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The magnetism of electrons in low-dimensional antiferromagnets is analyzed in the case without 
fluctuations. In a magnetic field transverse with respect to the antiferromagnetic order 
parameter, the spin-splitting factorg, vanishes at the boundary of the magnetic Brillouin zone. 
This circumstance broadens the ESR peak and also gives rise to a combined resonance. Under 
orbital quantization conditions, the transverse magnetic field does not lift the spin degeneracy of 
the Landau levels. Transitions not accompanied by spin flip are possible under ESR conditions. 

1. INTRODUCTION 

This paper concerns electron magnetism in reduced-di- 
mensionality antiferromagnets. 

A symmetry analysis of the electronic states' shows 
that the spin-splitting factor g breaks up into two compon- 
ents, gil and g,, in an antiferromagnet. These components 
correspond to longitudinal and transverse orientations of 
the magnetic field H with respect to the antiferromagnetic- 
order vector n. In general, gl,  has no singularities, while g, 
acquires a momentum dependence and vanishes at the boun- 
dary of the magnetic Brillouin zone (Fig. 1 ) . This circum- 
stance leads to extremely unusual manifestations of many 
electron-magnetism effects. 

First, it becomes possible to excite transitions between 
states with oppositely directed spins by means of an alternat- 
ing electric field. This "combined resonancew2 occurs both 
in the continuum of band states and in the discrete spectrum 
of Landau levels. In each case the shape of the curve and the 
resonant frequency depend strongly on the angle p between 
H and n and also on the carrier density. 

A dependence of this sort is also characteristic of elec- 
tron spin resonance (ESR). In a system containing 1 + 8 
electrons per unit cell (S < 1 ), a variation of p from 0 to 7r/2 
is accompanied by a decrease in the resonant frequency from 
yll H to y, H. The magnitude of yll does not depend on 8, 
while y, is proportional to Sa, where a can take on a value of 
1/2 or 1, depending on whether the minimum of the dielec- 
tric spectrum is at the Xpoint or the Mpoint at the boundary 
of the magnetic Brillouin zone (Fig. 1 ) . Of particular inter- 
est is a two-dimensional antiferromagnet in which g, varies 
along the Fermi surface. In this case the ESR signal in a 
transverse field is nonzero at all frequencies below y, H, even 
in the absence of scattering and at absolute zero. 

An unusual aspect of static spin magnetism is a suppres- 
sion of the transverse Pauli susceptibility by the factor g:. 
With a decrease in the doping level, the transverse suscepti- 
bility of the system thus vanishes in proportion to S" (see 
the discussion above). The longitudinal susceptibility has no 
singularities. 

The momentum dependence of g, is also seen in the 
interaction of a magnetic field with the orbital motion of an 

Under ESR conditions, transitions involving a change in the 
index of the Landau level, but without spin flip, are possible. 
This is another manifestation of the combined resonance. 

Below we analyze these effects on the basis of a simple 
model which ignores fluctuations (both quantum and classi- 
cal) of the antiferromagnetic vector and also ignores elec- 
tron scattering. We assume that the Fermi surface in the 
metallic phase is close to the boundary of the magnetic Bril- 
louin zone. 

The Hamiltonian describing low-lying states in the con- 
duction band is 

This Hamiltonian can be constructed both by the effective- 
mass method and in the weak-coupling model, for a doubly 
commensurate spin density wave.4s5 Here and below, 

In a two-dimensional antiferromagnet, we consider two 
possible positions of the minimum of the conduction band: at 
the M point and at the X point (Fig. 1 ). Within terms qua- 
dratic in the momentum, we have 

in the first case and 

electron: in a transverse field, there is no Zeeman splitting of 
the Landau levels. ~~~~~~~~t~ states with oppositely direct- FIG. 1. Brillouin zone of an antiferromagnet (thick line) and that of a 

normal metal with a square crystal lattice (the thin line). The characteris- 
ed spins differ either in the position of the center of the orbit tic and points are shown, The choice of coordinate system in their 
(if the minimum of the conduction band lies at the X point) neighborhood is also explained. The vector G is the wave vector of the 
or in magnetic radius (if the minimum is at the M point). antifenomagnetic structure. 
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in the second. In a one-dimensional antiferromagnet we have 

The following sections of this paper contain a calcula- 
tion of the absorption in the effects described above. 

2. ESR AND COMBINED RESONANCE IN THE CONTINUOUS 
SPECTRUM 

As we mentioned in the Introduction, the momentum 
dependence of g, makes possible a combined resonance: an 
electric dipole excitation of transitions between states with 
oppositely directed spins. 

Corresponding calculations can be carried out with the 
help of Fermi's golden rule6 and from the Kubo formula.' 

Evaluating the matrix elements of the magnetic-mo- 
ment operator for the Hamiltonian ( 1 ) for the ESR regime 
as T- 0, we find 

Here V is the d-dimensional volume of the sample, 
c o y =  (H.A)/HA,p is the chemical potential of the dopant 
electrons, reckoned from the bottom of the conduction band, 
and the unit vectors in spin space are defined by 

Here and below, 

Under combined-resonance conditions, as T-0, we have 

where m, is the mass of a free electron, c is the velocity of 
light, and the superscript EDSR ("electric dipole spin re- 
sonance") stands for the combined resonance. The suscepti- 
bility corresponding to the combined resonance has been de- 
termined in the unit vectors of momentum space, i.e., in a 
manner different from that in the ESR case. 

Let us examine some results which follow from (2) and 
( 3 ) in some specific cases. 

One-dimensional antiferromagnet. After some calcula- 
tions we find 

l l ( B 8 A )  H 
Xvv (COS' cp+ysa sin' 9)''' 

Here y, is the value of 

1 
I ( P ) = ~ V  P 

at the Fermi level, and 

The intensity ratio of the ESR and combined resonances is, 
in order of magnitude, 

where c is the velocity of light. Even for gaps on the order of 1 
eV, the ratio A/mc2 is no greater than 

Two-dimensional antiferromagnet: the X point. In this 
case we find 

(m.mv)"' ( Z ~ . C V H ~ ~ H , ) ~  
2n AoH 

where 

and $,,, is the maximum value of f ( p )  on the Fermi sur- 
face of the doped insulating phase. 

The intensity ratio of the ESR and the combined reson- 
ance is, in order of magnitude, 

The ratio (A/m,cv) does not exceed 10 - for any reasona- 
ble choice of parameter values. 

Two-dimensional antzyerromagnet: the Mpoint. In this 
case we find 

11 (Sm) 
Xvv 
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where 

The quantities w,,, and om,, are determined in the same 
way as in the case corresponding to the X point. 

The imaginary parts of the susceptibility in the ESR and 
combined resonance regimes have a ratio 

The ratio A/m,c2 is less than but if the doping level is 
sufficiently low, and if the angle between H and A is small, 
the ESR and combined resonance intensities may become 
comparable in magnitude. This would be an extremely unu- 
sual result. 

3. ESR AND COMBINED RESONANCE UNDER ORBITAL- 
QUANTIZATION CONDITIONS 

In a quantizing magnetic field, the combined resonance 
is manifested in two ways. 

First, there can be an electric dipole excitation of spin 
transitions, as in the continuous spectrum. A spin flip may 
be accompanied by a change in the index of the Landau level. 

Second, transitions between orbital-quantization levels, 
including transitions which are not accompanied by a spin 
flip, become possible under ESR conditions. 

Let us consider some specific cases. 
Two-dimensional antiferromagnet: the X point. We 

write the Hamiltonian ( 1) in the Landau gauge: 

where n is the normal to the plane. In the case HI, = 0 we 
would have 

where 

According to ( 5 ) ,  a transverse magnetic field moves the 
centers of the orbits of the states with oppositely directed 
spins away from each other, without causing Zeeman split- 
ting of the Landau levels. 

We will use perturbation theory to study the effect of a 
longitudinal field. Defining unit vectors in spin space by 
means of 

and writing the unknown wave function Y,, in the form 

we find 

Y,,=(lnt>-in+>), En,=Q(nf4/,)-((nt((H,,o) In-1>1, 
(6)  

where In f ) and In J) are eigenstates of Hamiltonian (5).  
The matrix element in (6) is given by8 

where L, (2@ ') is the Laguerre polynomial. 
Substituting wave functions (6) into the Schrodinger 

equation for the Hamiltonian (4), and requiring that the 
discarded terms be small in comparison with the Zeeman 
splitting, we find a condition for the applicability of (6)  and 
(7): 

Consequently, we can set B equal to zero in (6) and 
(7): 

The intensity of the combinational scattering is deter- 
mined by the square of the matrix element of the dipole- 
moment operator 

(HLo) eu mow (H,o) 
P,(o)=--= +-. 

A a A w  

This matrix element is 

where m,  is the mass of a free electron (we have set the Bohr 
magneton equal to unity). 

The ESR intensity is determined by the matrix elements 
of the spin operator. Here we reproduce the results of the 
corresponding calculations. The quantity A is an estimated 
upper limit on the ratio of the intensity of the ESR to that of 
the combined resonance. We used the values A- 1 eV, 
v- 10' cm/s, and a- 1 T):  
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Two-dimensional antiferromagnet: the Mpoint. Within 
terms quadratic in the momentum, the Hamiltonian ( 1 ) be- 
comes 

In a transverse field we have 

According to ( 8), the Landau levels remain degenerate 
in a transverse field, but the magnetic radius is found to de- 
pend on the spin: 

Proceeding as in the preceding case, we find 

This approximation is valid under the condition 

The absorption intensity under combined resonance 
conditions is determined by the matrix element of the dipole- 
moment operator: 

We turn now to the result of a calculation of the matrix 
elements of the spin operator to within the first nonvanish- 
ing terms in an expansion in powers of a. The quantity il is a 
measure of the ratio of the ESR and combined-resonance 
intensities. We find 
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4. CONCLUSION 

The results derived here apply to quasi-one-dimen- 
sional compounds with a spin density wave and also to the 
lanthanum-containing high T, superconducting compounds 
in the insulating antiferromagnetic phase. In the latter case, 
experiments on the combined resonance and ESR might 
make it possible to determine whether the minimum of the 
conduction band is at the X point or at the M point of the 
magnetic Brillouin zone. The most obvious differences 
between these two cases should be seen under conditions of 
combined resonance in a quantizing magnetic field. If the 
minimum is at thexpoint, a transition accompanied by spin 
flip would occur without a change in the index of the Landau 
level. If the minimum is instead at the M point, a spin flip 
would be accompanied by a unit change in the index of the 
Landau level. 

We note in conclusion that it seems quite likely that in a 
system describable by the Hamiltonian (4) it would be possi- 
ble to observe an oscillatory dependence of the Zeeman split- 
ting of the orbital-quantization levels on the magnitude and 
orientation of the field.9 In addition to the similarity of the 
equations, this effect is also implied by Eq. (7 ) ,  although 
that equation becomes inapplicable before L, (28  *) begins 
to oscillate. 

I wish to thank S. A. Brazovskii for formulating the 
problem and for guidance in this study. I am also indebted to 
Yu. A. Bychkov, E. I. Rashba, and D. E. Khmel'nitskilfor a 
discussion of several of the topics involved here. 
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