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The effective equations of motion for the magnetization of the rare-earth (R) sublattices in
ferrite-type magnets are analyzed. The relaxation part of the equations is found from general
considerations of symmetry and the hierarchy of interactions in a magnet and consists of two
terms corresponding to two different relaxation processes of the R sublattice magnetization,
transverse and longitudinal. The general expressions for the dissipative functions of these
processes for arbitrary small-amplitude spin waves and low-frequency nonlinear magnetization
oscillations are found. To apply them to the description of various magnetic excitations, it is
necessary to represent the exchange field at R-ions in terms of the macroscopic averages of the
iron subsystem in a particular magnetic crystal. The anisotropy of the domain walls (DW)
mobility in ferrite garnets, previously unexamined theoretically, which is caused by the
longitudinal relaxation, is described. The R-ion contribution to spin wave damping and DW
braking in orthoferrites is calculated and analyzed. It is shown that in one type of possible spin
wave and DW modes dissipation is caused only by transverse relaxation and in another only by
longitudinal relaxation. In the angular phase of an orthoferrite a crossover of the spin wave
relaxation mechanisms is found. The phenomenological approach considered may be generalized
to describe the damping of other excitations, for instance, elastic ones in crystals not only with R-
ions but with other dopants having internal degrees of freedom of any nature.

1.INTRODUCTION

Relaxation of magnetization perturbations (spin
waves, domain walls, and others) in magnets such as ferrites
with rare-earth ions attracts considerable scientific and
practical interest. At the present time, the basic laws of this
relaxation can be regarded as understood (see the mono-
graph by Gurevich' ). The dissipation of magnetic perturba-
tions in the presence of rare-earth (R-) ions is attributed to
two different relaxation mechanisms—longitudinal (or
slow) and transverse (or fast). This division into two me-
chanisms was revealed initially in the microscopic theory.?

The mechanism of transverse relaxation can be de-
scribed on the basis of the phenomenological equations of
the dynamics of the R-sublattice magnetization M‘® with a
standard relaxation term in the Landau-Lifshitz or Hilbert
form* (see also Refs. 1 and 3). The results of the two ap-
proaches are in agreement and lead, in particular, to the con-
clusion that the damping of the lowest spin-wave modes has
a weak frequency dependence (a small temporal disper-
sion).

The situation is different with the description of longi-
tudinal relaxation, which is the most pronounced in ferrites.
Atthe present time this mechanism is described only micros-
copically, as formulated by Van Vleck? for spin-wave
damping (see Refs. 6 and 7 concerning relaxation of nonlin-
ear perturbations of the moving domain-wall (DW) type).
The microscopic approach is particularly complicated and
unwieldy at sufficiently high temperature 7> A, where Aisa
quantity on the order of the ion-level splitting energy in a
crystal field (usually, A~ 100 K), for in this case several
levels are effectively excited and the simple doublet model
cannot be used. A characteristic feature of longitudinal re-
laxation is strong temporal dispersion, causing many auth-
ors to state that it cannot be described phenomenologically
(see Ref. 3).
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We shall show that longitudinal relaxation, like trans-
verse, enters naturally into the phenomenological descrip-
tion if a relaxation term, constructed by the approach pro-
posed by  Bar’yakhtar,? is used in  the
magnetization-dynamics equations for the R-sublattice.

We present answers here and analyze them for spin-
wave damping and DW deceleration in the magnets most
frequently investigated in experiment, iron garnets and orth-
oferrites. This approach is most effective for high tempera-
tures 7> A, when general equations can be obtained for any
R-ion. The results of our approach agree qualitatively with
those of the microscopic theory for iron garnets with R-ions,
but are much simpler to obtain and permit analysis of many
important details, particularly the question of the aniso-
tropy of DW mobility, as well as investigation of more com-
plicated magnets such as orthoferrites.

2.PHENOMENOLOGICAL EQUATIONS OF MOTION AND
DISSIPATIVE FUNCTIONS OF AMAGNETIC R-SYSTEM

Consider a magnet containing R-ions in nonequivalent
crystalline positions numbered a (a = 1,2,...,n). The state
of an R-ion with a total angular momentum j is determined,
generally speaking, by 4j(j + 1) variables, of which three
determine the magnetization dynamics and the rest are
known as the multipole variables, see Ref. 9 for details. We
consider the case in which the interaction between the R-
and Feions consists of exchange. It can be shown then that in
the high-temperature approximation (7> A) of interest to
us the Fe-ion spins excite primarily the R-ion dipole varia-
bles connected with the change of the magnetization, and the
excitation of multipole variables of higher order can be neg-
lected. (Interestingly, the condition that the quadrupole
variable have low excitation is considerably less stringent
and takes the form 7> ¢,, where £, €A is the exchange split-
ting of the R-ion level; see Ref. 10.)
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For the phenomenological description, we group all the
R-ions in an ath crystal position into a single R-sublattice
and characterize it by a magnetization M@ = M® (r,z).
The equations of motion for M‘® can be obtained from Ref.
8, with allowance for the specific sublattice symmetry that
includes elements of the ath position and is as a rule lower
than the symmetry of the entire crystal. Unification of all the
R-sublattices into one can lead therefore to the loss of certain
effects (more below).

We write the equation of motion for M® = M(® (r,t)
in the form

M@ =_ gOM@, F@] +R®, (1)

where F® is the effective field, defined as the variation of
the free energy W of the magnet with respect to M@, R‘® is
the relaxation term, and g%’ is the magnetomechanical ratio
of the ath sublattice. Note that g&*’ should, generally speak-
ing, be regarded as a tensor, but its tensor character is of no
importance for the relaxation of magnetic excitation. This
tensor character can be taken into account automatically by
using in place of (1) the effective equation J'® =gz "M@
for the total moment J®. In this equation the effective field
F@ is redefined: F® = — §W/8J®, and, in particular,
the exchange field H{® is replaced by gg H!®. The equation
for J* then takes the form (1) with g& = 1 and with ap-
propriate substitutions.

For the specific form of F'® we note that direct interac-
tion between R-ions in ferrites is as a rule negligibly small,
and these ions can be regarded as paramagnetic. Taking this
into account and neglecting the excitation of the quadrupole
variables, we express the free energy of the R-ions in the
form

W= ZW‘“’, W (M®)= jdr{_H': M@ +f(M®)}.
* (2)

In this equation H!® is the exchange field applied by
the Feions to the R-ions. Since the magnetizations of the Fe-
ions are strongly correlated, H!® is expressed in terms of the
simplest mean values of the Fe-subsystem spin variables. In
particular, in all the uncompensated ferrimagnets such as
iron garnets, H{*’ can be expressed in terms of the summary
magnetization M of the Fe subsystem. For collinear antifer-
romagnets and weak ferromagnets (such as orthoferrites)
we can accordingly define H{* in terms of the summary
magnetization vector M and the Fe-subsystem antiferro-
magnetism vector L (see Sec. 4 below).

For the term £ (M) in (2), which is determined by
the entropy contribution at temperatures 7> A, we can
write

f(M®) = (M)?/2y,, (2a)

where y, ~1/T isthe paramagnetic susceptibility of the ath
R-sublattice M * = |M ‘“|. If the nonequivalent crystalline
positions are distributed with equal probability, the corre-
sponding values of y, are the same for all the sublattices,
X« = X- This is precisely the case we shall consider below.
Thus the tensors g and y are isotropic in our model, but
the anisotropy of the R-ions is taken into account in the R—
Feinteraction (more below). The anisotropies of y and H!®
are not on a par because the latter differ in their physical
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nature, being relativistic and exchange-relativistic, respecti-
vely.

The relaxation term R‘® is determined, in accordance
with the approach of Ref. 8, in terms of the components of
F(® and its spatial derivatives. By virtue of the above argu-
ments, we can neglect the spatial-dispersion arguments and
write R = 4 (YF@ whereA ® is the tensor of the relaxa-
tion constants. The actual form of A ® is chosen from sym-
metry considerations; see Ref. 8. Since the only preferred
direction in the rpodel (2), (2a) is that of the exchange field
H{®, the tensor A ‘* has only two independent components,
A, and 4,. Accordingly, the dissipation function @ which
determines the rate Wy of dissipation of the R-subsystem
energy (W = — 2Q), in this approximation takes the form
of the sum

0=Y0".

Qm=i

where
Q(a)=i/2 jdl’{l." (F(g)es(") )2+M.[ (F(u) )z_ (F(dyea(a) )z] } ( 3 )

and e{® is a unit vector along H{*.

We proceed now to analyze the contribution of the R-
ions to the relaxation of magnetic excitations such as spin
waves, moving DW, and others, which are determined pri-
marily by the oscillations of the Fe-ion spins. To calculate
this contribution we must express the dissipative function of
the R-subsystem in the form of a functional of the Fe-system
magnetization (or of the vectors M and L), i.e., express the
quantities F® in terms of H{*, and then use H{* expressed
in terms of M or of M and L for the specific magnetic crystal.
The difficulty is that F® depends on the R-sublattice mag-
netization M(®, which is determined in turn by the form of
H!® on the basis of Eq. (1). To find Q it is convenient to
write the dynamic equations directly for the field compon-

ents F“. Using the relation F” =H!® —M@/y
and Eq. (1) we obtain the equation
F‘“’+gn [F""’, He‘“’]+(i“"/x) F‘“’=H,“", (4)

which relates F'® with the field H{® (we assume that all
gy are equal: g& = gg ). No simple equations for F® in
terms of H{* can be obtained in general, but this problem
can be solved in most interesting cases.

It is convenient to transform to a moving coordinate

frame with unit vectors e{”’, e$*, and e{*’, where

e, @ =H,/H ez(“>=—és‘°"/|és(“)|,

e’(a)= [ez(u)es(a)]q He(“)=|He('”|-

We obtain then for the components (F®e(®) = F{®, with
allowance for (4),

F!(a)+Q(E)F2(a>+YLF1(G)=O, (48.)
Fy®—Q@P @y Fy@—_ |'e3(a> | (H,®—Fy®), (4b)
Py @y Fy @ + |05 | Fy® =H @, (4¢)

where

Q‘“’=me‘“’+(e,‘°".e2‘“’), 0 =gpH,®.
The quantities ¥, = A,/y and ¥, = A,/ have the meanings
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of the transverse and longitudinal relaxation frequencies of
the R-sublattice magnetization vector, which are indicative,
respectively, of the vector relaxation in direction (with
F{® =F{® =0) and in length (M ‘¥ =M =yH ).
With (3) taken into account, these mechanisms are charac-
terized, respectively, by the dissipative-function densities

¢* and ¢|, where

0o =(0af2) [(FL@)+ (Fe)], @)= (Mf2) (F1 @),

The system (4) can be solved exactly for a small-ampli-
tude spin wave of arbitrary frequency w, and also for magne-
tization perturbations that are not small and have an arbi-
trary amplitude but a characteristic frequency w lower than
the exchange frequency v,, w €o,.

Let us solve the system (4) for a low-amplitude spin
wave. In the general case we express the exchange-field in
the form

B (r,0)=[H"+'/2(8H, “expli(ot—kr) ] +c.c. ) J e

+ 1/, (h.(f) eo(a)+ihi:) e,ia) Yexpli(wt—kr)] +c.c.],
where k is the wave vector of the spin wave, the amplitudes
SH (™, h ., and h 3 are small compared with H §’, e{®,

‘e¢”, and e” is the orthonormalized basis, and at 4, =0
and h,, = h,, the field H{® is determined by a linearly or
circularly polarized wave, respectively. For F® = F{®
+ iF {* we obtain from (4a) and (4b)

Fo=(-io) [ (1,—i0.” ) +0!] - exp{ —i arctg( tge LT ) } :

heza
X {sin @[ (Y, —i0. " )by +ioh.,]

. —cos plohl’ —iky (yi—ie )]}, (5)

where (™ =g H!® is the exchange amplitude and
@ = ot — ker. This yields readily

gr = (A,0Y4) {[ (e )+ (e ) (Y H (0, ) +al)
— 40" 0hY b Y {[1. 40— (07) ]+ (20 y1) - (6)

For the component F{*’ we obtain from (4c) and from the
contribution to g

1.)‘-11,/ { iwa”c“’
y : i“)+1"

. o AM1OH! 2!
expliol+ cc.}, - qi"= ML
]

(7

The contribution of the R-ions to the spin-wave damping
decrement I'; is determined from the equation (W, is the
spin-wave energy density)

L=, (0 +4)/Wh. (8)

To calculate I', we must specify the form of §H (* and
find W,. The calculation of W, is greatly simplified when
the R-ion density is so low that the entire spin-wave energy is
concentrated in the Fe sublattice. This is typical of the mag-
nets of practical importance—dilute rare-earth garnets. If,
however, the R-ion densities are not low, the problem is very
complicated, since W, must be calculated from a coupled
system of equations for the R- and Fe-sublattice magnetiza-
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tions. Such calculations were made in Refs. 11 and 12 direct-
ly by analyzing the equations, without the use of a dissipative
function. We confine ourselves henceforth in the analysis of
the spin wave only to the case of low densities (other small
parameters come into play for DW), when the use of a dissi-
pative function actually simplifies the calculation of T';.
We proceed now to the nonlinear perturbations. As-
sume that the characteristic time 7, ~ 1/ of magnetization
change is long compared with 1/ . We can then neglect in
(4a) and (4b) the derivatives with respect to time and write

F'(a),,..= (H,‘“’—*-F‘.‘“’)‘{(o,‘“’ "es(u)l ( (mc(u))z+,h.:l —-1)7 (98)
Fz(u)=-(’1;/0)¢(“))F|(¢). (Qb)

Using these equations we obtain for F{* to first order
in (w/w,)? the closed equation

Py® 4y Fy @ =H+H,® () 1./[(0.)*+1.7],  (10)

which demonstrates clearly the main property of dissipation
by R-ions, viz., the appearance of a strong temporal disper-
sion for sufficiently small o, namely, for @~y . It has an
explicit solution for arbitrary changes of H{* in both magni-
tude and direction, as well as for arbitrary ratio of w and y.
In the important case @ €y the solution simplifies to

Fy@=(1/yy) {B.2+H. 27, (&) [(0. ) +1.%). . (11)

In (11) we have F{* < H {* and the equations for F {% and
q also simplify:

=0 @+,
ot (12)

(%)

0 =0u2) e B ) (0. )0,

o = (/20 (B Hy HEY () [0 ) +1.21)2 (13)

Knowledge of the density of the dissipative function g
permits calculation of the relaxation characteristics of var-
ious nonlinear magnetic perturbations (see Refs. 14and 15).
For example, the friction force Fj, acting on a moving do-
main wall [and on any magnetic soliton such as a simple
wave, in which M = M(x — vt)] is given by

Fo=(2/v) | drq.

Note that for the case v<€v, = yx,, where x, is the DW
thickness, one can use for M = M(x — v¢) the static solu-
tion obtained for the DW with account taken of the renor-
malization of the Fe-sublattice magnetic energy due to inter-
action with the R-sublattices (see Ref. 13 for
renormalization of anisotropy constants). If, however,
¥x, €v<w,.X, holds, the situation is more complicated and
the connection between the magnetizations of the R and Fe
sublattices is no longer the same as in the static case. It is
then necessary either to solve a coupled system of equations
for M and M‘®, a task outside the scope of our paper, or
assume a small R-ion density and neglect the reaction of the
R sublattices to the Fe sublattice.

Hereafter, unless specially stipulated, we shall assume a
small R-ion density in analyses of spin-wave damping and
DW deceleration at v> yx,.
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3.MAGNETIC RELAXATION INIRON GARNETS WITH R-IONS

Magnetic relaxation has been most thoroughly investi-
gated (experimentally as well as theoretically) for iron gar-
nets (IG). This permits comparison of the results of our
approach with the microscopic results known for these mag-
nets. We present the results for spin-wave relaxation in IG
with R-ions.

In a cubic IG with R-ions one can distinguish six non-
equivalent R-sublattices (» = 6), each with rhombic sym-
metry and unit vectors X, y(®,z‘® a = 1-6, that coincide
with the rhombic axes and are oriented along the IG axes
[z'“ along [100] axes, x'® and y‘® along [110] axes; see
Chap. 13 of Ref. 16]. We represent the exchange field H!*
in the form

H.©=]M. (14)

With allowance for the sublattice symmetry with respect to
the axes x'@, y®, and z'® the tensor J indicative of the
R-Fe interaction is diagonal [J@ =Jge=
= diag(1l + £,,1,1 + &;), Jis the exchange integral ], but is
isotropic.

We begin with the analysis of the damping of spin
waves. If the magnetization M of the iron sublattice is direct-
ed along the vector n, the oscillations of the magnetization in
a spin wave with circular polarization correspond to

(M7) +i(Mv) =Mt exp [i(oat—kr)],

7 and v are unit vectors perpendicular to n, £ <1 is the di-
mensionless wave amplitude, and M = |[M|. Calculating
H!® with allowance for (14), using (7), (8), and the equa-
tion W, = w, ME ?/2g, for the spin-wave energy density (g is
the effective gyromagnetic ratio), we obtain for the damping
rate ' , due to the R-ion longitudinal relaxation

Ty, 2= [2gxe* (0) M) [ 1,04/ (Yi*+@a?)], (15)

where si (n) is the effective constant that determines the
anisotropy of the R-Fe interaction. For an arbitrary form of
J @ in (14) (even without assuming that J ® is diagonal)
we have for £2 (n)

e (n)=(27M)* 2 {Iv(aH” (n)/am))*>

Gu=q

+[7(aH.” (n)/m)]%}. (16)

If the tensor J ‘@ is taken to be diagonal and the anisotropy is
assumed to be low (g,, £; 1), the expression for £, (n)
simplifies to

e.‘(n)=(e,’/2)—€(1— Z‘ (ne.-)‘). g=(e,—e,)*—%,e,’.

i=x,y,z

According to (6), the equation for the contribution of
the transverse relaxation I, is the same as in Ref. 4, and
will therefore not be discussed here. We consider the contri-
bution of the longitudinal relaxation.

Expression (15) for I, « has the same characteristic
features as the equations of the microscopic theory of longi-
tudinal relaxation—both in the doublet model® and in the
more complicated cases of the multilevel model.>!” The
phenomenological approach describes the temporal disper-
sion of '), at @, = ¥, and also the fact that the longitu-
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dinal relaxation exists only in the presence of anisotropy of
the R-Fe interaction, which exists in turn in a cubic magnet
of the IG type only when the symmetry of the R-ion position
is lower than the crystal symmetry, and each position has a
corresponding sublattice.

Thus, in the linear approximation, the phenomenologi-
cal and the microscopic approaches yield qualitatively the
same results. What is more important is that it can be easily
used to analyze the relaxation of nonlinear perturbations
such as moving DW. In particular, for low-frequency per-
turbations of arbitrary type (w €y, foraDW v<v, =y x,,
and x, is the DW thickness'’ ) one can obtain a simple
expression for the dissipative function in the form of a func-
tional of m and m, where m = M/M. Using (12)-(14) we
obtain

Q= jq dr, g=(\/2g")m*+ (r./2g%) Z mimd,  (17)
i=2x,y,2

where g is the magnetomechanical ratio of the Fe sublattice,

and the effective relaxational constants 4, and 4, are equal

fore,,e;<1to

A=06M, (g/gr)2+2e g2 (XIM)* /Ay, Aa=4(xIM)?*e/N,. (18)

(Note that we have ¢ >0, although the constant A, can be
negative.)

Recognizing that at sufficiently high temperatures the
magnetizations of the Fe and R sublattices are practically
collinear, we can take M to mean the total magnetization of
the IG. The first term in (17) coincides in form with the
Landau-Lifshitz dissipative function, and the effective con-
stant contains a contribution from both the longitudinal and
the transverse relaxations. The second (anisotropic) term is
determined only by the longitudinal relaxation and has cubic
symmetry. Note that there is no longitudinal-relaxation con-
tribution for an isotropic ion, in accord with Refs. 18 and 19.
Note also that an anisotropic term in ¢ can be obtained in
principle from Bar’yakhtar’s symmetry approach when
equations are derived for the total magnetization® of an IG
with allowance for its cubic symmetry, but then the ratio
A,/A, is undetermined. Arguments favoring |4,| <A, are
advanced in Ref. 8. In our approach, the value of |4, |/4, is
determined by the R-sublattice parameters and is in general
not small. For example, for an R-ion with axial symmetry
(e;>€,) wehave 4, >4, >0.

Using the dissipative function (17) we can calculate the
viscous-friction coefficient 7 of a DW, defined as
n = — F, /Sv, where S is the DW area. It turns out that the
longitudinal-relaxation contribution to 7 depends on the
orientation of the magnetization rotation in the DW relative
to the crystallographic axes. For 180-deg DW in epitaxial IG
films with R ions having an easy-magnetization axis perpen-
dicular to the film, we obtain for 7, the equation

_ (XEeﬁ' JM) 2
= zknxo

(19)
fur =‘/ze,2+§2 [ (vi+ 1) =5 (vit)?],
i

where v, = (v-e;), 7, = (1°¢;), | = x,y,z, v is a unit vector
along the easy axis, 7 is a unit vector in the planes of the DW
and of the film, and 7 X v is the normal to the DW. In magne-
tic films with substrates of type (111), (110), and (100),
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respectively, we have

£,%/242&/3, (111),
ezﬁ{ £.%/2+658/120+ (£/120) (9 cos 49—2 cos 29), (110),

£,%/2+7&/10+(&/10)cos 49 (100),
(20)

where @ is the angle between the DW plane and the IG four-
fold axis lying in the plane of the film. It can be seen that the
anisotropy of the viscosity coefficient

A"l'—‘ (nmu—nm{n)/ [(nma::"l_nmlu) /2]

need not be small and can reach (at ¢, €e=¢,) 34% and
28% for films of type (110) and (100), respectively, and
A7 =0only fora (111) film. A value of A% at a 30% level
was observed in IG films, see Refs. 3 and 20, but cannot be
described by the existing theories?' (a microscopic calcula-
tion of A7 is very complicated and was not given in Refs. 6
and 7).

Note that Eq. (19) agrees, to within a constant factor,
with the expressions obtained for DW mobility in the mic-
roscopic calculation.®” Thus, the results of the proposed
phenomenological approach agree well for IG with those
obtained earlier in the microscopic approach, but are much
easier to obtain.

4. MAGNETIC RELAXATION INORTHOFERRITES WITH R-
IONS

To our knowledge, there is no microscopic theory of
DW relaxation in antiferromagnets and weak ferromagnets
of the orthoferrite (OF) type with R-ions, and a theory of
spin-wave relaxation in these magnets was developed in
Refs. 12 and 22 only in the framework of the doublet model.
On the other hand, experimental data are available on the
damping of magnons®* and on domain-wall slowing®*?* in
OF, with the DW slowing investigated in the range from 150
to 400 K, where the doublet model is not applicable at all.
Let us use the phenomenological approach to describe mag-
netic relaxation in these magnets. '

In the simplest model of an OF rare-earth one can dis-
tinguish two iron sublattices and two R-sublattices.'> The
magnetizations of the Fe sublattices M; and M,,
M, | = |[M, | = M,, almost cancel one another, and the to-
tal OF magnetization M is small when the Dzyaloshinskit
interaction (DI) is small. It is convenient to describe the
dynamics of the magnetizations of Fe sublattices using effec-
tive equations for the normalized antiferromagnetism vector
=M, —M,)/|M; —M,| (Ref. 25), with the magneti-
zation given by

M=(2/8) {(2/g) (1, 1]+[H,, 1]}. (21)

Here 6 is the exchange constant (8M,/2 is the OF exchange
field) H, = H e, is the DI field, and the axes x, y, and z
coincide with axes a, b, and ¢ of the OF. We confine ourselves
in (21) to the simplest version of the DI of type (H, [M,1]),
disregarding the relativistic terms compared with the ex-
change-relativistic ones, and also neglect the anisotropy of
the Fe-sublattice susceptibility y = 4/8, which can be done
at sufficiently high temperatures.'®* The dynamics of 1 is de-
termined by the Lagrangian®®

L=T—U=(M2a/2¢?) §drl—M,*dr [ (&/2) (V1)*+W.(1) ],
(22;
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where c is the phase velocity of the spin waves, @ is the inho-
mogeneous exchange constant, and W, (1) is the anisotropy
energy. Note that (21) and (22) contain effective constants
renormalized by the R-Fe interaction. The energy of the
field 1 is defined in the usual manner, E = T 4 U.

The R-ions in an orthoferrite are located in two non-
equivalent crystalline positions with C; point symmetry. We
combine them to form two sublattices M®, a = +, —.
The Fe-sublattice exchange field at an R-ion in position a
depends both on M and on I:

H.=],"*M+/J,L, L=M,l, (23)

where J {9 are exchange tensors whose form is determined
from symmetry considerations,”®!* and demonstrates the
substantial anisotropy of the R-Fe interaction in OF:

]ux :L‘]l:y 0
]i:t) =|£tJ1= ]luv 0 ’
0 0 J 122

0 0 Joes
IP= 0 0 +7,.]
Jsz 'i‘Jzzy 0

Taking (21) into account, we can represent the ex-
change fields H!® in terms of only 1 and 1 and the effective
exchange constants

Ji=lomit (2Ho/0Mo)] iz,  Jy=V2yst (2Ho/OM0) ] s,

Jz=Jzzz_‘ (2HD/6M0) Jlth p=Jzzy/Jh a=:t11 .
H @ =M,{(J.e.+alse,)l.+]. (L+apl,)e}+ (4/6g) ][], 1].
(24)

A specific feature of an OF is that the effective exchange
constants J, ,_ in (24) are smaller than those of an IG (the
exchange field at the R ion does not exceed several tens of
kOe; see Ref. 16), and the spin-wave frequencies
w,, =8gM, (6B, , )%/2, (where £, and S, are the anisotro-
py constants) contain the exchange constant § and are quite
large [the field Hy, =~ (6f3, , )‘}MO /2 is of the order of sever-
al tens of kOe]. The damping of spin waves should therefore
be analyzed for an arbitrary relation between w,, and
@, ~J;/#, v and ¥, (recall that our analysis is valid only for
low R-ion densities in OF with nonmagnetic R-ions, say in
YFeO,.

Let us examine the damping of magnons in the most
abundant I, phase of OF (l||e,, and m||e, in the ground
state)."? It corresponds to an anisotropy energy in the form

Wo="/( B!l;z"' pzlvz) ’ 52>5’>0'

In the two spin-wave modes the oscillations of the vector 1
are linearly polarized in the planes ac and ab, respectively

1(r, t) =e.+[(&/2) expli(wrst—kr)]+c.c.], 25)
o= [+ (ck)*] %,

where we have for the ac mode

 b=te, ou—u=gM(B0)*/2,

and for the ab mode
Eo=te,, ©r=0a=gM,(p:5)"/2.
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Using (25) and (24) we can find H{* and calculate from
Egs. (6) and (7) the spin-wave energy dissipation rates g‘*’
and ¢‘“. It turns out that the H!® for these two polarization
have substantially different forms. For the ab mode the field
H¢ varies only over its length, (é{*> = 0), has therefore no
contribution from the transverse relaxation. The situation is
reversed for the ac mode: accurate to £ 2, there is no contri-
bution of the longitudinal relaxation. We present an expres-
sion for the damping rates ', of these modes, calculated as
T, =q/W,, where W, = 2,07 /g°8* is the wave energy
density [see (22)]. We ultimately have

I3 =T a=A, (gMJ1.)*8 [ p*+r* 204/ gM0)*] [4 (0i*+Y, )],
(26)
u(“)=rJ.,u=’/sA.L (gMJ,)’G[ (1+e) [D(on)+D(—wn)]:

— 8fws (20./g8M0)D (@)D (—w4) ], (27)

where

r=]lu/’zv f=]l|sz/Jzz' 8=(]:2_*-Juz_llzz) /I;',
D(z)=[1. +(0.+z)*]",

and w, = ggJ, M, is the frequency describing the exchange
field at the R-ion. Note that w, and w, are small compared
with the characteristic frequency géM, /2 describing the ex-

change field of the Fe subsystem. Therefore, in particular, .

the term with w? in (26) can be substantial only for 7> p, i.e.,
Ji2:>J5,,. We have no data for these constants, but they
correspond to substantially different R-Fe interactions, and
one cannot exclude the satisfaction of such an inequality.

The frequency dependence of the contribution of the
longitudinal relaxation to the magnon damping rate in OF
(Cyx~(@F +97) 74 and not [y ~o, (0F

+ yﬁ ) ~'asin a ferromagnet at w € w, ) is the same as in the
microscopic calculations.?? A more detailed comparison is
impossible within the framework of the doublet model, since
the impurity symmetry and the character of the interaction
of the impurity level with the Fe subsystems were not speci-
fied in Ref. 22. In the doublet model of an Ho®>* ion in an
OF, proposed by the authors of Ref. 12, there is no longitu-
dinal relaxation at all in the ', phase. The damping of a
mode of type (ab) was attributed by the authors to dissipa-
tion in the Fe sublattice. However, even allowance for the
upper level would make a significant contribution to the re-
laxation, something taken into account automatically in our
approach. In this approach, even without assuming a low R-
ion density, when a coupled system of equations of motion
must be solved for the R and Fe sublattices, the damping
[“®) of the ab mode will be determined only by the longitu-

.dinal-relaxation mechanism, and I"*® by the transverse re-

laxation (neglecting, of course the proper damping of the Fe
sublattice). This follows from the very form of H!® as a
functional of 1 (24).

In the OF canted phase, which appears in the spin-flip
region, longitudinal and transverse relaxation are both es-
sential for damping of the two modes, and in the transition to
the OF collinear phases I', and ", (l||¢) one of these contri-
butions vanishes. In particular, no contribution is made to
the ac mode by the longitudinal relaxation to either collinear
phase. The situation is more interesting for the ab mode: as
noted above, nonzero contributions are made only by the
longitudinal relaxation in the ', phase, only by the trans-
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verse in the I", phase, and by both in the canted phase I',,.
The theory thus predicts changes in the spin-wave relaxation
mechanism in the passage through the spin-flip region, and
this should cause an abrupt change in the character of the
relaxation—in the values of the damping rates, in their tem-
perature and frequency dependences, etc. (see Ref. 10 for
details).

In the case of low frequencies, v € w,, Yi» Visit is neces-
sary to carry out, just as in the case of the IG, a more general
analysis and write down for an arbitrary nonlinear wave the
dissipative function, with the aid of Egs. (12), (13), and
(24), in the form of a functional of the vectors 1 and 1. The
density of the dissipative function is a sum of two terms cor-
responding to longitudinal (g, ) and transverse (g, ) relaxa-
tion, but in view of the strong anisotropy of the R-Fe inter-
action the expressions obtained for ¢, and ¢, are more
unwieldy:

gi=(2./gx*) [ (181)2—4S.,2L.2,2] -*{[ (181) (181)
+48.20L1,1,— (151)2)
X[ (181)24+484,2.21,2] —8 (18 1) S [ L, (151) + 4.2, (151)
—(181) (1,1}, (28)
@i=(*Mo/Ay) [ (181)2+48,,2.21,2] - { [ (181)2
8.2 (1) )?) (181) —4 (181) S (Ldy) "Ly} (29)
where
S=diag (S, Sy, (S=tSy)), S==J:1:, Sp=JJ:p,
Soy="12J:(Iy+pl).

This expression simplifies in many cases of practical interest,
particularly moving domain walls. The motion can be re-
garded as low-frequency and the dissipative function (28),
and (29) can be used for DW moving with velocity v under
the condition v €v,, where v, =~x, % and x, is the DW thick-
ness. For v €v, the friction force is F, = — 7.

It is known (see Ref. 25) that in the collinear phase I',
of an OF there can be two types of DW. In one case the
vectors M and 1 are rotated in the ac plane:

1=e, cos &+e, sin ¢

(DW of type ac). In the second, the vector I rotates in the ab
plane

l=e, cos 0te, sin O,

while M only varies in length. For both DW we have
cos O=th[ (y—vt)/z.(1— (v/c)?)"],

where x, = (@/B,)"* for the DW of type ac and
xo = (@/B, )" for the DW of type ab. In most OF there is a
DW of type ac at room temperature, while for dysprosium
OF the ab-type DW is stable at T'< 150 K. The DW thick-
ness in the OF is x, ~10 ~¢ cm, while at 7, =10' s~ ' we
have v, =~1 km/sec, which is smaller by an order of magni-
tude than the DW velocity limit. The value of 7, meaning
also v,, decreases when the temperature is lowered.
Calculation shows that in the ab DW, just is in a spin
wave of ab type, there is no transverse-relaxation contribu-
tion and the deceleration of the DW is determined only by
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the longitudinal relaxation:
7 =, =4,"" (xJ.Ms)*/ Mo, (30)

where 4 {* = (8/3) (I + p?/2). In fact, owing to the Lor-
entz contraction of the DW, Eq. (30) contains in place of x,
the quantity x, (v) = x, (1 — (v/c)?)"/?, but this can be neg-
lected for v <e.

For an ac-type DW, the contribution to the viscosity
from either the longitudinal or the transverse relaxation
differs from zero, 7*° = 9{*> + 9{**,

ac) ac ac ac
'lu( =A|: , (x/:Mo)*/ Mo, YIJ(. )=Al ) AL/gr’ze, (31)
where
A =4{1+e/3—[(1+e)"/ || "] %:(e)},

AL =201+ (1+e) [e] ] x4 (&),

and we have x,(¢)=sinh " '¢"?2 for £>0 and

%, (g) = sin~'|g|"/? for — 1 <& <0. The quantity ¢ is indi-
cative of the anisotropy of the R-Fe interaction, and as -0
wehaved (°” ~8¢°/15, and 4 (* ~4. Itis assumed here and
below, for simplicity, that y, ¥, €w,.

Calculation of the deceleration of DW in OF with
allowance for the anisotropy of the magnetic susceptibility y
leads to qualitatively the same results as obtained with
X = ¥8u- For an ab-type DW, in particular, 7, = Oand an
exact equation for 7, is obtained from (30) by the substitu-
tion y - Y,,. For an ac-type DW the equation for 7 becomes
more unwieldly, but agrees qualitatively with (31). This al-
lows us to state that allowance for the anisotropy of y is of no
fundamental interest.

We consider now the limit of high velocities, v> v, (re-
call that such an analysis is meaningful for low R-ion densi-
ties, when they influence little the Fe sublattice). For the
calculation we must use a general system of Egs. (9) and
(10) with allowance for the explicit form of H{®. It follows
from (10), in particular, that for v>v, we have

F’(a.) (t) =H£(u) (t)—Hc(G) (—oo)

(att= — o0, F{® =0). In this case the friction force per
unit area of an (ab)-type domain wall is

FE =(1/v) B, "M (V. Mo)?20 (0), v, (32)

where
B =4[In (4(1+p*)) +p'~1—p (n—arctg p)],

and decreases with increase of velocity.

The change in the character of the F;, (v) dependence is
a direct consequence of the temporal dispersion characteris-
tic of longitudinal-relaxation processes. This behavior
(“turning-off”” a dissipation mechanism when the DW mo-
bility is increased 5-7 times) was observed in Ref. 27 for DW
in yttrium orthoferrite at v~2 km/s, which agrees with the
estimate of v,.. It would be of interest to relate this effect to
turning off the relaxation due to small uncontrollable R-ion
impurities that can be presentin YFeO,. For (ac)-type DW,
both mechanisms contribute to the relaxation, so we have
F{& =F{" 4+ F{.F{is “turned-off” for v> v, in accor-
dance with the same law as forab DW (F {*” ~1/v); see Eq.
(32) with B {** replaced by
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B =4[In(1+e) +e+2u(e) e| "],

where x,(¢) =tanh™'\|e| for —1<e<0 and x,(¢)
= — tan~'\efore> 0. As to the behavior of the transverse-
relaxation mechanism, the situation is substantially differ-
ent. The turning-off mechanism is absent, i.e., no depen-
dence of type F; =F, ~1/v sets in up to velocities
v~w,X, ~ 10 km/sec, but when v goes through the value
v, = ¥, Xo only the coefficient of proportionality between
F{° and v changes

qurb =B.:R)M.V/gn2$o(v), (33)

(ac)

B, =1+%,(1+e)+3x.(e)/2(|e]| (1+e)*)",

Let us compare the contributions of the two mechan-
isms to the DW mobility. It follows from (31) that
({*/n{*”) =wl/7,y, > 1 and the basic mechanism is lon-
gitudinal relaxation (a similar inequality appears also in the
microscopic IG theory’ ). Let us estimate numerically the
DW mobility, defined in OF asu = 2M /7. Recognizing that
y = ulyc/3T, where p1 4 is the effective magnetic moment of
the R-ion, | = /l” /¥, and c is the R-ion density, we obtain
for the mobility

w=2Mv,z,T/AH.? culs,

where the constant 4 ~ 1 is defined in (30) and (31). With
allowance for the numerical values x, ~ 10~ °cm, ¥, = 10"
s™', H, =0.5%10* Oe, M = 10 G (Ref. 13) we find that at
T =300 K we get u=~10*/y (cm/s-Oe), where y is the
number of R ions per formula unit. This value agrees with
experimental data®*?* according to which the value of u for
different rare-earth orthoferrites at room temperature
ranges from 150 to 800 cm/s-Oe. A more detailed compari-
son of the value of 4 at 7= 300 K and also of the tempera-
ture dependences of u is impossible in view of the uncer-
tainty in the values of the parameter ¥ .

Investigation of the deceleration of DW in the canted
phase of OF (which occurs in the spin-flip region) is de-
scribed in detail in Ref. 10 and will not be discussed here. We
note only that at the flip point itself the contribution of the
transverse relaxation for the energetically preferred small-
angle DW is much larger than that of the longitudinal one.

CONCLUSION

Our approximations have yielded for the spin-wave
damping constants and domain-wall deceleration general
equations that are valid for any ion. Specific, “individual”
properties of each R ion are determined by the minimum
number of phenomenological parameters 7, 7,, ¥, @. and
the anisotropy parameter &.

These approximations relate primarily to the allowing
only for the magnetization in the description of the R-ion
state and neglecting higher odd multipoles (quadrupole var-
iables, as already mentioned, are unimportant for T'> €, ~20
K). Neglect of the anisotropy of the R-ion susceptibility is
also significant. These two approximations are valid at suffi-
ciently high temperatures 7> A, where A>10” K is the level
splitting in the crystal field.

In our opinion these constraints on the temperature are
of no fundamental significance. For each specific problem,
allowance for the anisotropy of y, while cumbersome, is pos-
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sible. It is impossible only to write general equations analo-
gous to these in the isotropic approximation. Allowance for
the anisotropy of y, carried out by us in certain cases (e.g.,
for DW deceleration in OF) does not change the results qua-
litatively (and not even quantitatively for ab-type DW).

It is more important that at low temperatures, when
only two levels are excited, one can use the generally accep-
table doublet model® that permits a microscopic description
in terms of the spin density ¢ associated with the effective
spin 1/2 (Ref. 12). A theory based on the doublet model has
a high-temperature constraint (we have noted above that
allowance for the next higher level of the Ho* * ion can sub-
stantially alter the result of the calculation in this model.
Our theory has a low-temperature limit. It seems to us that
the use of alternative theories extends the possibilities of de-
scribing rare-earth magnets.

This method can also be generalized to include other
problems. In our approach it is easy to describe the damping
of elastic perturbations (both sound waves and nonlinear
perturbations such as moving dislocations, crowdions, etc.).
It suffices for this purpose to express the effective field H'g
(the analog of the exchange field H(*’) acting on the ath R-
sublattice in terms of the deformation and distortion tensors.

We thank V. G. Bar’yakhtar for a helpful discussion of
the work.

" At the characteristic paramagnetic-relaxation frequencies y; ~10'°s~!
(Ref. 1) and at DW thickness x, =~ 10 ~ ®cm we have v, ~ 10*cm/s. The
DW velocities realized in experiments with rare-earth garnets are usual-
ly considerably lower.
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