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The tunneling of an electron in two quantum wires separated by a potential barrier is examined 
theoretically. The electron moves ballistically under the influence of a longitudinal field. If the 
electron is localized in the first quantum wire, there is a nearly unit probability that it will go into 
the second wire. In a strong electric field, an electron does not make such a transition. 

1. INTRODUCTION the calculations, we adopt a system of units with f i  = 1 and in 

lzlectron transport in real space has attracted consider- which the side of the square in the cross section of the quan- 

able interest recently. H~~~ et al. I have proposed a mec.,an- tum wires is unity. The dynamics of an electron is described 

ism for establishing a negative differential resistance in by the time-de~endent Schrodinger 
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other. That mechanism is based on thermionic emission of 
hot electrons from the GaAs layer, with a high carrier mobi- 
lity, into the Al,Ga, , A s  layer, which has a dopant and a 
low carrier mobility. Coleman et ~ 1 . ~  found experimental 
confirmation of this mechanism. The spatial transport of 
electrons had a diffusive nature in their study. Many of the 
problems associated with the high expenditure of energy and 
heating can be avoided in the case of quantum ballistic tran- 
sport or quasiballistic transport of electrons in real space., 

For a quantum system consisting of two potential wells, 
the wave functions of the ground states do not overlap if the 
energy levels are far apart. If a change in some parameter of 
the system causes the energy levels to move closer together, 
the states cease to be localized in each of the wells, and spa- 
tial tunneling of an electron becomes possible. This effect 
was studied experimentally by Kirchoefer et aL4 in a two- 
level superlattice structure. A negative differential resis- 
tance was found, and it was shown that an analog of the 
Gunn effect in real physical space could occur. Resonant 
tunneling between states in two different channels can be 
utilized to control parallel transport and conductance in a 
field-effect t ran~istor .~ Resonant tunneling in an isolated 
quantum well was studied by Kastalsky et Takagaki et 
al.' have observed that the electron transition probability 
depends on the geometric shape of the channel and that the 
transport in quantum wires is not local. 

In the present paper we take a theoretical look at the 
tunneling of an electron in two quantum wires separated by a 
potential barrier. All the results below can be generalized to 
the case of two-dimensional heterostructures. 

2. FORMULATION OFTHE TIME-DEPENDENTTUNNELING 
PROBLEM; SOLUTION METHOD 

We consider two quantum wires, 1 and 2, separated by 
potential barrier 3 (Fig. 1 ). The x axis runs along the wires; 
the cross section of the overall structure is a square. They 
and z axes run along the sides of this square. The motion of 
the electron is localized inside the walls of the infinite rectan- 
gular region 1 + 3 + 2. This system could be a heterostruc- 
ture made from Al,Gal , A s  with different aluminum con- 
centrations in the different regions. The effective mass of the 
electron is different in the different wires. For convenience in 

It is assumed that the electron is initially localized in region 1 
and that a uniform, time-dependent electric field E ( t )  is ap- 
plied along thex axis. Our purpose is to learn about the time- 
dependent tunneling of an electron through the potential 
barrier (hatched region 3).  

In the system of units we have adopted, the potential 
energy can be written 

Here 

+x,  Y < O  
7 O < ! f - < O ,  
17,, bl < y ,< b,, 1': (2)  -- 
V , ,  b,< y ,< I + .>I. 

tm7 Z < Y  

We set Vl = 0; then V, and V, are constants, which are 
found from the gaps in the conduction band. The effective 
mass rn = rn (y) is a piecewise-constant function. Since it is 
independent of the coordinate z, the dimensionality of the 
problem can be lowered. For this purpose we seek a solution 
of the Schrodinger equation in the form 

FIG. 1 .  Schematic diagram of two quantum wires, 1 and 2, separated by a 
potential barrier, 3. 
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where the function r+b satisfies the equation 

We assume that at the time t = 0 there is a wave packet 
which is bounded along then direction; i.e., )r+b(O,x,y) 1 -0 as 
1x1 -t co . To determine the time evolution of the function r+b, 
we use a method similar to that which has been used8 to 
study the tunneling between subbands in a uniform electric 
field. We write the wave function as a series in the set 
{F, (y)), which is complete on the interval [0, 1 1, and as a 
Fourier integral in the variable x: 

Here k, is the wave number at the time t = 0. Substituting 
(6) into ( 5 ) ,  we find 

We require that the expression in square brackets vanish: 

0 

At a fixed value of k, Eq. (8)  is a steady-state one-dimen- 
sional Schrodinger equation for an electron in a quantum 
well with a potential 

and the boundary conditions 

Consequently, {F,, is a complete system of eigenfunctions 
corresponding to the discrete spectrum of the real eigenva- 
lues {E ,  ). The time dependence enters F, and E,  through the 
wave number k(t)  [see (9)] .  

Using (8) ,  and requiring that expression (7)  vanish, we 
find, for each k, , 

Multiplying this equation by 
t 

(the superior bar means the complex conjugate), integrating 
the resulting expression over y, and making use of the ortho- 
gonality condition 

we find a system of ordinary differential equations which 
determines the time evolution C,  ( t )  at a fixed k,: 

" C w.,c, exp [i J (a.-e,)d], 
dt l 0 

The initial values c , ,  (k, ) depend on the value of the wave 
function at t = 0. From (6)  we find 

3. RESULTS OF A NUMERICAL ANALYSIS 

A study was made of a heterostructure consisting of two 
quantum wires, 1 and 2, separated by a potential barrier 3 
(Fig. 1 ) . Region 1 is pure GaAs; region 3 is A1, , Ga, , As; 
and region 2 is Al, ,, Ga, ,,As. The energy at the bottom of 
the r valley of the conduction band and the effective mass 
for the alloy Al,Ga, - ,As were found from 

Egr (x )  =l,425+1,155x+0,37x2 [eV], 
mlm,=0,063+0,087x. 

The overall dimension of the cross section of the quan- 
tum wires (the unit used in converting lengths to dimension- 
less form) is 40 nm. The dimensionless coordinates of the 
layers are b, = 0.306 and b, = 0.403. The longitudinal elec- 
tric field of 100 V/cm is E = 0.5284 in dimensionless units. 
The other dimensionless parameters for the various regions 
are shown in Table I. 

These calculations require knowledge of the eigenfunc- 
tions F,, and eigenvalues E,  of boundary-value problem (8),  
( 10). Since Eq. ( 8 ) is an ordinary second-order differential 
equation with piecewise-constant coefficients, we seek a so- 
lution in the following form: 

F=B, exp (ih,y) +B2 exp(-ih.,~), h,=[2rn, ( e - ~ , ) - n ~ - k ~ l " ~  

for region 1, 

for region 3, and 

F=BJ exp(ih2y)+Be exp(-ihzy), h2= [2m, (E- V,)-n2-k2]" 

(19) 
for region 2. 
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TABLE I. 

Region Width, nm I Al concentration Effective mass 

I 0 0 1 
2 
3 

The requirement that the differentiation in Eq. ( 8 )  be 
correct imposes conditions at the boundaries between re- 
gions: 

Conditions ( 10) and (20)  lead to a homogeneous system of 
linear algebraic equations in the constants B, -B,. If this 
system of equations is to have a solution, the following dis- 
persion relation must be satisfied: 

Alms 
sin (kc b,)  + --- cos ( h l b l ) ]  

Laml 

The vector of constants B, is determined within a nor- 
malization factor: 

sin (hlb,)  - cos (h,b,)  hlmsl (hsml) 
B,= - 

sinLL(1-b,)] + cos[h3(l-bz)]hzm31(h,mz) 

After normalization ( 12), we evaluate the matrix coef- 
ficients W. For this purpose we eliminate the differentiation 

with respect to the time from ( 14). We consider two differ- 
ent eigenvalues &, and &,, and we rewrite ( 8 )  in operator 
form: 

where 
l a l a  fj=------ 

k2+nz + vv+ - 
2 d y  m dy 2m ' 

Differentiating the first equation with respect to k ,  multiply- 
ing the result by &, integrating over y, and using ( 12) and 
the relation 6' /at = Ed /dk, we find the expression8 

I 

We conclude that W,, = W,, . In addition, it is simple to 
show that W,, = 0. Another consequence of this fact is the 
existence of a dynamic invariant for Eqs. ( 13 ) : 

Knowing the initial data in ( 16), we can solve the Cauchy 
problem ( 13 ), ( 1 5 ) .  Then evaluating the sum and the inte- 
gral in ( 6 ) ,  we find the time-dependent wave function $( t ,  X ,  

y ) .  This procedure has been carried out numerically. Equa- 
tions (13 )  were solved by the Runge-Kutta method of 
fourth-order accuracy. The steps in the integration over k ,  
and over time and the number of terms in the sum ( 6 )  were 
chosen so that the final result varied only slightly upon var- 
iations in these parameters. For a sufficiently high potential 
barrier, the coefficients W,, are essentially zero, except near 
the synchronization point t,, where E ,  ZE,. If, at t  = 0, we 
have C ,  ( k ,  ) +O and C, ( k ,  ) = 0  for i>2, then the number of 
modes which are to be taken into account depends on the 
number of synchronization points over the time integration 
interval. In this case, there is one synchronization point, and 
an increase in the number of modes from 2 to 20 does not 
result in any significant change in the function $. The results 
of the calculation are shown in Fig. 2, as a plot of the distri- 
bution of I $ )  at four successive times. 

Figure 2a shows the distribution of ( $ I 2  at the initial 
time. The state of the electron is specified in such a way that 
the electron is localized predominantly in the first quantum 
wire. Along the coordinate x ,  the packet has a Gaussian 
shape, is centered at x, = 0, and has a zero average velocity. 
At this time, a uniform electric field is turned on. The field 
gives rise to an average velocity and to intermode exchange. 
Figure 2, b-d, shows the evolution of the initial state; the 
time is given in picoseconds, and the x coordinate of the 
center of the packet is given in microns. At t = 17.4 ps, part 
of the wave packet goes into region 2  (Fig. 2b). The two 
humps, of approximately the same height, are separated by a 
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FIG. 2. Distribution of the probability density at various times. a - t = 0, x, = 0; b - t = 17.4 ps, x,  = 4.16pm; c-t = 21.8 ps, x, = 6.44pm; d- 
t = 26.1 ps, x, = 9.28 pm. 

potential barrier (region 3),  in which the solution is expon- thus occurs under the influence of the longitudinal electric 
entially small. The probability for finding an electron is ap- field. 
proximately the same in the first and second quantum wires. 
In Fig. 2c, the probability for finding the electron in region 1 4. HIGH POTENTIAL BARRIER - - 
is considerably lower, while at the time corresponding to To reach a better understanding of the effects described 
Fig. 2d the electron is essentially localized in region 2. Over a above, we carry out. an asymptotic analysis for the case of a 
time of 26 ps, tunneling from one quantum wire to the other high potential barrier, with V, - + cc . Actually, it is more 
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convenient to use the parameter A, ) 1 in the calculations; 
this parameter is related to V, by expression ( 18 ) . 

Within small terms of higher order, we rewrite the dis- 
persion relation ( 2  1 ) as 

where 

In general, the constant A in expression (30) should be 
replaced by zero. At the so-called synchronization points 
k, , however, at which we have, simultaneously, 

in the leading approximation, this exponentially small con- 
stant is important. The reason is that the exchange between 
modes is most intense near the synchronization points. 

We first consider the dispersion relation (30) under the 
assumption A = 0. In this case we have two noninteracting 
quantum wires, for which 

where I, and I, are the indices of the discrete subbands in the 
first and second quantum wires. Substituting expressions 
( 17) and ( 19) here, we find the dependence E (k)  : 

1 n21z2 
e2 (k) = V, + - [ ~ ' + k ~ +  -1, 

2% (1-b,)" 

The plot of these dispersion relations consists of two sets of 
parallel straight lines in the (E, k ,) plane. If m, > m, , they 
acquire intersection points: 

and ~ ( k )  is as shown in Fig. 3. With increasing k [k is 
related to the time by (9) 1 ,  a transition occurs from the set 
(33) to the set (34), and vice versa, at k, . This transition is 
the primary reason for the tunneling (Fig. 2), which occurs 
near the synchronization point k, . Let us examine the beha- 
vior ~ ( k )  in this region (Fig. 4).  

Ask - k, -0, relations (30) and (3 1 ) can be rewritten 
as 

where 
pl=b,m,lhl, pz= (1-b2) mzlhz, 
ql=blk./h,, qz=(l-bz)k./hz, 

We are assuming here that all the Ai are calculated from the 
parameters k, and E, . Solving the quadratic equation (35) 
for E, we find two branches of the dispersion relation: 

This expression determines two hyperbolas (Fig. 4) .  If the 
second quantum well is "heavier" than the first (i.e., if 
m, > m, ), then we have q, /p, = k,/m, > q,/p,, and as 
(k  - k, I -+ co the asymptotic behavior of hyperbolas (36) is 

Qz - + ( k - k . ) ,  el-&. -- -(k-k.) as k-k.+-00; 
PI Pz 
92 qt e + ( k - k . )  e2-e. -+ --(k-k.) as k-k.++m. 
Pz P1 

This asymptotic behavior shows that, to the left of the 
synchronization point k,, the quantity E ,  characterizes the 
motion of the electron in the first quantum wire, and E,  char- 
acterizes the motion in the second wire. To the right of k,, 
on the other hand, E, corresponds to the second wire, and E, 

to the first. 
Knowing the asymptotic dispersion relation, we can 

We need to recall that at these points A is not equal to zero, find the asymptotic behavior of the matrix element W. For 

FIG. 3. Positions of the quantum-size subbands for two quantum wires. FIG. 4. Dispersion relation near a synchronization point. 
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this purpose we need to normalize the eigenfunctions which 
are determined by the sets of constants in ( 2 2 ) - ( 2 7 )  corre- 
sponding to the values E,  and E, . 

The constants B, and B, can be set equal to zero in these 
calculations, since they make an exponentially small contri- 
bution. Substituting the eigenfunctions in ( 2 8 ) ,  and carry- 
ing out the tedious but straightforward calculations, we find, 
in the leading approximation, 

W1.2 = - Eg 
2( l+gz(k-k . ) ' )  ' ( 3 7 )  

where g - ' determines the region along the k scale in which 
the two modes interact: 

Since we have A, > 1, the interaction between modes 
takes place in an exponentially small neighborhood of the 
synchronization point. Furthermore, at this point itself the 
value of W,,  is exponentially large and is proportional to the 
strength of the longitudinal electric field. For a weak field 
E < g -  I, because of the small value of W,,, the exchange 
between modes is weak, and the electron should make an 
essentially complete transition from the first quantum wire 
to the second. Let us examine this case in more detail. 

We restrict the discussion to two modes. We assume 
that the initial state (at the time t  = 0 )  is such that we have 
C, = 1 and C2 = 0, L nd the point k ,  = 0 lies to the left of k ,  , 
outside its g ' neighborhood. The meaning here is that at 
t  = 0 the function $(O,x,y) determines the state in which the 
electron is localized (within exponentially small terms as 
A, - + w ) inside the first quantum wire. We ignore the var- 
iation of C, ( t ) ,  and we take up the problem of determining 
C2 ( t ) .  The quantity IC2 ( t )  I 2  is the probability for a transi- 
tion of an electron into region 2 under the condition 
k ( t )  < k, and also the probability for finding this electron in 
region 1 in the case k ( t )  > k ,  . Equation ( 1 3 )  reduces to the 
integral 

t i' 

~ , ( t )  = - j w,. exp ( i  j (cr -c , )d t / l )d t l .  
o o ( 3 8 )  

Since W,, is of a local nature, the quantity C2 ( t )  varies 
only in a g -  ' neighborhood of the synchronization point. 
Under the assumption that the field E is independent of the 
time, we go over to the new variable { = g [ k ( t )  - k ,  ] in 
(38). Substituting in expressions (36) and ( 3 7 ) ,  and replac- 
ing the integration limits by f W ,  we find, at k ( t )  > k , ,  

where 

16m,'h12h2z exp[-2h3 (b , -b , ) ]  
a= 

Ek. (m2-m,)mtmzAJ2b, ( I -b , )  ' 

Let us find the asymptotic form of the integral J as 
a -, co . The integrand has branch points i in the complex 
6 plane. We make cuts along the imaginary axis as shown in 

FIG. 5. Equivalent circuit for calculating the asymptotic behavior of inte- 
gral (39).  

Fig. 5. We replace the integration path along the real axis by 
semicircular arc r, of large radius r ,  by two paths ( T, and 
r,) along the cut, and by circle T,, of radius r, centered at 
point i. In taking the limits R -+ co and r -0 ,  we note that the 
integral along the contour r, vanishes, while the integrals 
along paths T ,  and T, are determined by the neighborhood 
of the point i. The integral T, is determined by the residue at 
this point. As a result we have the asymptotic expression 

For C, ( t )  we finally find 

1 
0. k ( 2 )  < k ,  

Inside the g - ' neighborhood of k ,  , the quantity C2 ( t )  
changes from zero to the limiting value determined by 
expression ( 4 0 ) ,  which is valid in the limits A, - co and 
d - co . The latter condition holds as E+ 0 .  

We turn now to another limiting case, that of a strong 
longitudinal electric field: E-+ w . We assume that the poten- 
tial barrier in region 3 is so high that the matrix coefficients 
Wii are zero except in small neighborhoods of the synchroni- 
zation point. We assume initial values C, ( 0 )  = 1, and 
C, ( 0 )  = 0 .  We rewrite the system of differential equations 
in ( 1 3 )  in the form 

In these equations we switch to the new variable 
{ = g [ k ( t )  - k ,  1. Using 
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we find a second-order differential equation for C ,  from 
(41) :  

where k(6) = 1/2( 1 + { *). After we switch to the new 
variable 

Eq. (42)  becomes 

The general solution of (42)  thus depends on the two con- 
stants Dl and D, : 

Substituting the initial conditions, which are at - cc for the 
variable 6, we find a solution of the system (41 ) : 

After the neighborhood of the synchronization point is 
crossed, the solution Ci ( t )  can be found from (43)  and (44)  
by setting 4 = w . Since 

for k ( t )  > k, we have C,  ( t )  = 0 and C, ( t )  = - 1. These 
results mean that in strong longitudinal electric fields the 
electron does not tunnel into the second quantum wire; it 
instead "slips by" the synchronization point, remaining in 
the first wire. 

This behavior of the electron should be typical for any 
two quantum wires separated by a potential barrier. The rea- 
soning here is that the size of the g- ' neighborhood of the 
synchronization point does not depend on the strength of the 
longitudinal field, E, and the time taken to traverse this 
neighborhood is proportional to E - I .  In strong fields, the 
electron thus "does not have time" to overcome the potential 
barrier. Relation (45)  and the form of the matrix coefficient 
in (37)  should thus be valid in the vicinity of the synchroni- 
zation point for any two quantum wires. 

This conclusion makes it possible to generalize (40)  
and to find a universal expression for the electron tunneling 
probability in a weak longitudinal electric field. By virtue of 
(28)  and (45) ,  all the physical properties of the specific 
wires enter (38)  only through the difference SE = E* - 
In the case of a simple intersection of the size-quantization 
subbands, this difference is given in the vicinity of the synch- 
ronization point by 

where SE* is the energy gap between the subbands at point 
k, . Using these relations, we can find the probability P that 
an electron having passed through the neighborhood of k, 
does not go into the other quantum wire: 

Here e is the charge of an electron, and the other quantities 
are written in dimensional form. This second derivative in 
(46)  should be evaluated at the synchronization point. If 
there is such a point, then one could evidently always choose 
a field E which would be weak enough that P would be ex- 
ponentially small. The probability for a transition into the 
other wire is found as 1 - P. In the direct numerical calcula- 
tions, a comparison was made with (46) ;  the comparison 
revealed that the probabilities for various fields E agreed 
within 5-10%. 

Despite the differences in physical properties, the pro- 
bability for a transition into the neighboring wire does not 
depend on the particular wire in which the electron finds 
itself. This conclusion follows from the symmetry of Eqs. 
(41) .  

5. DISCUSSION OF RESULTS 

The motion of an electron along quantum wires is de- 
scribed in terms of discrete modes, from which wave packets 
can be formed. If two quantum wires are separated by a po- 
tential barrier, each mode will be dominant in one of the 
wires over an interval of the wave number k with a width on 
the order of unity. When the effective masses of the electron 
are different on the two sides of the potential barrier, there 
exist synchronization points, exponentially small neighbor- 
hoods of which are responsible for the exchange between 
modes. A wave packet formed from some mode goes entirely 
from one quantum wire into the other. This effect occurs 
when a longitudinal electric field is imposed. In the realm of 
practical applications, this effect might be utilized to deve- 
lop quantum-wire switching devices. Devices of this type 
were proposed in Refs. 9 and 10. 

Let us assume that electrons corresponding to a first 
mode with a wave number k < k, go into the first wire. If no 
electric field is imposed, the electrons continue to move 
along the first wire. The same comments apply to the second 
quantum wire. 

After a field of 100 V/cm is imposed for a time of about 
26 ps, the electrons in the first quantum wire go over into the 
second wire. The electrons which were in the second quan- 
tum wire go over into the first. The probability for a tunnel- 
ing through the potential separating the wires is close to un- 
ity; the error probability is exponentially small and is 
estimated in (46) .  

After a packet passes through the neighborhood of the 
synchronization point, its average wave number k is greater 
thank, . If necessary, k could be reduced to its original value 
by imposing a brief pulse of a strong longitudinal electric 
field in the opposite direction. This pulse would not cause a 
transition into the other wire. 
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