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The effective equations of motion for the magnetization of the rare-earth ( R )  sublattices in 
ferrite-type magnets are analyzed. The relaxation part of the equations is found from general 
considerations of symmetry and the hierarchy of interactions in a magnet and consists of two 
terms corresponding to two different relaxation processes of the R sublattice magnetization, 
transverse and longitudinal. The general expressions for the dissipative functions of these 
processes for arbitrary small-amplitude spin waves and low-frequency nonlinear magnetization 
oscillations are found. To apply them to the description of various magnetic excitations, it is 
necessary to represent the exchange field at R-ions in terms of the macroscopic averages of the 
iron subsystem in a particular magnetic crystal. The anisotropy of the domain walls (DW) 
mobility in ferrite garnets, previously unexamined theoretically, which is caused by the 
longitudinal relaxation, is described. The R-ion contribution to spin wave damping and DW 
braking in orthoferrites is calculated and analyzed. It is shown that in one type of possible spin 
wave and DW modes dissipation is caused only by transverse relaxation and in another only by 
longitudinal relaxation. In the angular phase of an orthoferrite a crossover of the spin wave 
relaxation mechanisms is found. The phenomenological approach considered may be generalized 
to describe the damping of other excitations, for instance, elastic ones in crystals not only with R- 
ions but with other dopants having internal degrees of freedom of any nature. 

1. INTRODUCTION 

Relaxation of magnetization perturbations (spin 
waves, domain walls, and others) in magnets such as ferrites 
with rare-earth ions attracts considerable scientific and 
practical interest. At the present time, the basic laws of this 
relaxation can be regarded as understood (see the mono- 
graph by Gurevich' ). The dissipation of magnetic perturba- 
tions in the presence of rare-earth (R-)  ions is attributed to 
two different relaxation mechanisms-longitudinal (or 
slow) and transverse (or fast ). This division into two me- 
chanisms was revealed initially in the microscopic t h e ~ r y . ~  

The mechanism of transverse relaxation can be de- 
scribed on the basis of the phenomenological equations of 
the dynamics of the R-sublattice magnetization M'R' with a 
standard relaxation term in the Landau-Lifshitz or Hilbert 
form4 (see also Refs. 1 and 3) .  The results of the two ap- 

We shall show that longitudinal relaxation, like trans- 
verse, enters naturally into the phenomenological descrip- 
tion if a relaxation term, constructed by the approach pro- 
posed by Bar'yakhtar,' is used in the 
magnetization-dynamics equations for the R-sublattice. 

We present answers here and analyze them for spin- 
wave damping and DW deceleration in the magnets most 
frequently investigated in experiment, iron garnets and orth- 
oferrites. This approach is most effective for high tempera- 
tures T> A, when general equations can be obtained for any 
R-ion. The results of our approach agree qualitatively with 
those of the microscopic theory for iron garnets with R-ions, 
but are much simpler to obtain and permit analysis of many 
important details, particularly the question of the aniso- 
tropy of DW mobility, as well as investigation of more com- 
plicated magnets such as orthoferrites. 

proaches are in agreement and lead, in particular, to the con- 
2. PHENOMENOLOGICAL EQUATIONS OF MOTION AND clusion that the damping of the lowest spin-wave modes has DISSIPATIVE OF A 

a weak frequency dependence ( a  small temporal disper- 
sion). 

The situation is different with the description of longi- 
tudinal relaxation, which is the most pronounced in ferrites. 
At the present time this mechanism is described only micros- 
copically, as formulated by Van Vleck*~~ for spin-wave 
damping (see Refs. 6 and 7 concerning relaxation of nonlin- 
ear perturbations of the moving domain-wall (DW) type). 
The microscopic approach is particularly complicated and 
unwieldy at sufficiently high temperature T> A, where A is a 
quantity on the order of the ion-level splitting energy in a 
crystal field (usually, A - 100 K) ,  for in this case several 
levels are effectively excited and the simple doublet model 
cannot be used. A characteristic feature of longitudinal re- 
laxation is strong temporal dispersion, causing many auth- 
ors to state that it cannot be described phenomenologically 
(see Ref. 3 ) .  

Consider a magnet containing R-ions in nonequivalent 
crystalline positions numbered a ( a  = 1,2, ..., n). The state 
of an R-ion with a total angular momentum j is determined, 
generally speaking, by 4 j ( j  + 1 ) variables, of which three 
determine the magnetization dynamics and the rest are 
known as the multipole variables, see Ref. 9 for details. We 
consider the case in which the interaction between the R- 
and Fe ions consists of exchange. It can be shown then that in 
the high-temperature approximation ( T> A) of interest to 
us the Fe-ion spins excite primarily the R-ion dipole varia- 
bles connected with the change of the magnetization, and the 
excitation of multipole variables of higher order can be neg- 
lected. (Interestingly, the condition that the quadrupole 
var~able have low excitation is considerably less stringent 
and takes the form T> E,, where E,  < A  is the exchange split- 
ting of the R-ion level; see Ref. lo.) 
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For the phenomenological description, we group all the 
R-ions in an a th  crystal position into a single R-sublattice 
and characterize it by a magnetization M'"' = M'"'(r,t). 
The equations of motion for M'"' can be obtained from Ref. 
8, with allowance for the specific sublattice symmetry that 
includes elements of the a th  position and is as a rule lower 
than the symmetry of the entire crystal. Unification of all the 
R-sublattices into one can lead therefore to the loss of certain 
effects (more below). 

We write the equation of motion for M'"' = M'"' (r,t) 
in the form 

where F'"' is the effective field, defined as the variation of 
the free energy Wof the magnet with respect to M'"', R'"' is 
the relaxation term, andgg' is the magnetomechanical ratio 
of the a th  sublattice. Note that g g '  should, generally speak- 
ing, be regarded as a tensor, but its tensor character is of no 
importance for the relaxation of magnetic excitation. This 
tensor character can be taken into account automatically by 
using in place of ( 1 ) the effective equation J'"' = g, 'M'"' 
for the total moment J'"'. In this equation the effective field 
F'"' is redefined: F'"' = - SW/SJ'"', and, in particular, 
the exchange field H y '  is replaced by g, HIa'. The equation 
for J'"' then takes the form ( 1) with g g '  = 1 and with ap- 
propriate substitutions. 

For the specific form of F'") we note that direct interac- 
tion between R-ions in ferrites is as a rule negligibly small, 
and these ions can be regarded as paramagnetic. Taking this 
into account and neglecting the excitation of the quadrupole 
variables, we express the free energy of the R-ions in the 
form 

In this equation H y '  is the exchange field applied by 
the Fe ions to the R-ions. Since the magnetizations of the Fe- 
ions are strongly correlated, H y '  is expressed in terms of the 
simplest mean values of the Fe-subsystem spin variables. In 
particular, in all the uncompensated ferrimagnets such as 
iron garnets, Hia' can be expressed in terms of the summary 
magnetization M of the Fe subsystem. For collinear antifer- 
romagnets and weak ferromagnets (such as orthoferrites) 
we can accordingly define HIa' in terms of the summary 
magnetization vector M and the Fe-subsystem antiferro- 
magnetism vector L (see Sec. 4 below). 

For the term f (M'"' in (2),  which is determined by 
the entropy contribution at temperatures T >  A, we can 
write 

wherex, - 1/T is the paramagnetic susceptibility of the a th  
R-sublattice M a  = I M '"' I. If the nonequivalent crystalline 
positions are distributed with equal probability, the corre- 
sponding values of xu are the same for all the sublattices, 
xa = X. This is precisely the case we shall consider below. 

Thus the tensorsg andx are isotropic in our model, but 
the anisotropy of the R-ions is taken into account in the R- 
Fe interaction (more below). The anisotropies ofx  and Hja' 
are not on a par because the latter differ in their physical 

nature, being relativistic and exchange-relativistic, respecti- 
vely. 

The relaxation term R'"' is determined, in accordance 
with the approach of Ref. 8, in terms of the components of 
F'"' and its spatial derivatives. By virtue of the above argu- 
ments, we ca? neglect the spaiial-dispersion arguments and 
write R'"' = A '"'F'"', whereA '"' is the tensor of the relaxa- 
tion constants. The actual form of '"' is chosen from sym- 
metry considerations; see Ref. 8. Since the only preferred 
direction in the model (2) ,  (2a) is that of the exchange field 
H?', the tensor1 '"' has only two independent components, 
A,,  and A,. Accordingly, the dissipation function Q which 
determines the rate of dissipation of the R-subsystem 
energy ( & = - 2Q), in this approximation takes the form 
of the sum 

where 

and e:"' is a unit vector along H?'. 
We proceed now to analyze the contribution of the R- 

ions to the relaxation of magnetic excitations such as spin 
waves, moving DW, and others, which are determined pri- 
marily by the oscillations of the Fe-ion spins. To calculate 
this contribution we must express the dissipative function of 
the R-subsystem in the form of a functional of the Fe-system 
magnetization (or of the vectors M and L), i.e., express the 
quantities F'"' in terms of Hja', and then use H:"' expressed 
in terms of M or of M and L for the specific magnetic crystal. 
The difficulty is that F'"' depends on the R-sublattice mag- 
netization M'"), which is determined in turn by the form of 
H:"' on the basis of Eq. ( 1 ) . To find Q it is convenient to 
write the dynamic equations directly for the field compon- 
ents F'"'. Using the relation F'"' = HIa' - M'"'/x 
and Eq. ( 1 ) we obtain the equation 

which relates F'"' with the field H:"' (we assume that all 
g g '  are equal: g:' = g, ). No simple equations for F'"' in 
terms of H y '  can be obtained in general, but this problem 
can be solved in most interesting cases. 

It is convenient to transform to a moving coordinate 
frame with unit vectors ela', e?', and e:"', where 

We obtain then for the components (F'"'eja') = F("', with 
allowance for (4) ,  

where 

The quantities y, = A,/x and y,, = A!, /X have the meanings 
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of the transverse and longitudinal relaxation frequencies of 
the R-sublattice magnetization vector, which are indicative, 
respectively, of the vector relaxation in direction (with 
F i a ' = F P ' = 0 )  and in length (M'"'-.M~~'=,yHj"'). 
With (3)  taken into account, these mechanisms are charac- 
terized, respectively, by the dissipative-function densities 
qy) and qh"', where 

q*("'=(h,/2) [ (F,'"')'+ (Fz'"') '1 , qll'"'-- (h1112) (Fa'"') '. 
The system (4) can be solved exactly for a small-ampli- 

tude spin wave of arbitrary frequency w, and also for magne- 
tization perturbations that are not small and have an arbi- 
trary amplitude but a characteristic frequency o lower than 
the exchange frequency we, w 4 we . 

Let us solve the system (4)  for a low-amplitude spin 
wave. In the general case we express the exchange-field in 
the form 

H.'"' (r, t)  = [ i (at-kr) I + C.C. ) I eE(a' 

where k is the wave vector of the spin wave, the amplitudes 
6H y', h jp', and h L;,"' are small compared with H $', ep),  
er) ,  and e:' is the orthonormalized basis, and at he2 = 0 
and he, = h,  the field Hj"' is determined by a linearly or 
circularly polarized wave, respectively. For F'"' = Fia' 
+ iF?' we obtain from (4a) and (4b) 

he," 
~ a ) -  (-io) [ (y,-iu:a')'+o']-' ex*{-i an%( t* cp =)) 

X {pin cp[ (yr--i~,'a')h,'PL'+i~he2] 

where wj"' = g, H ja' is the exchange amplitude and 
y~ = o t  - k-r. This yields readily 

For the component F:"' we obtain from (4c) and from the 
contribution to qll 

The contribution of the R-ions to the spin-wave damping 
decrement I', is determined from the equation ( Wk is the 
spin-wave energy density) 

To calculate rk  we must specify the form of SH ja' and 
find Wk. The calculation of Wk is greatly simplified when 
the R-ion density is so low that the entire spin-wave energy is 
concentrated in the Fe sublattice. This is typical of the mag- 
nets of practical importance-dilute rare-earth garnets. If, 
however, the R-ion densities are not low, the problem is very 
complicated, since Wk must be calculated from a coupled 
system of equations for the R- and Fe-sublattice magnetiza- 

tions. Such calculations were made in Refs. 11 and 12 direct- 
ly by analyzing the equations, without the use of a dissipative 
function. We confine ourselves henceforth in the analysis of 
the spin wave only to the case of low densities (other small 
parameters come into play for DW), when the use of a dissi- 
pative function actually simplifies the calculation of r k .  

We proceed now to the nonlinear perturbations. As- 
sume that the characteristic time to - l/w of magnetization 
change is long compared with l/w j"'. We can then neglect in 
(4a) and (4b) the derivatives with respect to time and write 

Using these equations we obtain for Fla' to first order 
in (@/cue )' the closed equation 

P~(~)+~,~F,(~)=H~(~)+H,(~) (k3(a))2ylI[ (a.'"')'+yL21 , ( 10) 

which demonstrates clearly the main property of dissipation 
by R-ions, viz., the appearance of a strong temporal disper- 
sion for sufficiently small w, namely, for a- yII . It has an 
explicit solution for arbitrary changes of H6"' in both magni- 
tude and direction, as well as for arbitrary ratio of w and yll . 
In the important case w 4 yll the solution simplifies to 

FJa'= (lly~l) (IPe'a'+H.'a'~l (8Y) ) '/[ ( O . ( ~ ) ) * + ~ L ~ ]  ) . ( 11 ) 

In ( 1 1 ) we have F :"' (Ha"' and the equations for F I:' and 
q also simplify: 

t$'= (f/2AH) {B.(a)+.IL~~a' (6:"' )V[  (oj"' )'+yLz])2. ( 13) 

Knowledge of the density of the dissipative function q 
permits calculation of the relaxation characteristics of var- 
ious nonlinear magnetic perturbations (see Refs. 14 and 15). 
For example, the friction force Ffr acting on a moving do- 
main wall [and on any magnetic soliton such as a simple 
wave, in which M = M ( x  - vt) ] is given by 

F,,- (2/v) J drq. 

Note that for the case v (v, = yx,, where xo is the DW 
thickness, one can use for M = M(x  - vt) the static solu- 
tion obtained for the DW with account taken of the renor- 
malization of the Fe-sublattice magnetic energy due to inter- 
action with the R-sublattices (see Ref. 13 for 
renormalization of anisotropy constants). If, however, 
yx, 4 v( w,xo holds, the situation is more complicated and 
the connection between the magnetizations of the R and Fe 
sublattices is no longer the same as in the static case. It is 
then necessary either to solve a coupled system of equations 
for M and M'"', a task outside the scope of our paper, or 
assume a small R-ion density and neglect the reaction of the 
R sublattices to the Fe sublattice. 

Hereafter, unless specially stipulated, we shall assume a 
small R-ion density in analyses of spin-wave damping and 
DW deceleration at v 9 yx, . 
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3. MAGNETIC RELAXATION IN IRON GARNETS WITH R-IONS 

Magnetic relaxation has been most thoroughly investi- 
gated (experimentally as well as theoretically) for iron gar- 
nets ( IG).  This permits comparison of the results of our 
approach with the microscopic results known for these mag- 
nets. We present the results for spin-wave relaxation in IG 
with R-ions. 

In a cubic IG with R-ions one can distinguish six non- 
equivalent R-sublattices ( n  = 6) ,  each with rhombic sym- 
metry and unit vectors x'"', y'"', z'"', a = 1-6, that coincide 
with the rhombic axes and are oriented along the IG axes 
[z'"' along [ 1001 axes, x'"' and y'"' along [ 1101 axes; see 
Chap. 13 of Ref. 161. We represent the exchange field Hia' 
in the form 

With allowance for the sublattice symmetry with respect to 
the axes x'"', y'"', and z'"' the tensor j'"' indicative of the 
R-Fe interaction is diagonal [ j '"'=Ji . '"'  
= diag( 1 + E, ,1,1 + E,  ), J i s  the exchange integral], but is 

isotropic. 
We begin with the analysis of the damping of spin 

waves. If the magnetization M of the iron sublattice is direct- 
ed along the vector n, the oscillations of the magnetization in 
a spin wave with circular polarization correspond to 

( M . r ) + i ( M v ) = M g  exp [ i (od -kr ) ] ,  

T and v are unit vectors perpendicular to n, {< 1 is the di- 
mensionless wave amplitude, and M = I M 1. Calculating 
H:"' with allowance for ( 14), using (7) ,  (8),  and the equa- 
tion Wk = wkM{ '/2g, for the spin-wave energy density (g is 
the effective gyromagnetic ratio), we obtain for the damping 
rate rll,, due to the R-ion longitudinal relaxation 

where E: (n)  is the effective constant that determines the 
~nisotropy of the R-Fe interaction. For an arbitrary form of 
J'"' in ( 14) (even without assuming that j'"' is diagonal) 
we have for ~ 2 ,  (n )  

1f the tensor j '"' is taken to be diagonal and the anisotropy is 
assumed to be low ( E ~ ,  E,  4 1 ), the expression for E* (n)  
simplifies to 

According to ( 6 ) ,  the equation for the contribution of 
the transverse relaxation r , ,  is the same as in Ref. 4, and 
will therefore not be discussed here. We consider the contri- 
bution of the longitudinal relaxation. 

Expression ( 15) for TIIS, has the same characteristic 
features as the equations of the microscopic theory of longi- 
tudinal relaxation-both in the doublet model5 and in the 
more complicated cases of the multilevel The 
phenomenological approach describes the temporal disper- 
sion of rll,, at wk = yl , ,  and also the fact that the longitu- 

dinal relaxation exists only in the presence of anisotropy of 
the R-Fe interaction, which exists in turn in a cubic magnet 
ofthe IG type only when the symmetry of the R-ion position 
is lower than the crystal symmetry, and each position has a 
corresponding sublattice. 

Thus, in the linear approximation, the phenomenologi- 
cal and the microscopic approaches yield qualitatively the 
same results. What is more important is that it can be easily 
used to analyze the relaxation of nonlinear perturbations 
such as moving DW. In particular. for low-frequency per- 
turbations of arbitrary type (w < y ,  , for a DW u<v,  = yIx,,  
and x, is the DW thickness" ) one can obtain a simple 
expression for the dissipative function in the form of a func- 
tional of m and m, where m = M / M .  Using ( 12)-( 14) we 
obtain 

Q = p dr, g= (h,12g2)d+ (i,i2g2) rn,'rizi2. (17) 

where g is the magnetomechanical ratio of the Fe sublattice, 
and the effective relaxational constants A ,  and A, are equal 
for E ~ ,  E,  <1  to 

(Note that we have q > 0, although the constant A, can be 
negative. ) 

Recognizing that at sufficiently high temperatures the 
magnetizations of the Fe and R sublattices are practically 
collinear, we can take M to mean the total magnetization of 
the IG. The first term in (17) coincides in form with the 
Landau-Lifshitz dissipative function, and the effective con- 
stant contains a contribution from both the longitudinal and 
the transverse relaxations. The second (anisotropic) term is 
determined only by the longitudinal relaxation and has cubic 
symmetry. Note that there is no longitudinal-relaxation con- 
tribution for an isotropic ion, in accord with Refs. 18 and 19. 
Note also that an anisotropic term in q can be obtained in 
principle from Bar'yakhtar's symmetry approach when 
equations are derived for the total magnetization8 of an IG 
with allowance for its cubic symmetry, but then the ratio 
A,/A, is undetermined. Arguments favoring IA, 1 < A l  are 
advanced in Ref. 8. In our approach, the value of \A, / /A,  is 
determined by the R-sublattice parameters and is in general 
not small. For example, for an R-ion with axial symmetry 
(E, ) we have A, > A ,  > 0. 

Using the dissipative function ( 17) we can calculate the 
viscous-friction coefficient 71 of a DW, defined as 
y = - F,/Sv, where S is the DW area. It turns out that the 
longitudinal-relaxation contribution to 7 depends on the 
orientation of the magnetization rotation in the DW relative 
to the crystallographic axes. For 180-deg DW in epitaxial IG 
films with R ions having an easy-magnetization axis perpen- 
dicular to the film, we obtain for vll the equation 

where vi = (v.ei ), ri = (Tee, ), i = x,y,z, v is a unit vector 
along the easy axis, T is a unit vector in the planes of the DW 
and of the film, and T X v is the normal to the DW. In magne- 
tic films with substrates of type ( 11 1 ), ( 1 lo) ,  and ( loo), 
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respectively, we have 

where q, is the angle between the DW plane and the IG four- 
fold axis lying in the plane of the film. It can be seen that the 
anisotropy of the viscosity coefficient 

need not be small and can reach (at 4~ z E~ ) 34% and 
28% for films of type (1 10) and (loo), respectively, and 
A 7  = 0 only for a ( 11 1 ) film. A value of A 7  at a 30% level 
was observed in IG films, see Refs. 3 and 20, but cannot be 
described by the existing theoriesz1 (a microscopic calcula- 
tion of AT is very complicated and was not given in Refs. 6 
and 7).  

Note that Eq. ( 19) agrees, to within a constant factor, 
with the expressions obtained for DW mobility in the mic- 
roscopic calc~lation.~,' Thus, the results of the proposed 
phenomenological approach agree well for IG with those 
obtained earlier in the microscopic approach, but are much 
easier to obtain. 

4. MAGNETIC RELAXATION IN ORTHOFERRITES WITH R- 
IONS 

To our knowledge, there is no microscopic theory of 
DW relaxation in antiferromagnets and weak ferromagnets 
of the orthoferrite (OF) type with R-ions, and a theory of 
spin-wave relaxation in these magnets was developed in 
Refs. 12 and 22 only in the framework of the doublet model. 
On the other hand, experimental data are available on the 
damping of n~agnons,~ and on domain-wall slowing24p25 in 
OF, with the DW slowing investigated in the range from 150 
to 400 K, where the doublet model is not applicable at all. 
Let us use the phenomenological approach to describe mag- 
netic relaxation in these magnets. 

In the simplest model of an OF rare-earth one can dis- 
tinguish two iron sublattices and two R-sub lattice^.'^ The 
magnetizations of the Fe sublattices M I  and M,, 
IM, I = I M, I = M,, almost cancel one another, and the to- 
tal OF magnetization M is small when the DzyaloshinskiY 
interaction (DI)  is small. It is convenient to describe the 
dynamics of the magnetizations of Fe sublattices using effec- 
tive equations for the normalized antiferromagnetism vector 
1 = (MI  - M, )/IMl - M, I (Ref. 2 5 ) ,  with the magneti- 
zation given by 

M=(2/6) I(2Ig) [I,  i l+[H,, 11). (21) 

Here S is the exchange constant (SM,/2 is the OF exchange 
field) H, = H,e, is the DI field, and the axes x, y, and z 
coincide with axes a, b, and c of the OF. We confine ourselves 
in (21 ) to the simplest version of the DI of type (H, [M,l] ), 
disregarding the relativistic terms compared with the ex- 
change-relativistic ones, and also neglect the anisotropy of 
the Fe-sublattice susceptibility x = 4/S, which can be done 
at sufficiently high temperatures.13 The dynamics of 1 is de- 
termined by the Lagrangian25 

where c is the phase velocity of the spin waves, 5 is the inho- 
mogeneous exchange constant, and W, (1) is the anisotropy 
energy. Note that (21) and (22) contain effective constants 
renormalized by the R-Fe interaction. The energy of the 
field 1 is defined in the usual manner, E = T + U. 

The R-ions in an orthoferrite are located in two non- 
equivalent crystalline positions with C, point symmetry. We 
combine them to form two sublattices M'"', a = + , - . 
The Fe-sublattice exchange field at an R-ion in position a 
depends both on M and on 1: 

where j I;' are exchange tensors whose form is determined 
from symmetry considerations,26s13 and demonstrates the 
substantial anisotropy of the R-Fe interaction in OF: 

Taking (21) into account, we can represent the ex- 
change fields Hh"' in terms of only 1 and i and the effective 
exchange constants 

A specific feature of an OF is that the effective exchange 
constants Jx,y,, in (24) are smaller than those of an IG (the 
exchange field at the R ion does not exceed several tens of 
kOe; see Ref. 16), and the spin-wave frequencies 

w,,, = gM, (Sp,,, If/2, (wherep, and p, are the anisotro- 
py constants) contain the exchange constant S and are quite 
large [the field H,, =: (Sp,,, ) ' ~ , / 2  is of the order of sever- 
al tens of kOe] . The damping of spin waves should therefore 
be analyzed for an arbitrary relation between w,,, and 
we - Ji/fi, y,, and y, (recall that our analysis is valid only for 
low R-ion densities in OF with nonmagnetic R-ions, say in 
YFeO, . 

Let us examine the damping of magnons in the most 
abundant r4 phase of O F  (Ille,, and mile, in the ground 
state) .I3 It corresponds to an anisotropy energy in the form 

In the two spin-wave modes the oscillations of the vector 1 
are linearly polarized in the planes ac and ab, respectively 

1 (r, t )  =er+ [ ( 6 1 2 )  exp ( i (  o~t-kr) ] + c.c. 1, 
( 2 5 )  

oh= [oo" (ck) '1 ", 

where we have for the ac mode 

and for the ab mode 
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Using (25) and (24) we can find Hba' and calculate from 
Eqs. (6)  and ( 7 )  the spin-wave energy dissipation rates q'Ob' 
and q'"". It turns out that the HZ"' for these two polarization 
have substantially different forms. For the ab mode the field 
Hz varies only over its length, (cia' = O), has therefore no 
contribution from the transverse relaxation. The situation is 
reversed for the ac mode: accurate to & 2, there is no contri- 
bution of the longitudinal relaxation. We present an expres- 
sion for the damping rates T, of these modes, calculated as 
r, = q/ W,, where W, = 26,w2,/$S2 is the wave energy 
density [see (22) 1. We ultimately have 

where 

r=Jizz/Jz, f =I l  J=/lzz, e = (JZz+ 1;- J z z )  /Iz', 
D ( x )  = [71z+(o.+x)2]- ' ,  

and w, = g, J,M, is the frequency describing the exchange 
field at the R-ion. Note that o, and w, are small compared 
with the characteristic frequency gSM0/2 describing the ex- 
change field of the Fe subsystem. Therefore, in particular, 
the term with 02, in (26) can besubstantial only for r s p ,  i.e., 
J , ,  > J,, . We have no data for these constants, but they 
correspond to substantially different R-Fe interactions, and 
one cannot exclude the satisfaction of such an inequality. 

The frequency dependence of the contribution of the 
longitudinal relaxation to the magnon damping rate in OF 
, - (4 + - l, and not r l i , k  -wk (4 
+ d ) - ' as in a ferromagnet at w < we) is the same as in the 
microscopic  calculation^.^^ A more detailed comparison is 
impossible within the framework of the doublet model, since 
the impurity symmetry and the character of the interaction 
of the impurity level with the Fe subsystems were not speci- 
fied in Ref. 22. In the doublet model of an Ho3 + ion in an 
OF, proposed by the authors of Ref. 12, there is no longitu- 
dinal relaxation at all in the I?, phase. The damping of a 
mode of type (ab) was attributed by the authors to dissipa- 
tion in the Fe sublattice. However, even allowance for the 
upper level would make a significant contribution to the re- 
laxation, something taken into account automatically in our 
approach. In this approach, even without assuming a low R- 
ion density, when a coupled system of equations of motion 
must be solved for the R and Fe sublattices, the damping 
I?'ab' of the ab mode will be determined only by the longitu- 

. dinal-relaxation mechanism, and I?'"" by the transverse re- 
laxation (neglecting, of course the proper damping of the Fe 
sublattice). This follows from the very form of HLa' as a 
functional of 1 (24). 

In the OF canted phase, which appears in the spin-flip 
region, longitudinal and transverse relaxation are both es- 
sential for damping of the two modes, and in the transition to 
the OF collinear phases T4 and I?, (lllc) one of these contri- 
butions vanishes. In particular, no contribution is made to 
the ac mode by the longitudinal relaxation to either collinear 
phase. The situation is more interesting for the ab mode: as 
noted above, nonzero contributions are made only by the 
longitudinal relaxation in the r4 phase, only by the trans- 

verse in the r, phase, and by both in the canted phase r,, . 
The theory thus predicts changes in the spin-wave relaxation 
mechanism in the passage through the spin-flip region, and 
this should cause an abrupt change in the character of the 
relaxation-in the values of the damping rates, in their tem- 
perature and frequency dependences, etc. (see Ref. 10 for 
details). 

In the case of low frequencies, w <we, yll , y,, it is neces- 
sary to carry out, just as in the case of the IG, a more general 
analysis and write down for an arbitrary nonlinear wave the 
dissipative function, with the aid of Eqs. ( 12), ( 13), and 
(24), in the form of a functional of the vectors 1 and 1. The 
density of the dissipative function is a sum of two terms cor- 
responding to longitudinal (qll ) and transverse (q, ) relaxa- 
tion, but in view of the strong anisotropy of the R-Fe inter- 
action the expressions obtained for qll and q, are more 
unwieldy: 

where 

s =diag(S=, S,, (S,+S,) ) , S,=IJ,, S,=JJ.p, 

This expression simplifies in many cases of practical interest, 
particularly moving domain walls. The motion can be re- 
garded as low-frequency and the dissipative function (28 ), 
and (29) can be used for DW moving with velocity v under 
the condition v <  v,, where v, z x ,  yll and x, is the DW thick- 
ness. For v g v ,  the friction force is F, = - r]v. 

It is known (see Ref. 25) that in the collinear phase T4 
of an OF there can be two types of DW. In one case the 
vectors M and 1 are rotated in the ac plane: 

l=e, cos @+ez sin 6 

(DW of type a c ) .  In the second, the vector 1 rotates in the ab 
plane 

I=& cos 6+e ,  sin 6, 

while M only varies in length. For both DW we have 

cos 6 - t h  [ ( y - v t )  lxo ( I -  ( v l ~ ) ~ ) ' " ] ,  

where x, = (iT/P,)'/* for the DW of type ac and 
x, = (E/& ) for the DW of type ab. In most OF there is a 
DW of type ac at room temperature, while for dysprosium 
OF the ab-type DW is stable at T <  150 K. The DW thick- 
ness in the OF is x, =; 10 - 6  cm, while at yll = 10'' s -  ' we 
have v, =: 1 km/sec, which is smaller by an order of magni- 
tude than the DW velocity limit. The value of yll , meaning 
also v,, decreases when the temperature is lowered. 

Calculation shows that in the ab DW, just is in a spin 
wave of ab type, there is no transverse-relaxation contribu- 
tion and the deceleration of the DW is determined only by 
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the longitudinal relaxation: 

rl(ob)=ql,(*) =A,:*) (~JrMo)Z/hllxr. (30) 

where A (lac' = (8/3) (1 +p2/2 ). In fact, owing to the Lor- 
entz contraction of the DW, Eq. (30) contains in place of x, 
the quantity x, ( u )  = x, ( 1 - (u/c) ') ' I2, but this can be neg- 
lected for v g c. 

For an ac-type DW, the contribution to the viscosity 
from either the longitudinal or the transverse relaxation 
differs from zero, 77'"') = + v y ' ,  

where 

and we have x ,  ( E )  = s i n h - ' ~ " ~  for E > 0 and 
x,  (E) = sin - ' J E I  for - 1 < E  < 0. The quantity E is indi- 
cative of the anisotropy of the R-Fe interaction, and as E + O  
we have A ha'' -- 8~*/15, and A y' ~ 4 .  It is assumed here and 
below, for simplicity, that yll , yL <<we 

Calculation of the deceleration of DW in OF with 
allowance for the anisotropy of the magnetic susceptibility x 
leads to qualitatively the same results as obtained with 
ilk = xSlk. For an ab-type DW, in particular, 7, = 0 and an 
exact equation for vll is obtained from (30) by the substitu- 
t i o n ~ - + ~ ~ ~ .  For an ac-type DW the equation for 17 becomes 
more unwieldly, but agrees qualitatively with (3 1 ) . This al- 
lows us to state that allowance for the anisotropy o fx  is of no 
fundamental interest. 

We consider now the limit of high velocities, u > v, (re- 
call that such an analysis is meaningful for low R-ion densi- 
ties, when they influence little the Fe sublattice). For the 
calculation we must use a general system of Eqs. (9) and 
( 10) with allowance for the explicit form of HZ*'. It follows 
from ( lo) ,  in particular, that for v %  u, we have 

Fs(%) ( t )  =He(=) ( t ) -H, (O)  (-w) 

(at t = - GO, F ia' = 0) .  In this case the friction force per 
unit area of an (ab)-type domain wall is 

where 

and decreases with increase of velocity. 
The change in the character of the Ffr ( u )  dependence is 

a direct consequence of the temporal dispersion characteris- 
tic of longitudinal-relaxation processes. This behavior 
("turning-off' a dissipation mechanism when the DW mo- 
bility is increased 5-7 times) was observed in Ref. 27 for DW 
in yttrium orthoferrite at v z 2  km/s, which agrees with the 
estimate of u,. It would be of interest to relate this effect to 
turning off the relaxation due to small uncontrollable R-ion 
impurities that can be present in YFeO, . For (ac)-type DW, 
both mechanisms contribute to the relaxation, so we have 
F;,?) = Fy) + Fiac). F;;C is "turned-off' for v)  v, in accor- 
dance with the same law as for ab DW (F:,Y' - l/v); see Eq. 
(32) with B (lab' replaced by 

where x2 (E)  = t a n h - ' m  for - 1 < E < 0 and x, (E) 

= - tan-'& for E > 0. As to the behavior of the transverse- 
relaxation mechanism, the situation is substantially differ- 
ent. The turning-off mechanism is absent, i.e., no depen- 
dence of type Ffr = F, -1/u sets in up to velocities 
u-wex, - 10 km/sec, but when u goes through the value 
v, = yllxo only the coefficient of proportionality between 
F and v changes 

Let us compare the contributions of the two mechan- 
isms to the DW mobility. It follows from (31) that 
(viac'/rly') z wt/yL yll % 1 and the basic mechanism is lon- 
gitudinal relaxation (a  similar inequality appears also in the 
microscopic IG theory7 ) . Let us estimate numerically the 
DW mobility, defined in OF asp = 2M /v. Recognizing that 
x = p:ff c/3T, wherep,, is the effective magnetic moment of 
the R-ion, yil = All  /x, and c is the R-ion density, we obtain 
for the mobility 

where the constant A - 1 is defined in (30) and (3 1).  With 
allowance for the numerical values x, - 10 - cm, yll 21 10" 
s- I ,  He = 0.5 x lo4 ~ e ,  M = 10 G (Ref. 13) we find that at 
T =  300 K we get p-- 102/y (cm/s.Oe), where y is the 
number of R ions per formula unit. This value agrees with 
experimental data24-25 according to which the value ofp  for 
different rare-earth orthoferrites at room temperature 
ranges from 150 to 800 cm/s.Oe. A more detailed compari- 
son of the value of p at T = 300 K and also of the tempera- 
ture dependences of p is impossible in view of the uncer- 
tainty in the values of the parameter yil . 

Investigation of the deceleration of DW in the canted 
phase of OF (which occurs in the spin-flip region) is de- 
scribed in detail in Ref. 10 and will not be discussed here. We 
note only that at the flip point itself the contribution of the 
transverse relaxation for the energetically preferred small- 
angle DW is much larger than that of the longitudinal one. 

CONCLUSION 

Our approximations have yielded for the spin-wave 
damping constants and domain-wall deceleration general 
equations that are valid for any ion. Specific, "individual" 
properties of each R ion are determined by the minimum 
number of phenomenological parameters yll , yL , X, we and 
the anisotropy parameter E. 

These approximations relate primarily to the allowing 
only for the magnetization in the description of the R-ion 
state and neglecting higher odd multipoles (quadrupole var- 
iables, as already mentioned, are unimportant for T% E, - 20 
K )  . Neglect of the anisotropy of the R-ion susceptibility is 
also significant. These two approximations are valid at suffi- 
ciently high temperatures T> A, where A> 10' K is the level 
splitting in the crystal field. 

In our opinion these constraints on the temperature are 
of no fundamental significance. For each specific problem, 
allowance for the anisotropy ofx, while cumbersome, is pos- 
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sible. It is impossible only to write general equations analo- 
gous to these in the isotropic approximation. Allowance for 
the anisotropy ofx, carried out by us in certain cases (e.g., 
for DW deceleration in OF) does not change the results qua- 
litatively (and not even quantitatively for ab-type DW). 

It is more important that at low temperatures, when 
only two levels are excited, one can use the generally accep- 
table doublet model5 that permits a microscopic description 
in terms of the spin density o associated with the effective 
spin 1/2 (Ref. 12). A theory based on the doublet model has 
a high-temperature constraint (we have noted above that 
allowance for the next higher level of the Ho3 + ion can sub- 
stantially alter the result of the calculation in this model. 
Our theory has a low-temperature limit. It seems to us that 
the use of alternative theories extends the possibilities of de- 
scribing rare-earth magnets. 

This method can also be generalized to include other 
problems. In our approach it is easy to describe the damping 
of elastic perturbations (both sound waves and nonlinear 
perturbations such as moving dislocations, crowdions, etc. ) . 
It  suffices for this purpose to express the effective field H$' 
(the analog of the exchange field H:"') acting on the a th  R- 
sublattice in terms of the deformation and distortion tensors. 

We thank V. G. Bar'yakhtar for a helpful discussion of 
the work. 

"At the characteristic paramagnetic-relaxation frequencies y - 10I0s- ' a - (Ref. 1) and at DW thickness x, =: cm we have v, =: 10 cm/s. The 
DW velocities realized in experiments with rare-earth garnets are usual- 
ly considerably lower. 
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