 
site directions. The expression for F given here includes a 
factor of 2 which was not present in Refs. 1 and 7. Because of 
this factor, the first term in ( 1 ) takes the same form as the 

531 Sov. Phys. JETP 73 (3), September 1991 E. L. Nagaev 531 



ordinary electron Hamiltonian when a ferromagnetic order- 
ing occurs. 

To find the energy of the string we use a variational 
principle. We write the wave function of the system as 

I = TI 18 (stz. '/2)sin ( 0 t i 2 )  +6 (sfz, - ' / , )  cos (0t12) 1 ,  

where 8, is the angle between the direction of the average 
spin of atom f and the z axis, S(x,y) is the 6-function of 
discrete argument, and 10) is the vacuum wave function of 
the spin-polaron. Expressions (2)  and ( 3 )  ignore minor 
quantum-mechanical effects which lead to zero-point vibra- 
tions of the spins and to the possibility that the center of the 
string will move through the crystal.' 

Using (1)-(3), we find the equations of the Ritz 
method: 

We see from (5 )  that the matrix element B , ,  + A of the tran- 
sition of the electron from the first atom to the second 
reaches a maximum when the spin direction at the first atom 
is the same as that at the second atom before the transition. 
Because of the strong inequality I B I B I I I ( B  is a small quan- 
tity of first order, and I is one of second order, in the overlap 
of the orbitals of neighboring atoms), the electron transi- 
tions should occur in such a way that the quantity I B , ,  + A I is 
maximized. After a transition of an electron from a central 
atom (labeled 0) to a neighboring atom A,, the angle 
between the spin of the central atom and the field becomes 
equal to the initial value (e,, ) of the angle between the spin 

of atom A, and the field. Correspondingly, after the electron 
leaves atom A, and goes to atom A, + A,, the angle between 
the spin of atom A, and the field becomes equal to O,, +,?, 

instead of the original value 8,, . 
It is suggested below (and the suggestion is supported 

by subsequent calculations) that an electron has only a 
minor effect on the value of the magnetic moment of the 
crystal. Under this assumption one can make the further 
assumption that, as in the absence of a conduction electron, 
the initial values of the angles are given by the following 
expression in a simple cubic 3 0  lattice or a simple square 2 0  
lattice with a checkerboard antiferromagnetic order: 

Here z is the number of nearest neighbors, and Q is the anti- 
ferromagnetism vector (QA = T). As an electron passes 
through an atom, the sign of the angle between the spin of the 
atom and the field changes if the electron is at a distance 
from the center. When the electron undergoes the opposite 
transition, the angle recovers its original value. 

We thus see that the distribution of the angles 8, is 
determined unambiguously by the path of the electron, i.e., 
by the particular set of sites A,, A ,  + A ,,..., A, + ... + A,, 
which the electron has visited and which satisfy the condi- 
tion A,, + , # - A,. The coefficients c({8,)) can thus be as- 
sumed to be functionals of the paths, and the Ritz equations 
(4)  become (A, -0) 

[ E - E M  ( A o , .  . . , A,,) l c  ( A o ,  . . . , A,,) 

A". , t - -A"  

If the path has no self-intersections or self-tangencies, 
the magnetic energy increases by an amount 

after each successive step (the first step is an exceptional 
case, in which the energy of the step is proportional to z - 1 
instead of z - 2). Since there can be a huge number of paths 
without self-intersections or self-tangencies, we can assume 
that the magnetic energy is proportional to the number n of 
the steps in the path: 

EM (A,,, . . . , An) m n f .  (9) 

We can use (9)  to construct an effective wave equation 
for the string, which will replace the path equations (7).  
This approach is conceptually similar to the construction of 
the wave equation through a summation over particle paths 
in the Feynman formulation of quantum  mechanic^.^ In the 
case at hand, however, there are some difficulties which were 
not present in Ref. 8, since even the simplified expression for 
the magnetic energy in (9)  depends not on the final point of 
the path, g = A, + ... + A,, but on the number of steps ta- 
ken to reach this point. This number can be any number 
greater than Igl. It is thus not possible to construct a one- 
particle wave equation which is precisely equivalent to (7) .  

The effective wave function p (g )  of the string is intro- 
duced by means of 

Multiplying both sides of Eqs. (7)  by S (  A, + ... A, ,g), and 
summing over all A, and n, we find, using (9) ,  

n A 

Using the mean value theorem, we find 

The only paths which contribute significantly to p(g)  are 
those whose lengths are greater than the minimum possible 
length Igl by an amount on the order of the radius p of the 
self-trapped state. The quantity j3 must therefore be on the 
order of this radius, which must itself be determined from a 
further calculation. (Strictly speaking, j3 may depend weak- 
ly on g, but we will ignore that dependence.) 

As usual in an effective-mass method, we expand 
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p ( g + A )  in (11) inpowersofbanduse (12). Wefindthe 
wave equation ( h  = 1 ) 

where a is the interatomic distance, r = ga, and d is the di- 
mensionality of the system. 

STRING ENERGY 

Equation ( 13) can be solved exactly in the 3 0  case. The 
ground state of the string, in which we are interested here, is 
described by the wave function 

where Ai(r)  is the Airy function. The energy is found by 
requiring that p ( r )  remain finite at r = 0. Using the values 
of the zeros of the Airy function, which are given in Ref. 9, 
we find an expression for the quantity 7. This quantity repre- 
sents a lower estimate of the string energy, reckoned from 
the minimum electron energy zB: 

The actual energy of the string, E ,  [i.e., the smallest 
eigenvalue of Eqs. (4)  ] is given by 

where C- 1. In deriving this result we made use of the happy 
circumstance that the two terms in ( 16) depend in an identi- 
cal way on the parameters of the problem atj5 -p, according 
to ( 14). If the ratioj5/p is between 1 and 3, the quantity Cis 
between 1.34 and 2.02. The functional dependence of E, on 
the parameters of this system described by (15) and ( 16) is 
essentially exact. 

To find an upper estimate 5 j  on the energy of the string, 
we can assume that as an electron moves away from the 
center it reaches atom g by a random walk. For this purpose, 
the electron must take an average of g2/a2 steps. Corre- 
spondingly, the potential energy of the string in a wave equa- 
tion like ( 13) must be given by an expression f(r/a) 2, and ij 
must be the same as the energy of the ground state of a 3D 
oscillator: 

With h = 0, according to ( 15) and ( 15a), we have a ratio 
ij/v=: (B /I) In other words, even in the case I / B  = 0.01 
this ratio is close to 2. We thus find that the upper and lower 
estimates of the string energy are not far apart. 

To evaluate the accuracy of expression (6),  which was 
used in deriving (14)-(16), we can assume that the angle 
between the spin of the atom and the field differs from P 
inside a sphere whose radius is that of the string in ( 14). 
Minimization of the total energy EM + E with respect to this 
angle leads to a value for this angle which differs from that in 
(6) by an amount - (I/B)2'3< 1. 

In analyzing the 2 0  case, our first task is to formulate 
boundary conditions on the wave function p ( r )  at r = 0. It is 

a simple matter to show that for any potential which van- 
ishes at r = 0 the condition that p (0 )  remain finite is equiva- 
lent to the equation 

cp' ( r )  =O.  (17) 

To demonstrate the point, we note that as r-0 in this case 
Eq. ( 13 ) becomes 

A solution of this equation which satisfies the condition that 
p (0)  remain finite is d p  /dr = Kr/2; hence ( 17). 

In the 2 0  case, it is not possible to solve ( 13) exactly. 
Nevertheless, we can find a lower estimate 7 for the string 
energy: 

q = rp%i(~::) cp 6r+ncpz(0)/2m > ~i (r)%i:' Ai (r) br-qAl. 

In writing ( 18) we used the equation p ( co ) = 0 and the fact 
that the expectation value of in terms of the state p ( r )  
is greater than the expectation value in terms of the eigen- 
state Ai(r) of this Hamiltonian. 

As a lower estimate of the string energy E, we can thus 
use the quantity vAi.  For the latter we find the result ( 15) 
with L = 3.6 by making use of boundary condition ( 17) and 
the zeros of the function Ai '(z), which are given in Ref. 9. 
To verify that the result for E, in the 2 0  case differs from 
(15) only by afactor - 1, incompleteanalogy with (16), we 
note that the Hamiltonian Z E '  in ( 13) would be the ssme 
as A?:,' if it were acting on a cylindrically symmetric wave 
function in the limit r+ co. Consequently, the asymptotic 
behavior of this function is Ai(r/p), with p from ( 14). In 
other words, the quantity p serves as the radius of the state 
again in the 2 0  case. According to the uncertainty principle, 
the ground-state energy must then be - l/mp '. In other 
words, it must be given by an expression like ( 16), but with a 
different constant. 

We could reach the same conclusion by a different 
path-by examining corrections of arbitrary order in 
A?kt,'-Z2,). It turns out that all such corrections are on the 
order of ( 15). The term f p/a, which also appears in the 
expression for E,, is on the same order of magnitude. 

FERRON STATES IN THE SPIN-1 I 2  CASE 

To determine whether a string is stable, we should com- 
pare its energy with the energies of ferron states. In contrast 
with the S >  1/2 case, which was studied in detail in Ref. 1, 
ferron states in the S  = 1/2 case have several distinctive fea- 
tures if the s-f exchange integral has the behavior 
Asf-  - co. That this is true can be seen from simply the 
circumstance that at such values of A,, the microscopic fer- 
romagnetic region is a potential well of depth - [ 1 - (2s )  - '"1 for a conduction electron. With S  = 1/2, 
the depth of the well vanishes. On the other hand, while an 
electron can move in the antiferromagnetic part of the crys- 
tal without disrupting the antiferromagnetic order in the 
S >  1/2 case, such motion would not be possible with 
S  = 1/2. Consequently, the formation of a self-trapped state 
of some type or other is unavoidable in this case. The only 
question is the particular type of state. Correspondingly, the 
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conditions for the existence of a ferron state as given in Ref. 1 
are not applicable here. 

A ferron state is evidently stable if its energy is lower 
than that of a string. The reason why a ferron can be prefera- 
ble from the energy standpoint is as follows: After magnetic- 
order energy is expended on the creation of a ferromagnetic 
region, there is no need for a further expenditure of magnetic 
energy in order to allow the electron to move in this region. 
Strictly speaking, an electron can go from the ferromagnetic 
part of the crystal into the antiferromagnetic part and move 
there by a string mechanism. However, the influence of this 
effect on the carrier energy could not be large, because the 
very existence of a ferron presupposes that the energy of the 
ferron is lower than that of a string. Of course the only way to 
determine what is preferred from the energy standpoint-a 
steady-state disruption of antiferromagnetic order, as in a 
ferron, or a disruption of this order which oscillates along 
with the electron, as in a string-is to carry out the corre- 
sponding calculations. Nevertheless, we can immediately as- 
sert that a magnetic field would lower the energy of a ferron, 
which has a huge magnetic moment, to a far greater extent 
than it would lower the energy of a string, which does not 
have such a huge moment. 

To find an upper estimate A of the ferron energy E,, it is 
sufficient to assume (a )  that the ferromagnetic region is 
spherical in the 3 0  case and circular in the 2 0  case and (b)  
that the electron is entirely inside the ferromagnetic region, 
so its wave function vanishes at the surface of the region. In 
the presence of a field h, the loss of magnetic-order energy 
due to the replacement of the antiferromagnetic order by the 
ferromagnetic order is given (per atom) by the following 
expression, where we are using (6)  : 

a D = 1 (- - cas 2p-h cos !)- (-8/2-h) I = 4111 sin4(p/2). 
2 

In the 2 0  case, the electron component of the energy, 
k 2/2m, is determined by the first zero of the Bessel function 
J, (kR ). We thus find the following upper estimate A of the 
energy of a ferron with a ferromagnetic region of large radius 
R: 

h-17IZBl'" sin2(p/2), (20) 

In the 3 0  case, the corresponding qualities are given by 

h s ( + d ' s )  1B1"~1611"~sin'l~(p/2), (22) 

R/a=(nB/11'15 sin-"~(p/2). (23) 

As I-0, the upper estimates in (20) and (22) of the 
ferron energy become exact values of this energy. It follows 
from these expressions and ( 15 ) and ( 16) that in the limit 
I/B-0 the string is preferable to the ferron from the energy 
standpoint if there is no magnetic field. In the 2 0  case, in 
contrast, the string energy differs parametrically from the 
ferron energy only by a factor of II/B 1 which is of order 
unity even at II/B / - lop2 .  With regard to the numerical 
factor in (20), we note that in the case h = 0, i.e., fi = ~ / 2 ,  
this factor is not much greater than the corresponding factor 
L = 3.6 in ( 15 ) . At h = 0, the difference between E~ and E, is 

thus essentially masked by the error of the calculations. 
[Even in the 3 0  case, as we will show below, E, in ( 16) is 
greater than 7 in ( 15) by several tenths of 7; in the 2 0  case, 
by virtue of (18), the difference between E, and 7 would 
apparently be even larger. The value of E~ should be smaller 
than A by an amount of the same order of magnitude in the 
case II/B I - 10 - 2, i.e., R / a z 4 .  This is the basis for the 
assertion above regarding the accuracy of the calculations. ] 

We thus see that we cannot draw a clear conclusion 
about the stability of a ferron in the absence of a magnetic 
field unless II/B I is very small. As the field increases, the 
ferron energy falls off far more rapidly than the energy of a 
string. Specifically, using (6) ,  ( 15), and (20) we find 

Consequently, even before the sublattices collapse, the upper 
estimate on the energy of a ferron becomes smaller than the 
lower estimate on the energy of a string. The meaning here is 
that a ferron is definitely preferable to a string from the en- 
ergy standpoint in such fields. The situation here is thus qua- 
litatively the opposite of that in the S >  1/2 case, which was 
studied in Ref. 1: A magnetic field stabilizes a ferron, rather 
than destroying it. 

Qualitatively the same arguments hold for the 3 0  case, 
although in that case the difference between the parametric 
dependence of the ferron energy, (23), and that of the string 
( 15), is stronger ( a II/B 1 4/15) .  For this reason, stability of 
a string in the absence of a field is more likely, although a 
string-ferron transition should occur again in this case as the 
field is strengthened. 

It follows from (2 1 ) that with I I /B I = 10 - * the ferro- 
magnetic region of the ferron contains about 50 atoms and 
becomes larger with increasing field. If we speak in terms of a 
surface of finite dimensions, we see that as long as the ferron 
radius R is small in comparison with the pore radius r, the 
r, dependence of the ferron energy will be weak. When the 
entire surface becomes ferromagnetic, however, the energy 
will depend on r, in the following way (the ferromagnetic 
region is a circle) : 

Using (21), (6),  and the condition r, > R, we find the fol- 
lowing upper estimate of the ferron energy in (24): 

~,<5,76IB( (a/r,)g+n(BII"~-3nh(r,/a)2. (25) 

According to (25), this energy decreases with increasing 
pore radius. Its field dependence is the linear law in (24). 

Let us compare the energy of a ferron with r, < R and 
that of a string with r, <p, to represent the state of an elec- 
tron at a small-radius pore. In this case the potential energy 
of the string in ( 13) can be treated by perturbation theory. 
For the string energy we find (h = 0)  

It follows from a comparison of (24) and (26) that for 
r,/a < 5 a ferron is preferable to a string from the energy 
standpoint even in the absence of a field. This result, of im- 
portance in its own right, also lends support to the assump- 
tion (made above) that ferrons are stable in the case h = 0 
even at the surface of large-radius pores. 
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POSSIBILITY OF FERRON STATES IN AMORPHOUS 
SEMICONDUCTORS 

In this section we take up the question of whether ferron 
states are possible at the surface of pores in amorphous semi- 
conductors such as Ge and Si. These semiconductors have 
large numbers of pores, depending on the particular method 
by which the samples are prepared. In Ge and Si films grown 
by evaporation, for example, the number density of pores 
with radii r, < 10 h; is in the interval 10'9-10'7 cm-3 h;-', 
while the number density of pores with radii between 10 and 
20h;isintheinterval 10'7-10'6cm-3 h;-' (Ref. 10). At the 
surface of each pore with r, < 10 h; there are several tens of 
atoms with dangling s-p bonds, while the number at the sur- 
face of each pore with r, > 10 h; is several hundred. The 
orbitals of singly filled s-p states which are oriented into a 
pore overlap somewhat with those of the neighboring atoms. 
An exchange interaction thus occurs between them. The en- 
ergy of this interaction is small in comparison with the en- 
ergy of the chemical bond between atoms; i.e., it amounts to 
hundredths or tenths of an electron volt. 

The exchange interaction between s-p orbitals is usual- 
ly antiferromagnetic. This general rule appears to apply to 
the exchange between the surface atoms of pores. At any 
rate, there is no experimental indication of the existence of 
ferromagnetic layers at the surfaces of electrically neutral 
pores. Consequently, the magnetic order at the surfaces of 
pores should probably be a defective antiferromagnetic 
order, in view of the irregularity of the shape of the pores. We 
cannot at the outset rule out the possibility of a spin-glass 
state of the pores, but at this point we do not know whether 
such a state occurs in 2 0  systems of finite dimensions. On the 
other hand, the condition that the system be finite is suffi- 
cient for an antiferromagnetic order at sufficiently high tem- 
peratures. 

Each pore can serve as either a donor or an acceptor, 
depending on its particular situation. Strictly speaking, the 
pore cannot be represented on an energy diagram of a semi- 
conductor as a singly filled level inside a mobility gap, in the 
way that an individual dangling bond is represented. The 
reason is that the pore may be multiply ionized. This circum- 
stance does not change the picture qualitatively, however, 
and the effects which stem from multiple ionization will not 
be discussed below. 

If the pore acts as an acceptor, its ionization is accom- 
panied by the appearance of an electron there. This electron 
should move among the surface atoms of the pore, occupy- 
ing the same s-p orbitals as are occupied by the dangling- 
bond electrons. The situation essentially corresponds to the 
Hubbard model, and the theoretical results derived above 
can be applied to it: An electron can be in a ferron state at a 
pore. In accordance with the estimates of the preceding sec- 
tion of this paper, and in view of the relative insensitivity of 
R in (21 ) to the ratio B /I, we would expect that for r, 5 10h; 
all the spins of the partially filled s-p shells of surface atoms 
would be in a ferromagnetic order. For r, R 10 h;, in the 
absence of a field, only the part of the surface of a pore where 
the electron is self-trapped could be ferromagnetic. 

It follows from (6), (20), and (24) that, regardless of 
the pore size, the ferron energy will decrease with increasing 
field h.  Because of the huge moment of a ferron, 
-min{(R /a)2(rv/a)2), the ferron energy will decrease to 

a far greater extent than will that of an electron. The lower- 
ing of the ferron energy implies a decrease in the energy 
expenditure required for the transition of electrons from 
lower-lying levels (e.g., from the valence band) to the pore. 
Correspondingly, with increasing field there is an increase in 
the number of carriers, regardless of whether the charge is 
transferred by jumps of holes among normally filled low- 
lying local levels or by a motion of holes of a band mechan- 
ism. An increase in the number of carriers should be mani- 
fested by an isotropic negative magnetoresistance. 

A ferron may form at a pore even after an electron 
leaves the pore to go to higher-lying levels, since the hole 
remaining at the pore can also render this pore partially or 
completely ferromagnetic. Correspondingly, the ferron en- 
ergy is lowered in a magnetic field again in this case; i.e., 
there is a decrease in the energy expended on an upward 
transition of an electron. Consequently, a negative magne- 
toresistance could occur for a conductivity of either sign. A 
mechanism of this sort may also operate in the case of a spin- 
glass order, since ferron states are possible again in that 
case. " On the other hand, other magnetoresistance mechan- 
isms could in general operate in amorphous semiconductors, 
so a competition among mechanisms might result in a fairly 
complex field and temperature dependence of the magnetor- 
esistance. 

Experiments show that negative magnetoresistance is 
indeed observed in amorphous Ge and Si, while in crystal- 
line Ge and Si, in which there are no pores, the magnetoresis- 
tance is positive and anisotropic, in total agreement with 
band theory. According to Ref. 12, the magnetoresistance of 
a-Ge is always negative, while that of a-Si goes through a 
maximum at a temperature -200 K and then falls off very 
sharply as the temperature is raised further. This maximum 
value is on the order of 1% at 25 kG. Kubelik and Tiiska13 
state that the magnetoresistance of certain a-Si samples 
changes sign, from negative to positive, as the temperature is 
raised, while the absolute value decreases sharply. The effect 
of a magnetic field on the photoconductivity of a-Si and a-Ge 
was observed in Ref. 14. The sign of the effect was opposite 
that for the dark conductivity. 

Although I do not know of other theories of negative 
isotropic magnetoresistance in a-Si and a-Ge, the qualitative 
agreement between the ferron theory derived here and ex- 
periment does not by itself prove that this theory is the only 
one possible. On the other hand, the extremely significant 
dependence of the luminescence intensity of these materials 
on very weak fields-at 10 K, a 30-G field changes the inten- 
sity by - 1% (Ref. 15)-is evidence that these materials 
acquire huge magnetic moments when charge carriers are 
excited. The energy of a ferron containing 100 atoms in such 
a field would be specifically 1 % of the thermal energy, so the 
effect might be linked with an orientation of the ferron mo- 
ments by the field. A qualitative change in the nature of the 
magnetoresistance upon a hydrogenization of samples, 
which would liquidate the dangling bonds, would be a con- 
vincing argument in favor of the magnetoresistance mechan- 
ism proposed here. 
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