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We investigate the singularities of the dynamics of liquid crystals near orientational phase 
transitions. These are second-order phase transitions and can be conveniently used to 
demonstrate a general scheme developed by us for the description of critical dynamics. This 
scheme is based on nonlinear dynamic equations used to define an effective action with which to 
calculate macroscopic fluctuation effects by perturbation theory. The unrenormalized 
correlators are determined by the linearized dynamic equations, and the interaction vertices by 
nonlinear terms. Essentially, the proposed scheme is a procedure for excluding weakly- 
fluctuating variables from the effective action, so that the action is obtained for the order 
parameter. In the cases considered, this action describes purely relaxational dynamics and is 
renormalizable. We obtain the dispersion laws for all the natural modes near orientational phase 
transitions in smectics and nematics, and calculate their renormalization connected with 
fluctuations of the order parameter. This renormalization is determined by explicit expressions 
that contain one universal function having appropriate scaling properties. Damping of sound 
turns out to be the most sensitive to the fluctuations. 

1. INTRODUCTION 

An appreciable number of phases of varying symmetry 
are regarded as being in a liquid-crystal state. With respect 
to their properties, all these phases occupy an intermediate 
position between a liquid and a crystal. In addition, the li- 
quid-crystal state is realized in a temperature interval inter- 
mediate between a liquid and a crystal, and liquid-crystal 
phases are therefore frequently called mesophases. Informa- 
tion on the main properties of liquid crystals can be found in 
de Gennes's classical monograph.' Liquid-crystal phases 
have been classified by symmetry in a survey by one of us 
(E. K.).2 

It must be emphasized that matter in the liquid-crystal 
state exhibits a very extensive polymorphism. As the tem- 
perature varies it undergoes, as a rule, a number of phase 
transitions in an interval of a few tens of degrees. By using 
mixtures of different substances it is possible to make the 
phase diagram of the system even more detailed. All this 
makes it quite urgent to investigate effects connected with 
phase transitions in liquid crystals. 

It can even be stated that without such an investigation 
none of the physical processes in liquid crystals can be un- 
derstood. The point is that, in view of the relatively narrow 
region of its existence, matter in a liquid-crystal state is al- 
ways close to some phase-transition point. Moreover, in the 
liquid-crystal state all transitions that are observed in prac- 
tice are either second-order or weak first-order transitions. 
Allowance for critical phenomena is therefore obligatory for 
the description of the vicinities of these transitions. 

The theoretical studies of phase transitions in liquid 
crystals have dealt so far almost exclusively with static pro- 
perties. The singularities of many phase transitions in liquid 
crystals notwithstanding, the static properties of these tran- 
sitions can by and large be described by the standard theory 
of phase  transition^.^.^ Much more diversified than the static 

critical phenomena are the dynamic ones, and their descrip- 
tion is therefore more complicated. 

A few words concerning the experimental situation. 
Detailed data are available by now on the behavior of ultra- 
sound in various liquid-crystal phases.5 One can deduce 
from these results the critical dependences of the elastic mo- 
duli and of the viscosity coefficients in various phase transi- 
tions. These results pertain to both the hydrodynamic and 
the critical regions. It is thus possible to present, on the basis 
of experiment, a certain picture of the critical dynamic beha- 
vior of liquid crystals. 

The situation is much worse with the theoretical under- 
standing of critical dynamic phenomena. There are practi- 
cally no studies of this topic, owing both to the complexity of 
the dynamic phenomena in liquid crystals and to the unsatis- 
factory state of the theory of dynamic critical phenomena in 
general. We hope to fill this gap to some degree in the present 
paper. 

Our starting point was a theoretical investigation of the 
singularities of the smectic A-smectic C phase transition, 
which is of second order. We investigated static critical 
phenomena6 as well as the critical dynamics.' A very close 
examination has shown, however, that the theoretical 
scheme developed by us in the investigation of the smectic 
A-smectic C transition lends itself to a wide generalization 
and can be used to investigate practically all phase-transition 
types that occur in liquid crystals. 

Moreover, the basic idea of the scheme in question, ef- 
fective disregard of weakly fluctuating variables, can be used 
to construct a consistent general theory of critical dynamic 
phenomena. A logical consequence of such a construction 
would be a classification, as yet nonexistent, of the critical- 
dynamics types by universality classes, as is done for static 
critical phenomena. 

We shall consider the following phase transitions: ne- 
matic-biaxial nematic, smectic A-smectic C, and smectic A- 
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hexatic smectic B. These transitions are joined into a natural 
group which we call the group of orientational phase transi- 
tion. The name stems from the fact that rotational symmetry 
is spontaneously broken in all these transitions. 

The actual question is that of violation of the invariance 
of a system to rotation about the infinite-order axis possessed 
by the symmetry groups of an ordinary uniaxial nematic or 
smectic A. These axes run along the director in a nematic and 
along the normal to the smectic layers in smecticd. Spon- 
taneous violation causes the infinite-order axis to be re- 
placed by a finite-order axis. It is convenient to designate the 
resultant states as N, ,..., S, ,S2 ,..., where Nand S denote re- 
spectively a nematic and a smectic, while the subscript den- 
otes the order of the axis with respect to which the corre- 
sponding structure is invariant (respectively, the axis along 
the director in the N phases and along the normal to the 
layers in the S phases). The designations of initial phases, 
i.e., of the uniaxial nematic and smectic A, will be the tradi- 
tional Nand SA . 

In this notation, N2 stands for a biaxial nematic, B-S6 
for a hexatic smectic, and S, for a smectic S, in which the 
director is inclined to the normal to the layer. We shall use 
the latter designation along with the traditional S,, i.e., 
s, = s c .  

It is also possible that some of the phases called smectic 
Cmay turn out to beS2 phases, i.e., have a twofold axis in the 
direction normal to the layer. As a rule, the S, phase consti- 
tutes a system of elongated molecules making an angle with 
the normal to the smectic layers. The S2 phases can be visua- 
lized as a system of triaxial molecules whose principal axes 
are perpendicular to the smectic layers, but whose second 
axes are predominantly directed in the plane of the smectic 
layer. In optics both phases (S, and S, ) are biaxial and it is 
difficult to separate them experimentally. 

Thus, the above transitions observed in liquid crystals 
are designated in our notation by N-N2 , SA -S6, SA -S, (S, ), 
or SA-S,. The other types of phase transitions, N-N, and 
SA -S2, have not yet been observed but they are not forbidden 
by symmetry and will hopefully be observed in experiment 
sooner or later. We shall consider all N-N,, SA-Sn transi- 
tions (both real and hypothetical) from a common view- 
point. This is justified, on the one hand, because all are of the 
same type from the theoretical standpoint, and on the other 
because the known orientational transitions have similar ob- 
servable characteristics. We shall not discuss the N-N, tran- 
sition, since it should be accompanied in a liquid crystal by a 
spontaneous dipole moment. The N-N, transition should 
therefore be considered separately. 

All irreducible representations of the group of rotations 
around a preferred axis are known to be two-dimensional. 
The phase transitions N-Nn and S-S, are therefore charac- 
terized by two-component order parameters Y. The order 
parameter can always be chosen to be complex, so that only 
the phase of Y and not its modulus is changed by rotation 
around the axis. The change of the phase Y by rotation 
through an angle p should be equal to np. The integer n 
determines the rotation-group representation generated by 
Y. The number n is easily seen to coincide with the order of 
the symmetry axis of the low-temperature phase, in which 
the (Y) condensate differs from zero. 

The free energy should be invariant under the group of 

rotations around a given axis. Therefore (disregarding 
weakly fluctuating variables) the expansion of the free en- 
ergy in Y contains only terms even in Y, which are powers of 
the modulus of \I, (since the phase of Y changes in the rota- 
tions). One should therefore expect the orientational transi- 
tions N-N, and SA -S, to be of second order, in agreement 
with experiment. 

The organization of this paper is the following. Section 
2 describes the formal thermodynamics of systems near a 
second-order phase-transition point. The order parameter 
must then be included among the thermodynamic variables. 
We formulate the thermodynamic relations and investigate 
the character of the expansion of the energy in the order 
parameter. 

Section 3 is devoted to a derivation of the nonlinear 
dynamic equations for the investigated nematic and smectic 
phases. Derivation of dynamic equations with allowance for 
the order parameter calls for a separate treatment. These 
equations must be used in investigations of the vicinity of the 
phase-transition point. 

In Sec. 4 we consider the structure of the static correla- 
tors of the order parameter. We present results that are valid 
both in the mean-field theory and in the fluctuation region. 

In Sec. 5 we consider the contributions of the order- 
parameter fluctuations to the dynamic characteristics of the 
system. For fully developed fluctuations these contributions 
agree with the dynamic-similarity hypothesis. 

In Sec. 6 is analyzed the influence of order-parameter 
fluctuations on the spectrum of the natural modes of the 
system. Particularly strongly influenced are the acoustic- 
mode dispersion laws. 

In the Conclusion we summarize the results and indi- 
cate directions for future research. 

2.THERMODYNAMlCS OF LIQUID CRYSTALS 

Thermodynamic variables 

We shall examine a liquid crystal from a macroscopic 
standpoint. This means that we are interested in scales and 
time intervals that are large compared with the molecular 
ones. In other words, the characteristic frequencies o and 
the wave vector q must satisfy the inequalities 

The limiting wave vector A is determined by the molecular 
dimensions. It can be estimated to be 10' cm-'  for most 
liquid crystals. The limiting frequency can be estimated at 
Cl -cA - loL3 s - I, where cis the speed of sound, of the order 
of lo5 cm/s in all liquid crystals. The small parameter q / A  is 
named hereafter hydrodynamic. 

A few words concerning the thermodynamic variables 
that describe the macroscopic state of the systems. These 
variables are by definition slowly relaxing parameters (com- 
pared with the time W'),  and include, in particular, the 
densities of the conserved quantities (energy, momentum, 
mass). 

Another part of the slowly relaxing quantities is con- 
nected with spontaneous symmetry breaking. If this sym- 
metry is continuous, its breaking makes the state of the sys- 
tem continuously degenerate and describable by a 
continuous degeneracy parameter. Of course, the uniform 
spatial distribution of this parameter does not relax, but in 
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the inhomogeneous case the degeneracy parameter relaxes 
slowly to the extent that q / A  is small. 

The degeneracy parameter ia a smectic is the displace- 
ment u of the smectic layers, which becomes a thermodyna- 
mic variable as a result of the spontaneous breaking of the 
translational symmetry. In a nematic, the degeneracy para- 
meter connected with the spontaneous breaking of the rota- 
tional symmetry is the director n. An angle e, must be added 
to these variables in the case of the SA-Sn transitions. The 
variable is the degeneracy parameter connected with sym- 
metry breaking with respect to rotation around a preferred 
axis, and has the meaning of the phase of the order para- 
meter. 

In the vicinity of a second-order phase transition it is 
necessary to include among the thermodynamic variables 
the order parameter Y, whose relaxation slows down near 
the phase-transition point. As already mentioned in the In- 
troduction, a two-component order parameter corresponds 
to the orientational phase transitions we are considering. We 
shall dwell below in some detail on the structure of the order 
parameters for the N-N,, and S, -Sn transitions. 

It is convenient to set different regimes produced in the 
vicinity of a second-order phase-transition point in corre- 
spondence with regions on the T-q diagram ( T is the tem- 
perature and q is the wave vector that defines the character- 
istic scale). These regions are shown in Fig. 1, where T, is 
the transition temperature. Region 1 corresponds to the 
symmetric (high-temperature) phase. Region 2 is the criti- 
cal one, where the relaxation rate of the order-parameter Y is 
comparable with the relaxation rates of the other thermo- 
dynamic variables. Region 3 corresponds to the asymmetric 
(low-temperature) phase, i.e., the phase with spontaneously 
broken symmetry. 

In this last phase only a fraction of the degrees of free- 
dom connected with the order parameter relaxes at a rate 
comparable with that of the other thermodynamic variables. 
The remaining degrees of freedom relax much more rapidly. 
The slowly relaxing degrees of freedom of the order para- 
meter are none other than the degeneracy parameter dis- 
cussed above. With regards to the transitions N-N, and 
SA-Sn considered by us it can be stated that the modulus of 
the order parameter "freezes" on going from region 2 to 
region 3, whereas its phase q, remains a "soft" variable. 

Structure of the order parameters 

The order parameters for the transitions N-Nn and 
SA -S, correspond, as already mentioned, to representations 

FIG. 1.  Various regions on the T-q diagram. T,--critical temperature. 
1 )  High-temperature region, 2) critical region, 3 )  high-temperature re- 
gion. 

of the rotation group around a preferred axis and each has as 
a result two components. The situation is complicated by the 
fact that the direction of this preferred axis (which is deter- 
mined by the director n in the nematic and by the by the 
normal 1 to the layers in the smectic) varies in space. It is 
therefore impossible in general to introduce the phase of the 
order parameter. One can only determine its variation 
(more below). The phase of the order parameter is well de- 
fined only for homogeneous 1 and n. It  is therefore necessary 
to determine correctly the order parameters for these transi- 
tions. 

In the general case of inhomogeneous 1 and n the order 
parameters \I, for these phase transitions are nth-rank ten- 
sors *,,.. satisfying the following conditions: 

1 ) symmetry with respect to any pair of indices; 
2) irreducibility, i.e., vanishing of the convolution with 

respect to any pair of indices; 
3) orthogonality, i.e., n i Y i , ,  = 0 for a nematic and 

IiYi,,,, = 0 for a smectic. 
It is easy to verify that the number of independent compon- 
ents of the tensor \I,,,,, satisfying the above conditions is 
indeed equal to two. 

Let us clarify the meaning of these tensor order para- 
meters for smectic A-smectic C (SA -S, ) and uniaxial nema- 
tic-biaxial nematic (N-N, ) phase transitions. 

The order parameter for the S, S, transition is a vector 
defined as6 

This vector is, as it should be, perpendicular to the normal to 
the smectic layers, and has two independent components. In 
theA phase the director n is collinear with 1, so that Y is zero. 
In the C phase the director n is inclined to 1, making Y differ- 
ent from zero. Therefore Y satisfies all the requirements im- 
posed on the order parameter for the SAS,  transition. 

The order parameter for the N-N, transition is, in ac- 
cord with the foregoing, the symmetric irreducible tensor 
Yik . It must be interpreted as the "biaxial part" of the nema- 
tic order parameter Q, represented in the form 

Symmetry and irreducibility of Y, are ensured by the corre- 
sponding properties of Q,, while the condition niY, = 0 
makes the partition (2.2) single-valued. In a uniaxial phase 
Y, = 0, i.e., Y, also satisfies in this case all the require- 
ments for the order parameter. 

The order parameter of the smectic A-hexatic smectic B 
(S,-S6 ) transition is a sixth-rank tensor that is symmetric, 
irreducible, and orthogonal to 1. 

A few words concerning the modulus and phase of the 
order parameter. Introduction of the phase (Y( entails no 
difficulty: the square of this modulus is equal to the sum of 
the squares of the components of the corresponding tensor. 
The phase of the order parameter can in the general case not 
be introduced, and only the phase variation Sq, can be de- 
fined. In other words, the order-parameter phase is a non- 
holonomic variable. 

By our definition, Sq, is such that when the changes of 
the modulus and of phase are respectively SlYl and 6p the 
change of the order parameter (2.1 ) is 
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where E,, as an antisymmetric tensor. If the order para- 
meter is a tensor of rank n, its variation with q, is a sum over 
all the indices of terms similar to the first term in the right- 
hand side of (2.3). For a nematic it is then necessary to 
replace the normal 1 in the definition introduced above by 
the director n. Thus, for example, for the order parameter 
corresponding to the N-N2 transition we have 

Nonholonomy of the angle q, raises no problems if a 
uniform spatial distribution can be assumed for the director 
n in the nematic or for the normal 1 in the smectic. This is 
precisely the situation with which we shall deal hereafter. 
We can then specify locally not only the variationaq, but also 
the phase e, itself. In this case the order parameter is taken to 
be the two-component quantity 

Thermodynamic potential 

The thermodynamic properties of the system are de- 
scribed by the thermodynamic potentials. We shall find it 
convenient to define as the thermodynamic potential the 
combination 

Here E is the energy density, p is the mass density, S is the 
entropy density, and pT and TT are respectively the chemi- 
cal potential and the temperature of the thermostat. We de- 
signate hereafter by AP the Hamiltonian of the system (the 
meaning of this designation will be made clear in the deriva- 
tion of the dynamic equations). 

The energy density E is represented by the sum 

of the kinetic and internal energies. We designate by j the 
momentum density 

where v is the velocity. The internal energy E depends on p 
and S. In a nematic E is also a function of the director n and of 
its gradient, while in a smectic it is a function of the deriva- 
tives of the displacements u of the smectic layers. For low- 
symmetry phases it is necessary to add to these variables the 
phase q, of the order parameter. More accurately speaking, E 

depends on the gradients of the degeneracy parameter q,. In 
the fluctuation region (region 2 of Fig. 1) account must be 
taken of both the phase and the modulus of the order para- 
meter. 

A nonuniform spatial distribution of the director in a 
nematic adds to the system energy a positive contribution 
called the Frank energy. The corresponding energy density 
can be expressed in the form' 

The coefficients K, , K2, and K, in this expression are called 
the Frank moduli. 

In the low-temperature phases N, and S, we can intro- 
duce in similar fashion the energy due to inhomogeneity of 
the order parameter. The energy density takes the form 

For a nematic we have here 

For a smectic the director n in these expressions should be 
replaced by the normal 1. The orientational energy has a so- 
mewhat more complicated form for the phase S, = S,, in 
which case the energy is characterized by three independent 
moduli. 

We assume hereafter that in equilibrium the director n 
of a nematic or the normal 1 of a smectic are homogeneous in 
space and are directed along the z axis. The vector and tensor 
components along the axes x and y will be labeled by Greek 
subscripts. Note that that these are the only nonzero tensor 
order-parameter components if n or 1 is uniformly distribut- 
ed in the tensor parameters introduced above. 

It is convenient to describe the deformation of smectic 
layers by their displacements u along the z axis. The nonuni- 
form deformation of these layers is the source of elastic en- 
ergy whose density is given by'.' 

Here B is the bulk modulus of the smectic layers, and the 
modulus K specifies the flexure energy. The modulus K is 
close in magnitude to the Frank moduli in nematics. The 
second term in the right-hand side of (2.10) contains higher 
powers of the spatial derivatives than the first term, and the 
hydrodynamic parameter in it is therefore smaller. We shall 
therefore as a rule neglect the term with modulus K. This 
term has to be introduced in the elastic energy (2.10) be- 
cause there is no layer shear modulus in a smectic. 

Expansion of energy near a phase transition point 

The theoretical investigation of the properties of a 
phase transition is based on the well known Landau expan- 
sion of the energy in terms of the order parameter Y. Since 
the phase q, of the order parameter is changed by rotation in 
the orientational phase transitions considered by us, the ex- 
pansion in question contains only terms even in the order 
parameter. The transitions N-N, and S,-S, can therefore 
be expected to be of second order. 

The first terms of the expansion of the energy density in 
terms of \V are of the form 

The quantity A in (2.11 ) vanishes at the phase-transition 
point, so that near the temperature of this transition we have 

A m  T-T,. (2.12) 

The factor U ' preceding Y4 in (2.1 1 ) has no critical behavior 
and can be regarded as constant near the phase transition. 

The expansion (2.1 1 ) is valid if the order parameter Y 
is small. A typical value of \V in the mean-field theory is 
estimated to be YZ (A / U ' )  This value is indeed small 
because A is small in the vicinity of the phase-transition 
point. Allowance for the fluctuations of Y does not alter the 
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situation qualitatively. Thus, in an investigation of a phase 
transition we can confine ourselves to the expansion (2.1 1 ) 
and discard higher powers of Y. 

Beside the expansion terms in (2.1 1 ), allowance must 
be made in an investigation of a phase transition for the gra- 
dient contribution: 

Here L,, and L, are the elastic moduli. In (2.13), just as in 
(2.9), we have neglected the inhomogeneity of the director n 
or of the normal 1. The order parameter can accordingly be 
chosen in the form (2.5). The gradient term in the smectic 
S, (S, ) has a somewhat more elaborate form. 

Note that the terms beyond (2.13) in the expansion in 
terms of the gradients of Y [e.g., the term proportional to 
(V2Y2) 1 are smaller by the hydrodynamic parameter than 
those retained in (2.13). Since the coefficient A is small, it is 
expedient to retain the gradient term (2.13) itself alongside 
the first term of (2.1 1 ) . 

It will be convenient below to reckon the thermodyna- 
mic variables from their values at the critical point. We thus 
introduce the variables 

Here o = S / p  is the specific entropy. It is analogously con- 
venient to introduce in place of the displacement u of the 
smectic layers the variable 

representing the relative change (with temperature) of the 
distance between layers. 

We shall designate the aggregate of variables (6, p, ) 
for the nematic and (pp,  q r ,  9 " )  for the smectic by the 
symbol pa . The pa vanish at the phase transition point, but 
in its vicinity they are small parameters in terms of which 
physical quantities can be expanded. 

Let us examine the principal terms of the expansion of 
2Y in terms of p a .  The first term of this expansion is zero 
because of the equilibrium conditions. The quadratic term, 
however, can be written in the form 

where the energy density is given by 

Summation over the dummy indices a and b is implied 
throughout. By analogy with standard elaasticity theory, we 
can call (2.16) the elastic energy and the flab matrix the bare 
matrix of the elastic moduli. The Dab coefficients have no 
substantial critical behavior and can be regarded as con- 
stants in the vicinity of a transition point. 

For a nematic the components of the matrix fl take the 
form 

Here Pis the pressure and Tis the (local) temperature. For a 

smectic it is necessary to consider in addition to (2.17) also 
the components 

The modulus of B was introduced in (2. lo), while y, and y, 
are constants on the order of unity, and are given in terms of 
the derivatives of the distance Ibetween the smectic layers by 

In the leading approximation, the coefficient A in expansion 
(2.11 ) is a linear combination of the values of p: 

Here E, are certain constants. As expected, expression 
(2.19) vanishes at the phase-transition point (when pa 
= 0). The first terms of (2.1 1 ) take thus the form 

This expression has the meaning of the energy of the interac- 
tion between the order parameters and other thermodyna- 
mic degrees of freedom. 

3. DYNAMIC EQUATIONS 

Poisson-brackets method 

The nonlinear hydrodynamic equations for a classical 
fluid are well known. It is not simple to generalize these 
equations to the case of a liquid crystal with symmetry lower 
than a liquid. We must, in addition, include in the system of 
dynamic equations a nonlinear equation for the order para- 
meter Y. We devote therefore a special section to the deriva- 
tion of the dynamic equations. 

It  is simplest to obtain the nondissipative terms of these 
equations by using the method of Poisson brackets. A syste- 
matic exposition of this method can be found in a review by 
Dzyaloshinskii and Volovik9 and a monograph by Kats and 
Lebedev,' which deal mainly with liquid crystals. We ex- 
plain here briefly the main ideas of this method. 

In the Poisson-bracket method the nondissipative dyn- 
amic equations for the variables take the form 

Here R i s  the Hamiltonian of the system and the braces are 
the Poisson brackets. The quantities pa are in our case the 
thermodynamic variables of the system, and we use the Ha- 
miltonian (2.6). 

Note that the quantity 2? defined by (2.6) is not the 
total energy of the system. The difference, however, reduces 
to terms proportional to the system mass and entropy. Since 
these are conserved quantities (recall that we are dealing 
with a nondissipative regime in which the entropy is con- 
served), this difference does not affect the equations of mo- 
tion. The advantage of using this definition of 2? will be 
made clear when fluctuation effects are considered. 

A Poisson bracket can be defined for any pair of varia- 
bles, and the bracket {pa ,pb ) should be antisymmetric 
under permutation of the variables. In terms of {pa ,qb) the 
bracket in (3.1) takes the form 
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Summation over the dummy index b is implied. Using (3.2) 
it is easy to verify that antisymmetry of the bracket {pa,pb) 
is ensured by the energy conservation law. 

Consider a system of Poisson brackets for the hydro- 
dynamic variables of a classical liquid. We choose these var- 
iables to be the momentum density j and the mass density p, 
as well as the specific entropy o = S /p. The expressions for 
the nonzero brackets are 

Herer = r l  -r,. 
If we choose for the Hamiltonian Z Eq. (2.6) with the 

energy density E of a classical liquid, we obtain using (3.2) 
and (3.3) the well-known nondissipative equations of an 
ideal isotropic liquid. Expressions (3.3) are universal and 
are valid for arbitrary systems, including liquid crystals. 

The nondissipative dynamic equations must be invar- 
iant under time reversal. Equations (3.1) meet this condi- 
tion if the expression {pa (r ,  ) ,pb (r, )) for the bracket and 
the product pa (r ,  )pb (r, ) respond differently to time rever- 
sal: one quantity reverses sign, and the other does not. This 
condition should be met by an expression for any Poisson 
bracket and is satisfied, of course, also by (3.3). 

All the foregoing means that for these liquid-crystal 
systems only brackets of the form { j, (r,  ),pa (r, )) differ 
from zero in leading order. The point is that when time is 
reversed the only one of our thermodynamic variables, the 
momentum density, reverses sign. For the remaining varia- 
bles, the expression for the bracket {pa ,pb)  should therefore 
contain (as a result of Galilean invariance) a velocity gra- 
dient. Such terms can be neglected in the long-wave limit. 

In the general case, the expression for the bracket 
ji (r, ),pa (r, )) takes the form 

Recall that r = r,  - r,. The explicit form of the function 
f,,, for the momentum density, and also for the variables pp 
and p, introduced by us, follows from (3.3). The explicit 
form off,,, for our variable p, follows from the expression8 

We have thus for the variables introduced above 

The remaining components off,,, are equal to zero. 
An expression for the order-parameter modulus is 

As for the nonholonomic phase p of the order parameter, the 
form of the Poisson bracket G,p) follows from the need to 
ensure conservation of the angular momentum: 'O 

This expression pertains to smectics. For nematics the nor- 
mal 1 to the layers must be replaced by the director n. The 

expression for the bracket Q,Y) is now derived on the basis 
of relations of the form (2.3) and (2.4). Expressions (3.7) 
and (3.8) are valid for N-N, and SA-S, transitions at n > 2. 
The singularities of the Poisson bracket 6 ,Y)  for transitions 
with n = 1 and 2 are discussed at the end of the present sec- 
tion. 

General dynamic equations 

In the preceding section we have cited all the relations 
needed to construct the reactive (nondissipative) part of the 
dynamic equations. The nondissipative equations for the 
thermodynamic variables take the form (3.1 ). In the nondis- 
sipative terms it is necessary to add to the right-hand sides of 
the dynamic equations the kinetic (dissipative) terms. This 
is done in the usual manner using a dissipative function." 

Using the general form (3.4) of the Poisson bracket and 
taking into account the dissipation described by the rate 
coefficients, we can express the dynamic equation for all the 
thermodynamic variables pa (with exception of the momen- 
tum density j )  in the form 

Here v is the mean mass velocity and ra, is the differential 
operator determined by the set of rate coefficients. By virtue 
of the Onsager symmetry, the operator rob should be self- 
adjoint. Furthermore, this operator must have positive-de- 
finite eigenvalues to ensure positive entropy production. 

The equation for the momentum density requires spe- 
cial consideration. The nondissipative term of this equation, 
constructed as prescribed by (3.1), reduces to the diver- 
gence of the reactive stress tensor. The explicit expression 
for this stress tensor, with allowance for (3.4), is 

Here E is the energy density, and repeated indices imply 
summation over all the thermodynamic variables of the sys- 
tem, including the momentum density j and (in the critical 
region) the order parameter q. 

Taking also into account in the equation for j the visco- 
sity-induced dissipation, we ultimately obtain 

Here qiknm is the viscosity tensor. In view of angular-mo- 
mentum conservation, this tensor is symmetric in both the 
first and the second pair of indices, and as a result of the 
Onsager symmetry it is symmetric under permutation of a 
pair of indices. The number of independent components of 
the viscosity tensor is quite large in an anisotropic sustem 
such as a liquid crystal. In uniaxial phases, such as Nand SA , 
viknm has five independent components.'.* In the biaxial 
phases N, andS, with n(4 the number of independent com- 
ponents q,,, increases to 13. Near the N-N, , S,-S, transi- 
tion point, however, the deviation of the viscosity tensor 
from uniaxial is small when T is close to T,. 

We present the hydrodynamic equations in explicit 
form. The simplest is the equation for the mass density 
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in which there is no dissipative term because of the Galilean 
invariance. 

As a result of (3.3 ), Eq. (3.9) for the specific entropy 
takes the rather simple form 

Here x,, is the heat-conduction tensor. In the N and SA un- 
iaxial phases this tensor has two independent components, 
while in the N, , S, , n(2 non-uniaxial phases the number of 
independent components x,, becomes larger. Near the 
phase-transition points, however, the deviation of the tensor 

from uniaxial can be neglected. Generally speaking, the 
right-hand side of (3.13) should contain also a term propor- 
tional to the dissipative function and describing the entropy 
growth. This term, however, is of next-higher order in the 
hydrodynamic parameter, and we leave it out for simplicity. 

We present now an equation for the director n in a ne- 
matic. The actual form of this equation is set by the angular- 
momentum conservation law.8 It is convenient to use Eq. 
(3.9) for n: 

Here 

where 

The quantity A in (3.15) is a nondimensional reactive para- 
meter of order unity, while y, is known as the torsional vis- 
cosity coefficient. 

The equation for q,, in smectics is best found by differ- 
entiating the equation for the displacement vector u. The 
nondissipative term in this equation can be found following 
the prescription (3.1) and using the bracket (3.5). By ad- 
ding a kinetic term to this equation, we get 

Here 

W aE aE -=-v-+ vivk-. 
6~ avu av, V,U 

The kinetic coefficient 6, > 0 is called the percolation 
coefficient, because the last term in (3.16) determines the 
difference between the displacement velocity of the smectic 
layer from the mean mass velocity, i.e., the "percolation" of 
the liquid crystal through the system of smectic layers. Gen- 
erally speaking, the right-hand side of (3.16) contains one 
more thermomechanical dissipation cross-term that also de- 
scribes percolation. This calls for introducing one more per- 
colation coefficient.' To avoid complexity and bearing in 
mind that thermomechanical percolation changes nothing 
in our analysis, we have left out this term from (3.16). 

In the low-temperature N, and S, phases, the indepen- 
dent soft variable is the angle q, (the phase of the order para- 

meter). For n > 2 the nondissipative part of the equation for 
e, can be obtained from (3.1 ) with the aid of (3.8). Adding 
the dissipative contribution to this equation, we obtain 

For smectics, the director n in (3.17) must be replaced by 
the normal 1. The singularities of the dynamic equation for p 
in the phases Sn and N,, with n = 1 and 2 will be considered 
below. The kinetic coefficient y in ( 3.17) has the dimension 
of viscosity and can be called orientational viscosity. 

Let us consider, finally, the order-parameter equation 
needed to investigate the critical dynamics. In accordance 
with (3.9 ), this equation has the form 

Here r is a rate coefficient with dimension of the inverse of 
viscosity. The expression for f,,, in (3.18) is determined by 
(3.7) and (3.8): 

For a nematic, 1 must be replaced here by n. This expression 
is valid for SA-S,,  and N-N, transitions with n > 2. The 
singularities of the f,,,, structure for transitions with n = 1 
or 2 will be discussed at the end of this section. 

Principal dynamic nonlinearities 

The order parameter Y is small near the phase-transi- 
tion point. In addition, p,, p,, and p, are small parameters 
since they vanish at the transition point and are consequent- 
ly small in its vicinity. In investigations of the critical dyna- 
mics, the general nonlinear equations formulated in the pre- 
ceding section must be expanded in terms of these variables, 
with the principal terms of the expansion retained. The 
terms linear in pp,  P),, and P ) ~  should be retained together 
with those quadratic in Y. 

The variation of the unit vector of the normal to the 
smectic layers is approximately 

Recall that Greek subscripts label components along the x 
and y axes. In view of the last relation, 1 deviates little from 
equilibrium so that it can be assumed in practically all the 
equations that 1 is a unit vector along the z axis. For a phase 
transition in a nematic, the director n can in most equations 
also be assumed equal to its equilibrium value-a unit vector 
along the z axis. Some singularities are exhibited only by the 
transition N-N,, which will be considered below. 

We derive first an equation for the order parameter 
(3.18). Since we assume the vectors n and 1 to be uniform in 
space, we can introduce not only the variation Sq, of the 
phase of the order parameter W, but also the phase q, itself. 
We assume the order parameter here to be the two-compon- 
ent quantity (2.5). 

The transport (convective) term in (3.18)-the first 
term in the right-hand side-can be omitted as small relative 
to the hydrodynamic parameter. For the same reason we can 
omit the second term in (3.18) for the transitions N-Nn and 
SA-S, at n > 2, for in this case f, cx )\PI. We arrive thus at the 
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following relaxation equation: 

We have used here expressions (2.11 ) and (2.13) for the 
principal terms of the expansion of the energy density in 
terms of the order parameter. 

Equation (3.20) is not a closed equation for the order 
parameter Y. The point is that the constant A in (3.20) de- 
pends, in accordance with (2.19), on the variables p,, p,, 
and p, . Equation (3.20) must therefore be supplemented by 
the equation for these variables, which are defined by (3. lo),  
(3.13), and (3.16) 

These equations, with the principal nonlinearities re- 
tained, are 

The last equation, with the subscripts a and b in (3.21 ) and 
( 3.22) assuming the valuesp, a, and u, should be used for the 
smectic phase. For the nematic phase, a and b assume the 
values p and a. We have introduced in (3.21) the longitu- 
dinal and transverse components of the heat-conduction ten- 
sor. The matrix Pa, is defined by Eqs. (2.16), (2.17) and 
(2.181, and the coefficients Ea by Eqs. (2.19) and (2.20). 

Finally, we shall need Eq. (3.11 ) for the momentum 
density. Using the explicit expressions (3.6), we obtain for 
the reactive part of the stress tensor (3.10), in first-order 
approximation, the expression 

Only the componentsf,,, and f,,, differ from zero, and it 
follows from (3.6) that their values, in the first-order ap- 
proximation, are 

fp, ~ L E P G ~ A ~  fu, ih=Lfl~. (3.24) 

For the nematic phase there are no terms in Tik connected 
with elasticity of the smectic layers. They are replaced in the 
right-hand side of (3.23) by a term generated by the Frank 
energy (2.8) and by the function (3.15). An explicit expres- 
sion for this term can be found in Katz and Lebedev's mono- 
graphs and will not be given here. We mention only that it is 
of next higher order in the hydrodynamic parameter, that in 
the first-order approximation the term connected with the 
Frank energy is simply added to (3.23 ), and that no cross 
terms are produced. 

Dynamical behavior of the transitions SA-Sc(S, ), SA-S2, and 
N-N2 

A feature of these transitions is the low symmetry of the 
corresponding order parameter. It is a vector for the 
S, -S, (S, ) transition and a second-rank tensor for the tran- 
sitions N-N2 and SA-S2 (see the discussion in Sec. 2).  The 
low symmetry of Y for the SA-S, (S, ) transition manifests 
itself even in static effects. In the dynamics all the above 
transitions for which the distinguishing feature is the form of 

Eq. (3.18 ) for the order parameter are pronounced. 
The point is that the quantity f,,, in (3.18) does not 

reduce to (3.19) for these transitions. This difference is very 
significant, since the quantity (3.19) is linear in the order 
parameter and is therefore small near a transition point. At 
the same time, the value of fYsik for the SA -S, (S, ), S, -S2, 
and N-N2 transitions is not small near the transition point, 
and therefore plays a substantial role in the dynamics of Y. 
Let us present explicit expressions for those contributions to 
f,,, which remain finite at the phase-transition point. 

The order parameter for the SA-S, phase transition is 
the vector Y, . Expression ( 3.4) and Eq. (3.10) contain the 
quantity f,,, , the nonvanishing contribution to which is 
equal to 

fm, ihshilj( ejimltc+ej,mli). (3.25) 

This tensor is orthogonal to I, and is symmetric in the in- 
dices i and k. The former property is due to the condition 
liYi = 0, and the second ensures symmetry of the corre- 
sponding contribution to the stress tensor (3.11). Equation 
(3.25) contains a reactive parameter A ,  analogous to the 
parameteril in (3.15). 

The order parameter for the phase transitions SA-S2 
and N-N, is the second-rank tensor Y,,. Equations (3.4) 
and (3.18) contain the quantity f,,,, the nonvanishing 
contribution to which is 

Here SIk = Sik - lilk for a smectic and S i  = Sik - nink for 
a nematic. The tensor (3.26) is symmetric in the indices m 
and n, its trace over these indices is zero, and 1 or n is ortho- 
gonal in the same indices to (3.26). These properties reflect 
the structure of the tensor Y,,. In addition, (3.26) is sym- 
metric in the indices i and k, thereby ensuring the symmetry 
of the stress tensor. The reactive parameter A, in (3.26) is 
analogous to the parameters A and A,  introduced above. 

4. STATIC FLUCTUATIONS 

Effective Hamiltonian 

We are interested in effects due to fluctuations of ma- 
croscopic (thermodynamic) quantities. To this end we must 
know the distribution function of these fluctuations. In the 
static case the distribution function is defined, apart from a 
normalization factor, asI2 

Recall that the Hamiltonian 2Y in (4.1) was defined in 
(2.6), and T, is the temperature of the thermostat. 

The Hamiltonian 2Y is a functional of the complete set 
of the thermodynamic variables pa of the system. Since we 
are interested in effects due to fluctuations of the order para- 
meter Y, this parameter must be included among the ther- 
modynamic variables. The distribution function (4.1 ) 
makes it possible to calculate the correlation functions of p, 
and Y. These functions are represented in the form of the 
following path integral: 

<cpocpb . . . >=z.-* J D ~  DY exp - - cpocpb . . . , ( 3 
where Z, is a normalization factor: 
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In the study of the correlation functions of the order 
parameter Y it is convenient to disregard from the outset the 
fluctuations of the remaining thermodynamic quantities pa ,  
by introducing an effective Hamiltonian P f f ( Y )  defined by 

As a result of (4.2) the order-parameter correlation func- 
tions are expressed in terms of Pff as follows: 

containing only order-parameter fluctuations. 
In the vicinity of the phase transition we are consider- 

ing, the order parameter is a strongly fluctuating quantity. 
Strictly speaking, this statement does not hold for smectics. 
The point is that an important role is played in a smectic by 
long-wave fluctuations of the variable p, (displacements of 
the smectic  layer^).'^,'^ However, all the contributions 
made to the observable quantities by order-parameter fluc- 
tuations develop in the critical region (region 2 in Fig. 1) 
where Y is indeed the only strongly fluctuating quantity. We 
are therefore not interested here in effects connected with 
the fluctuations of q ,  . 

The weakness of the fluctuations of the remaining ther- 
modynamic variables pa make it possible, when fluctuation 
effects are considered, to retain in the expansion of the Ha- 
miltonian R o n l y  the terms quadratic and linear in p,. This 
means that the integrals over pa in (4.2) and (4.4) are Gaus- 
sian and can be evaluated explicitly. The kinetic energy gen- 
erates a contribution in the Hamiltonian which is quadratic 
in the density of the momentum j. For a nematic, similarly, 
the Frank energy (2.8) generates a contribution quadratic in 
the variation Sn of the director. The integrations over these 
variables are therefore directly separable. 

Matters are somewhat more complicated with the var- 
iables pp = p - p,, p, = a - a, and (for a smectic) 
p, = - V,u. The point is that in the expansion of the Ha- 
miltonian 2 P  account must be taken of the terms linear in 
these variable. They are due, first, to the interaction energy 
(2.20), and second to the presence of the last two terms in 
the Hamiltonian (2.6). The linear contributions to X from 
these terms are equal to zero at the critical point, where the 
mean values of pg, pp,  and p, vanish [see (2.14), (2.15)]. 

These terms linear in p,, pp , and p, can be eliminated 
from X b y  changing to new variables p i, p , and p :, using 
the definition 

Here 8, ' is the inverse of the matrix 8 introduced by 
(2.15). The expansion of the Hamiltonian A? in terms of q, 
now contains only the quadratic term 

The integration over p 1 is therefore also separable. 

Integration over the weakly fluctuating variables in 
(4.4) thus reduces to the fact that to obtain Fff from %we 
must substitute in &P the conditions j = 0 and q, = 0 (and 
also n = const for a nematic). Note that these equations are 
none other than the condition that the system be in local 
equilibrium with respect to the parameters j, q, i, and n. This 
aforementioned substitution leads to 

Here E,,,, is defined by (2.13), and 

Expression (4.9) means that interaction between weak- 
ly fluctuating degrees of freedom and the order parameter 
leads to a redefinition of the coefficient of Y4 in the expan- 
sion ofthe energy. The coefficient A, in (4.8) is (as it should 
be) proportional to the deviations of the system temperature 
and chemical potential (or pressure) from the critical va- 
lues. 

Static correlation functions 

We have concluded as a result of the analysis in Sec. 3 
that the structure of the order-parameter correlation func- 
tions is set by the effective Hamiltonian (4.8). This Hamilto- 
nian is the standard equation for the Y4 model with a two- 
component order parameter. A model of this kind was 
actively investigated in the theory of second-order phase 
transitions in connection with the scaling problem. Note 
that these phase transitions considered belong to the same 
universality class as the transition of 4He to the superfluid 
state. 

In contrast to the standard models, the gradient energy 
(2.13) is anisotropic. This anisotropy, however, is immater- 
ial to the analysis, since it can be eliminated by a simple 
redefinition of the scale along the z axis. The situation is 
somewhat more complicated for the S, -S, transition. The 
gradient energy does not reduce in this case to (2.13). We 
shall discuss this situation at the end of this section. 

The principal structural properties of the order-para- 
meter correlators in q4 models are well known. Their main 
distinguishing feature is scaling, i.e., a power-law depen- 
dence of the correlation functions on the coordinates and on 
the critical parameters. A survey of the properties of the 
correlation functions in the Y4model can be found in Refs. 3 
and 4. We present here without derivation some results of 
the theory. 

A distinction must be made between two regimes- 
mean-field and fluctuation. In the mean-field regime the 
order-parameter fluctuations are weak, but in the fluctua- 
tion regime they are strong and determine the main features 
of the correlation functions. The limits of the fluctuation 
region are determined by the inequality 

The parameters here are those of the effective Hamiltonian 
(4.8), while q is the characteristic wave vector. The fluctua- 
tion region is thus located near the origin in Fig. 1. 

The mean value is (Y) = 0, but above the phase-transi- 
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tion point (for A,  < 0), it becomes nonzero. We shall assume 
that the phase of this mean value is zero, i.e., in accordance 
with (2.5) we have (Y, ) #O, and (T,)  = 0. In the mean- 
field theory 

In the fluctuation region 

wherep is the critical exponent of the order parameter (we 
shall introduce below many additional critical exponents). 
The proportionality coefficient in (4.13) is determined by 
"matching" (4.12) and (4.13), in accordance with (4.1 1 ), 
at (A, I TZU2/L 3. 

Consider the structure of an irreducible paired correla- 
tion function 

It is easy to find an explicit expression for this correlation 
function when the mean-field theory is valid. It suffices to 
retain in the Hamiltonian (2.6) the term quadratic in the 
fluctuations of q, so that the integration in (4.5) becomes 
Gaussian and can be carried out explicitly. It is convenient 
to write the result for the Fourier component [denoted 
D(q) ] of the function (4.14): 

Recall that for A, <O the mean value (T ,  ) is assumed to 
differ from zero while (Y, ) = 0. 

The paired correlation functions (4.14) can be repre- 
sented in the fluctuation region (4.11 ) in the form 

-(I+*) D ( r )  =rc d (r / rc) .  (4.17) 

Here r, is the correlation radius, 

Note that expressions (4.15) and (4.16) agree formally with 
(4.17) if one puts 

The proportionality coefficient in (4.18 ) can be obtained by 
joining (4.18) and (4.19) at the value A, =: T2UZ/L de- 
finedby (4.11). 

The asymptotic forms of the Fourier component of the 
correlation function (4.14) in the fluctuation region have 
the form: 

The long-wave asymptotic form is valid here for A, < 0 for 
the Dl, component, while the Dzz component has another 
asymptotic form: 

This asymptotic form [just like expression (4.16) for D,, ] 
reflects the presence, in the low-temperature phase, of a soft 

degree of freedom connected with the phase rp of the order 
parameter Y. 

Consider now the correlation function 

It is convenient to formulate the properties of this correla- 
tion function for the Fourier component F ( r ) ,  which we 
denote by F(q). In the mean-field theory there exists at 
A, < 0 the following long-wave contribution to F: 

and for A,  > 0 we can neglect F(q)  compared with (4.22). In 
the functional region (4.1 1 ) the correlation function F has a 
structure similar to (4.17) : 

The asymptotic forms of F are 

We have introduced in the above relations many critical 
exponents, designated by the standard symbolsp,q,~,a. The 
scaling relations described by these exponents are formally 
valid in the mean-field theory if one puts 

In the fluctuation region (4.1 1 ), the introduced exponents 
are related as follows: 

where d = 3 is the dimensionality of the space. Numerical 
simulation and experiment show that in the Y4 model with a 
two-component order parameter the exponents a and q are 
close to zero, while the remaining ones, in accordance with 
the relations above, have the values 

Note that these exponents differ from the mean-field ones, 
even though it was assumed in their derivation that 
a = q = 0, just as in the mean-field theory. 

Finally we consider the behavior of the moduli a , , ,  in- 
troduced by Eq. (2.9). Comparing expression (2.13) for the 
gradient energy with (2.9), with account taken of (2.3) and 
(2.4), we arrive in the mean-field theory at 

In the fluctuation region we have 

Correlation functions of weakly fluctuating quantities 

Consider now the contributions made to the correlation 
functions rp, of weakly fluctuating quantities by the order- 
parameter fluctuations. We can use for this purpose the rela- 
tion (4.6). Averaging (4.6) and recognizing that (rp L) = 0, 
we get 
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FIG. 2. Diagram representation of paired correlation function of weakly 
fluctuating quantities. 

The first two terms in the right-hand side of (4.29) are regu- 
lar, while the last one is connected with the order parameter 
and thus determines the singular critical behavior of ( p a ) .  

We can also use (4.6) to calculate the irreducible paired 
correlation function of weakly fluctuating quantities. It  
must be borne in mind here that the pair correlation function 
of the quantities cp ,: is calculated from Eqs. (4.2) and (4.7). 
As a result we get 

D d r )  =ccp,(r)cpt, (0)  B=TT$a-'6(r) +TTt3oc-'Bc&p,-'F(t). 

(4.30) 

Here ( ( p a p b ) )  = ( p a p b )  - ( p a ) ( p b ) ,  r = r, - r2 ,  while 
F is determined by (4.21). We point out that in diagram 
language (4.30) means that the correlation function 
( ( p a  pb )) is represented by the sum of the two diagrams 
shown in Fig. 2. The iine in this figure denotes the unrenor- 
malized correlation function, i.e., the first term in the right- 
hand side of (4.30), the points stand for E,, and the hatched 
block denotes the correlation function (4.21 ). 

This diagram representation calls for some clarifica- 
tion, since the second diagram of Fig. 2 has the form of the 
first term of a self-energy series, and the question of sum- 
ming this entire series is raised. An example of the next dia- 
gram of this series is shown in Fig. 3. However, the diagrams 
having the structure shown in Fig. 3 have already been taken 
into account in the second diagram of Fig. 2. The point is 
that the intermediate middle line in Fig. 3 is none other than 
the contribution to the quaternary vertex of the self-action 
Y ,  connected with the interaction with weakly fluctuating 
quantities. A contribution of this kind was already taken 
into account in the redefinition U' - U specified by Eq. 
(4.9). 

We discuss now the behavior of the correlation func- 
tions of the weakly fluctuating quantities p,, p,, p ,  near a 
phase-transition point. The mean values of these quantities 
are determined by (4.29). In the mean-field theory we have 
( Y 2 )  a ( A ,  1, i.e., the quantities ( p a  ) as functions of TT - Tc 
or pT - pc exhibit kinks at the transition point. The mean 
values ( p a  ) in the fluctuation region (4.11 ) have a more 
complicated singular behavior, determined by 

Note that this singular contribution to ( p a  ) takes place both 
below the transition (for A, < 0) and above it (for A, > 0), 

FIG. 3. Diagram representation of one of the contributions already taken 
into account on the diagram of Fig. 2. 

and only the proportionality coefficients of IA, 1 '  - " are dif- 
ferent. 

The contribution of the Y fluctuations to the irreducible 
paired correlation function of the weakly fluctuating varia- 
bles is determined by Eq. (4.30). Let us examine the Fourier 
transform of (4.30), which we designate by Dab (q) ,  and 
which is expressed in terms of the function F whose behavior 
was discussed above. The explicit expression is 

We rewrite this expression in the form T ~ B  2 ', where 

The quantity B can be called the matrix of the renormalized 
elastic moduli. 

Let us dwell in greater detail on the properties of the 
correlation functions Dab (q = 0) which determine system 
properties such as heat capacity or compressibility. Thus, 
for example, 

In the mean-field theory, F(q  = 0) has a discontinuity given 
by (4.22). A corresponding discontinuity appears in 
Dab (q = 0 ) ,  i.e., the heat capacity and the compressibility, 
as well as the elastic moduli (4.33a). This mean-field contri- 
bution is illustrated by the diagram shown in Fig. 4 (the 
dash-dot line corresponds to ( Y )  ) . 

The behavior of F(q  = 0) in the fluctuation region is 
determined by Eq. (4.24), and F(q  = 0)  diverges for a > 0 
near the phase-transition point. Accordingly, the fluctua- 
tion contributions to the heat capacity and the compressibi- 
lity, given by the second terms in the right-hand side of 
(4.32), diverge with an exponent a. Note that in this case the 
renormalized elastic moduli (4.33a) remain finite at the 
transition point. 

Singularities of the SS,(S, )and N-Y, transitions 

The S, -S, phase transition is characterized by the vec- 
tor order parameter (2.1 ), while the order parameters for 
the S, -Sn and N-Nn phase transitions with n > 1 are tensors 
of rank n, and this causes the singularities of the transition in 
question. 

The gradient energy for the phase transition 
S, -S, (S, ) is somewhat more complicated in form than for 
the other orientational phase transitions. We write for the 
density of this energy, assuming the vector 1 of the normal to 
be uniform, 

Recall that the z axis is directed along 1, the indices a and ,8 

FIG. 4. Diagram representation of mean-field contribution to the correla- 
tion function. 
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assume all the values x and y, while E, is an antisymmetric 
tensor: E, = - E ~ ,  = 1. Expression (4.34) can be obtained 
from the Frank energy (2.8) by substituting in (2.8) the 
director n expressed in terms of Y in accordance with (2.1 ) . 
I t  is therefore logical to refer to L,,2,, as Frank constants. 
They are of the same order of magnitude as K, , , ,  in nema- 
tics. 

In contrast to (2.13), which is valid for the S,-S, and 
N-N, transitions with n > 1, the order-parameter exponents 
are linked with the gradient exponents. This linkage is de- 
scribed by the second term in the right-hand side of (4.34). 
This is also the reason why (4.34) contains three moduli L as 
against the two in (2.13). One more consequence of this 
linkage is that the form of the orientational energy in the S, 
phase is more complicated than in (2.9): 

Here n,, = Y,/(Y( and the angle g, is introduced in accor- 
dance with (2.3). 

We examine now the singularities of the critical beha- 
vior of the system in an SA-Sc transition. In the mean-field 
theory there are no qualitative differences from the other 
S,, -S, transitions. The only difference is that, in accordance 
with (4.34), the components of the correlation function 
(\V,YB ) longitudinal and transverse to the wave vector are 
determined by different moduli L, viz., L, and L, for the 
transverse component and L2 and L, for the longitudinal 
one. 

Certain properties of the S,, -S, transition are manifest- 
ed in the fluctuation region (4.11 ), owing to the smallness of 
the exponent 7 introduced above. In view of this smallness, 
the corrections to the gradient energy (4.32) can be neglect- 
ed if the inequality 

holds. Here q is the characteristic wave vector, r, is the criti- 
cal radius, and in accordance with (4.1 1 ) rp - L 2/UT de- 
termines that value of the critical radius for which fluctua- 
tion effects connected with Y self-action start to become 
substantial. 

Satisfaction of conditions (4.1 1 ) and (4.36) brings 
about scaling described by the exponents introduced above. 
In view of the small corrections to the gradient energy in this 
region, we can assume v =  0 in it. Among the remaining 
exponents 0 ,  y, Y, and a only one is independent in accor- 
dance with (4.25). In the region (4.36) all these exponents 
are functions of the ratio L ,  /L,, i.e., they are not universal. 
An estimate in the framework of the renormalization-group 
method6 shows that these exponents do not differ very 
strongly from those given in (4.26). 

Universal critical behavior sets in when the inequality 
opposite to (4.36) is satisfied. The singularities are then spe- 
cified by the standard exponents for a two-component order 
parameter (i.e., the situation considered in the preceding 
subsections takes place). However since the exponent 7 is 
small the universal-behavior region defined by the inequality 
opposite to (4.36) is located in an exceedingly narrow vicin- 
ity of the phase transition and can hardly be attained in ex- 
periment. 

Singularities similar to those of the phase transition 

SA-Sc (S, ) are connected with the transition N-N,. The 
low symmetry of the order parameter \V,, for this transition 
leads to the presence in the expansion of the energy of the 
next gradient term 

(nV )nkV,Ym. 

After eliminating the weakly fluctuating director n we 
return to the effective energy (4.8 ) . Now, however, the con- 
stants L in the effective energy become complicated func- 
tions of the wave-vector direction. This circumstance leads 
to no qualitative differences from other phase transitions in 
the mean-field theory. In the fluctuation region (4.1 1 ) (in- 
termediate-scaling region) the critical exponents P, y, Y, a 
are complicated functions of the unrenormalized elastic mo- 
duli K and L. Finally, in the universal-behavior region the 
transition N-N, reduces to the standard Y4 model. 

Note that the S,-S, phase transition does not have the 
singularities of the N-N2 transition. The point is that the 
displacement u of the smectic layer is a much more "rigid" 
variable than the director n, so that no new contributions to 
the gradient energy of the order parameter are produced 
when u is eliminated. 

5. DYNAMIC FLUCTUATIONS 

Diagram technique 

The first to develop a diagram technique for the calcula- 
tion of long-wave fluctuation effects was Wyld.I5 This tech- 
nique was laterI6 generalized to include a large class of sys- 
tems. A generating functional describing the dynamic 
fluctuational effects for an arbitrary hydrodynamic system 
was derived in Ref. 17. A consistent exposition of the deriva- 
tion of a dynamic generating functional can be found in Ref. 
8. We present here for reference only a number of relations 
needed for our exposition. 

The dynamic diagram technique is generated by the ef- 
fective action 

Here p, is the set of hydrodynamic variables andp, is the set 
of auxiliary fields. Recall that summation over dummy in- 
dices is implied. The first three terms in the right-hand side 
of (5.1 ) are directly generated by the dynamic equation for 
pa, the second term specifies the reactive term in the equa- 
tion, r,, is the kinetic operator defined by the set of kinetic 
coefficients, and SZ/Sp ,  is the variational derivative of the 
Hamiltonian (2.6). The actual structure of the bracket 
{g,,Z) can be found from Eq. (3.9) which is valid for all the 
variables considered here. The form of the last term in (5.1 ) 
is determined by the fluctuation-dissipation theorem. 

We introduce the following pair correlation functions 

These correlation functions are expressed in terms of the 
effective action by functional integration. Thus, for example, 

The integration here is over all the functions p, ( t ,  r )  and 
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pb (t ,  r).  Note that in this technique the correlation function 
(papb ) vanishes identically. 

The function Dab is simply a pair correlation function of 
thermodynamic quantities. The correlation function Gab, on 
the other hand, is the generalized susceptibility of the system 
and determines the response of the mean values (pa ) to the 
addition of an external "force" SF, to the equation for pa .  It 
follows hence that the Fourier component Gab (a, q)  is ana- 
lytic in the frequency in the upper half-plane, while the sin- 
gularities of Gab in the lower half plane determine the spec- 
trum of the eigenmodes of the system. The correlation 
functions Dab and Gab are related by the fluctuation-dissipa- 
tion theorem. The functions Gab are therefore fully indica- 
tive of the dynamic properties of the system. 

The definition (5.3) of the correlator in terms of the 
effective action permits the standardla formulation of the 
diagram technique in which the dynamic correlation func- 
tion can be represented by a perturbation-theory series. This 
series contains the paired correlation functions ( 5.2) whose 
unrenormalized values are determined by linearized dyna- 
mic equations, while the unrenormalized vertices in this ser- 
ies are determined by the nonlinear terms in the dynamic 
equations. 

Effective action 

The thermodyn.imic parameters used in an investiga- 
tion of the vicinity of a second-order phase transition must 
include the order parameter Y. Just as in statics, to investi- 
gate the dynamic correlation functions of the order para- 
meter it is convenient to introduce an effective action I,, 
that depends only on the order parameter V and on the cor- 
responding auxiliary field p,. This action is introduced by 
analogy with (4.4): 

exp (iZ.,,)= Dq Dp exp (iI). (5.4) 

The integration here is over all the pa andp, variables except 
9 and p, . The paired correlation function (YY) now takes 
the form 

D ( t ,  r)=<Y (t ,  r)Y (0,O) > 

Just as in statics, the integration in (5.4) can be carried 
out explicitly. To this end it must be recognized that the 
quantities pa and pa in (5.4) fluctuate weakly. This means 
that it suffices to retain in the action I the terms linear and 
quadratic in pa and pa, so that the integration in (5.4) be- 
comes Gaussian. We shall retain also in I the terms principal 
with respect to Y. This means in fact that the action must be 
constructed, in accordance with the definition (5.1 ), using 
analytic equations obtained by expansion in terms of pa and 
Y and presented in Sec. 3. Just as in statics, it is convenient to 
transform from the variables pa to the variables p : in accor- 
dance with the definition (4.6). 

It should be mentioned here that the long-wave displa- 
cement fluctuations of the smectic-layers u lead in the long- 
wave limit to corrections proportional to w - ' in the viscosity 
coefficients.1g920 These corrections, however, accumulate 
outside the critical region, where the order parameter is in- 
deed the only strongly fluctuating variable. Primary account 

must therefore be taken of the critical effects considered in 
the present paper, in whose calculations the u fluctuations 
can be neglected and replaced by the long-wave u fluctua- 
tions whose contributions were calculated in Refs. 19 and 
20. 

It must now be recognized that in the critical region 
(region 2 of Fig. 1) the order parameter is the "softest" var- 
iable. The terms with apa/at of the action I can can there- 
fore be omitted in the investigation of the critical mode. The 
so-transformed action I breaks up then into a sum of parts 
with the pairs pa, p ;, and p,, Y as the variables. The first 
part vanishes when the integral (5.4) is taken, and the se- 
cond yields I,, in the form 

We have introduced here in place of p, the variable 
p = r p ,  , with the effective Hamiltonian Ze, defined by 
Eq. (4.8). 

Note that the effective action (5.6) is determined here 
in accordance with the general expression (5.1 ) with the aid 
of the equation 

In other words, after eliminating the weakly fluctuating var- 
iables we are left here with purely dissipative dynamics of the 
order parameter. 

Equation (5.7), of course, can be derived from (3.19) 
with allowance for the softness of the order-parameter dyna- 
mics. This softness means that the dynamics of the order 
parameter can be investigated with the terms containing 
a /at in the equations for pp,  p,, and p, . In other words, the 
equations for these quantities will reduce to the conditions 
that the right-hand sides of (3.21 ) and (3.22) and the diver- 
gence (3.23) of the stress tensor be zero. These equations 
have a simple physical meaning, being the conditions for 
local equilibrium of the system with respect top, a, and u: 

Using these conditions to express pp ,  p,, and p, and substi- 
tuting the result in (3.20) we arrive at (5.7). 

By analogy with (5.2) we introduce the correlation 
function 

In accordance with the foregoing, the singularities, with re- 
spect to the frequency w ,  of the Fourier representations G of 
this correlator determine the dispersion law of the critical 
mode. As a result of the fluctuation-dissipation theorem, the 
correlation functions (5.8) and (5.5) are interrelated. The 
structure of the action (5.6) leads to the following relation 
between the Fourier components G and D: 

This relation has the same form as the standard connection 
between the susceptibility (whose role is assumed here by G) 
and the paired correlation function D in the classical limit." 

We introduce now the correlation function 
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It is connected, in view of the fluctuation-dissipation 
theorem, with the correlation function (Y2Y2). It is conven- 
ient to write this connection, which is similar to (5.9), for 
Fourier components with respect to time: 

Integrating this relation over the frequency w and recogniz- 
ing that the function F is analytic in w in the upper half 
plane, we get 

The left-hand side here is none other than the equal-time 
correlation function (4.2 1 ) introduced in the preceding sec- 
tion. This justifies the use of the same symbol F for both. 

The effective action (5.6) allows us to write a perturba- 
tion-theory series for the correlation functions introduced 
above. The terms of this series contain the unrenormalized 
values of the correlators and the quaternary interaction ver- 
tex U-the same quantity (4.9) as in the static case. There- 
fore the diagram structures will be the same as in statics, but 
the diagrams will now contain two types of pair correlation 
functions, (5.5) and (5.8). 

Dynamic correlation functions 

We investigate now the structure of the correlation 
functions (5.5), (5.8), and (5.10), which contain the pri- 
mary information on the order-parameter dynamics. The 
unrenormalized values of these correlations can be found by 
limiting the effective action I,, in integrations of the form 
(5.5) to terms quadratic in p and in Y - (Y). As a result, 
this integral becomes Gaussian and can be calculated in gen- 
eral form. Thus, for example, for the correlation function 
(5.8) we obtain in the Fourier representation 

The explicit form of the correlation function (5.5) can now 
be found by using (5.9). 

Expressions (5.13) and (5.14) correspond to the static 
expressions (4.15) and (4.16) and are valid, just as the latter 
are, in the mean-field picture. In the fluctuation region 
(4.1 1 ) the unrenormalized values (5.13) and (5.14) require 
large corrections due to the fluctuations of Y. Let us discuss 
the structure of the correlation functions in this region. 

The relaxational dynamics described by Eq. (5.7) is in 
accord with the dynamic-scaling hypothesis.21 According to 
this hypothesis, the dynamic correlation functions in the 
fluctuation region are functions of the time (or of the fre- 
quency w ) with power-law asymptotic limits. The order par- 
ameter Y has here only one characteristic relaxation time, 
with the following dependence on the proximity to the tran- 
sition point: 

Here z is a new critical exponent, called dynamic. 
In accordance with the dynamic scaling hypothesis, the 

structure of the correlation function (5.5) in the fluctuation 

region is given by 
1-4 D (t, r)=r, d(t/z, rlr,). (5.16a) 

Expression (5.16a) is a generalization of (4.17). Similarly, 
the expression (4.23) for the Fourier component of the cor- 
relation function is now 

Expression (5.16a) coincides with (4.17) at t = 0, while 
(5.16b) coincides with (4.23) at w = 0. 

It follows from (5.13 ) and (5.14) that the scaling rela- 
tions cited above are formally valid also in the region where 
the mean-field theory is valid, if we put 

It can thus be stated that in this region the critical ex- 
ponent z is equal to 2. Expressions (5.13 ) and (5.14) should 
join (5.16a) at the boundary (4.11) of the fluctuation re- 
gion. This enables us to estimate the proportionality coeffi- 
cient in (5.15). We should have 7-L3/I 'T2U2 for 
rc -L  '/UT. 

We emphasize that the frequency w plays exactly the 
same role as the wave vector q or the proximity to the transi- 
tion point, viz., a high frequency suppresses the fluctuation 
effects. The limiting frequency can be estimated as FA,, 
where A, lies on the boundary (4.11 ) of the fluctuation re- 
gion. We thus arrive at the inequality 

which, along with (4.1 I) ,  characterizes the fluctuation re- 
gion. 

We present now the asymptotes of the Fourier compon- 
ent of the correlation function (5.16) for qrc 4 1 : 

D (O,  q) a o ) ( ' - ~ - ~ ' ~ ~ ,  OTB 1. 

The high-frequency asymptotic form of the correlation func- 
tion (5.16b) forqrc<l is 

We emphasize that whereas the high-frequency asymptotic 
form (5.19a) is formally valid also in the mean-field theory, 
the asymptote (5.19b) is valid only in the fluctuation region, 
i.e., when the condition (5.18) is met. 

The dynamic exponent z can be approximately calculat- 
ed in the framework of the E expansion in 4 0  space. The 
corresponding formalism was developed in detail for the sta- 
tic case.3 The E expansion procedure is applicable in critical 
dynamics to our problem because the effective action (5.6) 
is renormalizable in 4 0  space. The exponent z was calculated 
in Ref. 21 in a two-loop approximation for the relaxational 
dynamics of the order parameter in the Y4 model. The result 
of this calculation is 

Here N is the number of the order-parameter components, 
equal to two for orientational phase transitions. Expression 
(5.20) indicates that in a real system the dynamic critical 
exponent should be close to its unrenormalized value 2. 
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Fluctuation contribution to the susceptibility 

We consider here the fluctuation contributions, in- 
duced by the order parameter, to the dynamic correlation 
functions Gob introduced in (5.2) and having the meaning of 
generalized susceptibilities of the system. It follows from the 
above equations that the degrees of freedom interacting most 
strongly with the order parameter Y are those connected 
with 6, pg, pU . We shall therefore be interested in correla- 
tion functions Gob with a = p, a ,  u. It  is the structure of these 
correlation functions which most strongly exhibits effects 
connected with order-parameter fluctuations. 

These variables are contained in the stress tensor 
(3.23). We shall therefore be interested in the contribution 
made to the effective action (5.1 ) by Eq. (3.11) for the mo- 
mentum density. We write down this contribution, using the 
explicit expression (3.23) for the stress tensor. As a result we 
obtain 

We have introduced here an auxiliary variable pi conjugate 
to j,. The nonzero components in (5.21 ) are& and f, given 
explicitly in (3.24), and the meaning of the coefficients Po, is 
madeclear by (2.16), (2.17), and (2.18). 

The action (5.21) contains, in addition to the variables 
of interest to us, the momentum density j,. The variables q?, 
and p, can be connected with j by Eqs. (3.2 1 ) and (3.22). 
For our accuracy requirements, they can be rewritten in the 
form 

The notation here is the same as in (3.9), and terms nonlin- 
ear in the weakly fluctuating quantities, as well as the term 
describing percolation, have been omitted. The point is that 
percolation-related effects are as a rule small in liquid crys- 
tals compared with viscosity effects. 

We consider now the contribution made to the effective 
action (5.1) by Eq. (3.13) for the specific entropy. Intro- 
ducing the auxiliary variable p, conjugate to 0, we can ex- 
press this contribution, in our approximation, in the form 

We have used here the explicit form of Eq. (3.21) for p,. 
Beside the terms already given, we shall need in the 

effective action (5.1 ) one more term that describes the inter- 
action ofpp, p,, and p, with the critical degrees of freedom. 
Recalling relation (2.19), we obtain the explicit expression 

I,.,= dt dsr E.w.Y. (5.24) 

Herep, is the auxiliary variable conjugate to the order para- 
meter Y and contained in (5.6). 

We are interested in the structure of the correlation 
functions 

FIG. 5. First contribution to the G-function for weakly fluctuating quanti- 
ties. 

where a = p, a ,  u. The unrenormalized values of these corre- 
lation functions are determined by the quadratic parts of the 
contributions (5.21 ) and (5.23) to the effective action, with 
allowance for Eqs. (5.22). The fluctuation corrections to 
these unrenormalized values are due to the terms of the in- 
teractions of the variables p,, p, with Y, p in (5.25). The 
principal terms of such an interaction are those proportional 
to Y2 in the contributions (5.21) and (5.23) to the effective 
action and the term (5.24). We emphasize that, just as in the 
static case, these principal interaction terms are cubic. 

We shall calculate the fluctuation corrections to the 
correlation functions (5.25) in the form of a perturbation 
series in the interaction. The first term of this series is shown 
in Fig. 5. The solid line in this diagram denotes the unrenor- 
malized values of the correlation functions (5.25), with the 
arrow directed from po to pa ,  the circle denotes So ,  the 
square denotes vertices generated by the interaction terms in 
(5.21 ) and (5.23), and the shaded block denotes the correla- 
tion function (5.10). We shall use the same notation below. 

The contribution to the correlation functions (5.25), 
which is shown in Fig. 5, becomes large near poles of unren- 
ormalized functions. We are interested, however, in just this 
vicinity. Its investigation calls for summation of the higher- 
order contributions to (5.25 ). All the significant contribu- 
tions are determined by the perturbation-theory series terms 
that account for the self-energy blocks. An example is the 
diagram in Fig. 6. However, the contribution to (5.25) cor- 
responding to this diagram is already partly taken into ac- 
count in the term defined by the diagram of Fig. 3. 

The point is that the intermediate line in Fig. 6 is con- 
nected with the contribution made to the U'- U renormali- 
zation by the quaternary vertex of the self-action of the order 
parameter (4.9). Recall that it is in fact the vertex Uwhich is 
contained in the effective action (5.6) that effects the aver- 
aging in (5.10). It can be tracked that this contribution to U 
arises when the Fourier components of the unrenormalized 
values of the correlation functions (5.25) on the interme- 
diate line are replaced by their values at w = 0. This situation 
is perfectly analogous to the static case analyzed in Sec. 4. 

This double allowance for the diagrams must be elimin- 
ated. Its result in statics was that it sufficed to retain only one 
diagram of the type shown in Fig. 5. The situation in dyna- 
mics is more complicated, since the correlation functions on 
the diagram depend on the frequency, and a contribution to 
the U'- U renormalization corresponds to substitution of 
the values w = 0 on the intermediate lines. In the calculation 
of the correlation functions (5.25) it is therefore necessary 
to sum the infinite series of diagrams shown in Fig. 7. The 
intermediate lines should represent the differences between 
the values of the correlation functions (5.25) at a real fre- 

FIG. 6 .  Example of higher-order contribution to the G-function for weak- 
ly fluctuating quantities. 
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FIG. 7. Diagram series for G-function of weakly fluctuating quantities. 
The crossed lines represent the difference between the unrenormalized G 
function and its value at zero frequency w. 

quency w and w = 0.' This difference is marked in Fig. 7 by a 
crossed line. 

The sum of Fig. 7 reduces to a geometric progression 
and can be calculated explicitly. A straightforward, albeit 
somewhat cumbersome, calculation shows that when the 
fluctuations are taken into account the expressions for the 
correlation functions ( 5.25 ) (in the Fourier representation) 
differ from the unrenormalized values only by the substitu- 
tion Dab +Dab (a, q). It is natural to call Dab a matrix of 
renormalized elastic moduli, the expression for which is2* 

The matrix (5.26) has the same structure as the static matrix 
(4.33) and coincides with it at w = 0. 

We emphasize that expression (5.26) describes the cor- 
relators (5.25) in the presence of both small and large cor- 
rections to the unrenormalized value. This expression agrees 
with the ideas of F i~man , '~  who proposed to describe long- 
wave dynamics by replacing the static compressibility and 
the heat capacity by complex dynamic quantities that de- 
pend on the frequency w. Specific expressions for the corre- 
lators (5.26) will be analyzed in the next section. 

6. CRITICAL BEHAVIOR OFTHE SYSTEM SPECTRUM 

Critical mode 

We consider first the mode describing the order-para- 
meter relaxation. The dispersion law of this mode is deter- 
mined by the singularities of the correlation function 
G(o, q) introduced by (5.8). 

In fact, assume that we have added to the Hamiltonian 
(2.6) the term 

Here h has the meaning of a field thermodynamically conju- 
gate to Y. A corresponding term appears in the action (5.1 ), 
and hence in the effective action (5.6). Using next the repre- 
sentation (5.3), it is easily shown that application of a small 
external field Sh ( t ,  r )  changes the mean value of Y ( t ,  r )  by 
an amount 

6<Y ( a ,  q) >=-iG(o, q)bh(o, q).  (6.1) 

Relation (6.1) pertains to Fourier components. It follows 

from it that the dispersion law of a critical mode is defined as 

det G-'(a, q) =O. (6.2) 

We know the explicit expressions (5.13) and (5.14) for 
G(w, q)  in the region where the mean-field theory is appli- 
cable. Using them we can write down directly the critical- 
mode dispersion laws, which take the form 

The onset of a zero-gap mode of frequency w, at A,  < 0 is due 
to the appearance of the Goldstone degree of freedom which 
we have specified above with the aid of the order-parameter 
phase p. 

The unrenormalized dispersion laws (6.3) and (6.4) 
are subject in the fluctuation region (4.1 1 ) to large correc- 
tions. To establish the critical-mode dispersion law in this 
region we must use the data given in Sec. 5 on the structure of 
the correlation function G and based on dynamic-scaling re- 
lations. As a result, we obtain for the high-frequency asymp- 
totic behavior 

where r is the characteristic time introduced in the preced- 
ing section. To find the proportionality coefficient in (6.5), 
this dispersion law must be matched to (6.3) and (6.4) at 
the valueq- T U / L  at which the fluctuation regime begins 
according to (4.1 1 ) . 

We consider now the long-wave case corresponding to 
qr, < 1. For A,  > 0 both branches of the critical mode de- 
scribe relaxation of the order parameter, with a relaxation 
time of order r. For A,  < 0 the same pertains to the mode 
describing the relaxation of the magnitude of the order pa- 
rameter. The rate of relaxation of the phase p of the order 
parameter depends on the wave vector q, and the damping 
rate of this mode can be estimated as follows: 

On the other hand, the dynamics of p in the low-sym- 
metry phase is described by Eq. (3.17). When orientational 
dynamics is investigated, one can omit from this equation 
the terms containing the mean-mass velocity. Linearizing 
the remaining term, we obtain, taking (2.9) into account, 
the following dispersion law: 

Comparing (6.7) with the second dispersion law in 
(6.4) we obtain, with allowance for (4.27), 

This expression is valid in the mean-field theory. In the fluc- 
tuation region we should compare (6.7) with the dispersion 
law (6.6). Taking the proportionality law (4.28) into ac- 
count, we get 

Relations (6.8) and (6.9) solve the problem of the critical 
behavior of the "orientational" viscosity coefficient y. 
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Acoustic modes 

Acoustic modes are connected with density oscillations 
of the momentum j, so that the properties of these modes are 
specified by the correlation function 

Herep, is an auxiliary variable serving as the conjugate to j, 
in the action (5.1 ) . 

It is expedient to discuss in greater detail the physical 
meaning of the correlation function (6.10). Assume that an 
external force density Fi has been added to the right-hand 
side of Eq. (3.12) for the momentum density. In this case the 
system acquires, by way of response, a mean value ( j i) .  
Adding the corresponding term to the effective action (5.1 ) 
and using the representation (5.3), it is easy to show that the 
relation 

holds for small Fi and is valid for the Fourier components. 
The correlation function G, thus determines the suscepti- 
bility of the system in respect to an external force. 

This statement means, in particular, that the dispersion 
equation for the system modes connected with j is 

det Gt,-'(m, q )  =O. (6.12) 

Here the superscript - 1 denotes the inverse of the matrix 
G,, . Equation (6.12) holds for acoustic modes as well as for 
viscous modes describing relaxation of velocity components 
not connected with sound. 

The unrenormalized value of the correlator (6.10) is 
determined by the quadratic part of the effective action 
(5.12). Since the acoustic modes are more rigid than the 
thermodiffusion mode, in acoustic investigations we can as- 
sume that the adiabaticity condition p, = const is satisfied. 
With this taken into account, the quadratic part of the action 
(5.12) is expressed after substitution of (5.22) only in terms 
ofp, and j,. The resultant expression can be used to calculate 
G, directly in accordance with (5.3). 

Performing the transformations described above, we 
obtain an explicit equation for the matrix of the reciprocal of 
the Fourier component Gj, : 

Here fa,,, is determined by Eq. (3.24). In accord with the 
analysis of Sec. 5, we have replaced the unrenormalized ma- 
trixpof the elastic moduli in the derivation by the renormal- 
ized matrix given by (5.26). The result is an expression for 
the correlation function Gik with account taken of the main 
contributions due to the order-parameter fluctuations. 

Expression (6.13) makes possible a complete analysis 
of the critical behavior of the acoustic-mode dispersion rela- 
tions defined by Eq. (6.12). This expression, moreover, in 
accord with (6.1 1 ) specifies the critical behavior of the sys- 
tem susceptibility with respect to external forces. We shall 
present below results of an analysis based on (6.13) and per- 
taining to various frequency and value ranges of the critical 
parameter A,.  

We note first of all that, owing to the linear dispersion 
law, the acoustic oscillations are "stiffer" than the critical 

mode in the critical region. This means that at w = cq the 
dynamic correlation functions depend more strongly on the 
frequency than on the wave vector q. The latter pertains, in 
particular, to the Fourier component of the correlation func- 
tion (5. lo ) ,  since it determines in accordance with (5.26) 
the renormalized values of the elastic moduli B,, . In other 
words, we can neglect the dependence of Dab on q in the 
analysis of the acoustic modes, i.e., substitute the value 
Dab(m,  q = O )  in (6.13). 

Let us first examine the low-frequency limit w r g  1, 
where T is the characteristic order-parameter relaxation 
time introduced in the preceding section. In this case to first 
approximation we can useDab (0, O), in (6.13) i.e., the static 
renormalized elastic moduli. 

The dispersion equation in (6.12) (with viscosity neg- 
lected) determines in this case the sound-wave velocities 
c = w/q,  which are expressed, as they should, in terms of the 
renormalized adiabatic moduli Dab. 

Only one acoustic mode is present in a nematic. Its velo- 
city is isotropic and is given according to (6.12) by 

wherep is the pressure, i.e., we arrive at the standard expres- 
sion for the speed of sound in terms of the compressibility 
(an expression valid, in particular, for an ordinary liquid). 
The second equality in (6.14) was discussed for the case of 
unrenormalized quantities at the end of Sec. 2, and is valid 
also for renormalized quantities. The same holds also for the 
relation Duu = B which will be used below. 

A smectic permits, besides ordinary sound (whose velo- 
city we designate by c, ), propagation of what is called se- 
cond sound connected with the compression of the smectic 
layers. The propagation velocity c, of this sound is strongly 
anisotropic. We present expressions for the velocities c, and 
c,, assuming that c, < c, : 

Here B is the compression modulus of the smectic layers, the 
subscripts z and a label respectively the components of the 
wave vector q along the normal to the smectic layers (along 
the z axis) and in the plane of the layers. The propagation 
velocity of first sound produced in a smectic by oscillations 
of the mass density p is determined for c, <c,  in first order 
by the same equation (6.14) as for a nematic. 

The critical behavior of the propagation velocities of the 
acoustic waves is determined by Eqs. (6.14) and (6.15) with 
allowance for the critical behavior discussed in Sec. 4. In the 
mean-field theory the velocities c, c, ,  and c, are discontin- 
uous at the phase-transition point. In the fluctuation region 
(4.1 l ) ,  the velocities have the rather complicated critical 
behavior defined by (4.33b) (one must put q = 0 in the cal- 
culation of c, and c, ). We note only that, with allowance for 
fluctuation effects, c, and c, remain finite, according to 
(4.33b), at the phase-transition point. 

We examine now, in the low frequency region, the first 
corrections to the dynamic correlation functions in terms of 
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the parameter or. For small wr the Fourier component of 
the correlation function (5.10) can be written as 

Here Fo = F(0,O) and its critical behavior was discussed in 
Sec. 4; F, has the same critical behavior as Fo. Expanding 
expression (5.26) for the renormalized dynamic moduli in 
terms of the second small parameter of (6.16 ) , we get 

Comparison of this expression with (6.13) leads to the 
conclusion that the presence of the contribution (6.17) in 
the dynamic moduli denotes renormalization of the viscosity 
tensor. Denoting this renormalized tensor by f j ,  we obtain 
from (6.13) and (6.17) 

This equation means that the viscosity coefficients have 
much more singular critical velocities than the sound veloci- 
ties. Note that the explicit expressions (3.23) forf,,, show 
that only the so called bulk viscosity coefficients contain 
large fluctuation corrections. It is precisely these coefficients 
which enter in the dispersion laws of the acoustic modes and 
are the cause of their damping: 

In the mean-field theory, the quantity F, in (6.18), un- 
like Fo, has no discontinuity and is small compared with the 
Fo discontinuity given by (4.22). Calculation of the first 
nonvanishing fluctuating contribution to F, shows that 
F, <Fo holds in the region where the mean-field theory is 
applicable. In this region the fluctuation contributions to the 
bulk-viscosity coefficients are thus given, according to 
(5.15) and (6.18), by 

The critical behavior of the viscosity coefficients in the fluc- 
tuation region (4.11) is given in accordance with (6.18) by 
Eqs. (4.18), (4.24), and (5.15), which lead to the propor- 
tionality 

The choice of the plus or minus sign in the exponent of 
(6.21 ) depends on whether the combination E,P, 'E,Fo is 
large or small compared with unity. 

We consider now the high-frequency case wr, 1. The 
high-frequency asymptotic form of the function F(w, q = 0)  
in the fluctuation region is determined by (5.19b). In the 
region where the mean-field theory is valid, the first nonvan- 
ishing fluctuation correction to F(w, q = 0) is proportional 
to o-"~. In both cases, the function F has real and imagin- 
ary parts of equal order. We can therefore analyze on the 
basis of (5.26) and (6.13) the sound-wave dispersion laws 
(6.12) in the low-frequency region. Various situations are 
possible, depending on the sizes of the fluctuation correc- 
tions to the unrenormalized values of pa,. 

If the corrections to flab are small, the sound waves pro- 
pagate with high-frequency velocities that differ from the 

low-frequency ones. The presence of a fluctuation term gives 
rise to corrections, proportional to F(w, q = 0) ,  to both the 
real and imaginary parts of the dispersion law w(q). If the 
corrections top,, are appreciable, the sound wave propagate 
at the low-frequency (renormalized) velocities (6.14) and 
(6.15). The dispersion law w = cq is subject in this region to 
corrections a F - ' (to both the real and imaginary parts of 
the dispersion law). 

In addition to the above corrections, it is necessary to 
take into account in the high-frequency region the sound 
damping - 77qZ/p due to the viscosity terms in (6.13). We 
emphasize that this damping is due to the unrenormalized 
viscosity coefficient and consequently has no critical beha- 
vior. 

A preliminary report of the foregoing results was pub- 
lished earlier.22 

Singularities of the critical dynamics of the transitions 
SASc(S, 1, SAG,, and N-N2 

These singularities are due to the low symmetry of the 
order parameters corresponding to these phase transitions. 
The order parameter for the transition S,-S, (S, ) is a vec- 
tor, while for the transitions S-S, and N-N, it is a second- 
rank tensor specified in real space. 

The singularities of the transitions S,-S, and N-N2 
come into play even in statics, making the critical exponents 
nonuniversal in a wide intermediate region defined by 
(4.1 1 ) and (4.36). Qualitatively, however, they do not alter 
the qualitative picture of the transition. More significant in 
these transitions are the dynamic singularities connected 
with the presence in f,,, of the contributions (3.25) and 
(3.26) which vanish near the transition point. These contri- 
butions enter both in Eq. (3.18) for the order parameter and 
in expression (3.10) for the stress tensor. Since the f,,, re- 
main finite at the transition point, the terms containing them 
cannot be neglected (as was done above) in the analysis of 
critical dynamics. 

Cross terms thus appear in the equations for the velo- 
city and the order parameter. Since the critical mode is soft, 
these cross terms play no significant role in the formation of 
the dispersion laws of the acoustic or velocity-relaxation 
modes. The presence of these cross terms, however, strongly 
influences the form of the dynamic equation for the order 
parameter. 

Cross terms other than the above appear also in the 
equations for v and the director n, which are of dissipative 
origin. 

After eliminating the weakly fluctuating variables, 
which include the velocity relaxation component and/or the 
director, Eq. (5.7) for Y is replaced by 

Here r'" is a matrix of the order-parameter components and 
has a complicated angular dependence on the wave-vector 
direction. We have approximately 

where r is the kinetic coefficient in Eq. (3.9) for the order 
parameter, 77 is determined by the viscosity coefficients that 
specify the relaxation rate of the transverse velocity com- 
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ponent, and y, is the torsional-viscosity coefficient intro- 
duced in (3.14). Recall that these viscosity components 
have no critical behavior. 

The correlation-function dynamic-singularity compon- 
ents connected with the unusual angular dependence and 
with the matrix structure of re' are "extinguished" in the 
fluctuation region. This extinction, however, is slow when 
z - 2 is small (z is the dynamic critical exponent). There- 
fore, in particular, the kinetic coefficient y indicative of the 
phase relaxation of the order parameter p in the low-temper- 
ature phase, has a nontrivial angular dependence. This de- 
pendence vanishes only very close to the transition point. 

We have discussed how the director mode and of the 
relaxation mode connected with the shear component of the 
velocity affect the behavior of the critical mode in the vicin- 
ity of the transitions SA -S, ( S ,  ), SA -S2, and N-N, . In turn, 
the connection of the order parameter with the director and 
with the shear component of the velocity modifies the spec- 
tra of the latter. Each dispersion law contains a correction of 
the form 

Here L and 7 stand for a complicated combination of elastic 
moduli and viscosity coefficients. This correction changes 
the spectrum of the director mode somewhat, but can be 
neglected in spectrum of the relaxation modes. 

We note finally that in the scaling region, where the 
critical mode is greatly softened, the correction (6.24) van- 
ishes from the spectra of the nonrenormalized diffusion 
modes. This region, however, can hardly be reached in ex- 
periment. 

7. CONCLUSION 

We have investigated theoretically the critical dyna- 
mics of a number of phase transitions that occur in both the 
nematic and smectic phases of liquid crystals. All these 
phase transitions, in which the rotational symmetry is spon- 
taneously broken, are described by a two-component order 
parameter that is purely relaxational for the transitions in 
question. It is therefore natural to gather all these transi- 
tions, which we shall call orientational, into a special group 
and treat them within the framework of a single formalism. 
This has been done in the present paper. 

The acoustic modes, or more accurately their damping, 
turn out to be most sensitive to critical fluctuations. Theory 
makes it possible to determine the critical contribution to the 
dispersion laws of the acoustic modes that contain one uni- 
versal function F of WT, where r is the characteristic damp- 
ing time of the critical mode and depends likewise universal- 
ly on the proximity to the transition point. The function 
F ( w ~ )  cannot be obtained in explicit form, but our expres- 
sion for the critical contribution makes it possible to relate 
the frequency dependences of the sound-wave dispersion law 
at various temperatures, and also for various substances and 
different orientational phase transitions. 

Detailed experimental data are available at present for 
the first- and second-sound dispersion laws near the smectic- 
A-smectic-Cphase tran~ition.~ The entire aggregate of these 
data agrees splendidly with the results of the proposed 
theory. A discussion of the results of the theory for the A-C 

transition can be found in our earlier paper.24 Comparison 
of the theory with experiment5 yields for F(wr)  an explicit 
expression that could be used in the future to compare the 
theory with experimental data, and for other orientational 
phase transitions. 

In the investigation of orientational phase transitions 
we have used a method of effectively excluding, from the 
action in dynamic fluctuations, weakly fluctuating degrees 
of freedom whose dynamic correlation functions can be ex- 
plicitly expressed in terms of correlation functions for the 
order parameter. This method is universal and can be used to 
investigate the dynamics of any system with well developed 
low-frequency fluctuations. Thus, for example, it was used 
to investigate anomalous sound damping in smecticsZO or 
near a weak-crystallization phase tran~ition.'~ 

This method can also.be used to study theoretically the 
dynamic singularities of substances near a number of phase 
transitions outside the scope of our analysis. These include 
second-order crystallization transitions such as the nema- 
tic-smectic transition, as well as the critical point on the 
smecitic A ,  -smectic A, diagram. Their treatment, however 
is outside the scope of the present paper and can be the sub- 
ject of a special investigation. 
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