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The complete spectrum of collective excitations in the planar 2 0  phase of 3Heis calculated for the 
first time, using a functional-integration technique developed for these purposed by Brusov and 
Popov (Superconductivity and Collective Properties of Quantum Liquids [in Russian], Nauka, 
1988, p. 2 16). The spectrum contains the A-phase spectrum modes previously knownCP. N. 
Brusovand V. N. Popov, Zh. Eksp. Teor. Fiz. 79,1871 (1980) [Sov. Phys. JETP 52,714 
( 1980) 1) [Goldstone (gd), clapping (cl), pair-breaking (pb) ] as well as new modes existing 
only in the 2Dphase [P. N. Brusov and M. V. Lomakov, Physica (Utrecht) B 165-166,635 
( 1990) 1. Interestingly, the frequencies of the cl and pb modes, for which a linear Zeeman effect 
exists in the A phase, are independent of the magnetic field in the 2 0  phase. The collective-mode 
energies turn out to be complex, since the gap in the single-particle spectrum vanishes in a selected 
direction (as in the A phase). 

INTRODUCTION the collective modes of which leads to the appearance of a 

The collective-excitation spectrum was investigated in second peak in 

the superfluid A-phase1 and B-phase2 of 3He. The superfluid These examples suffice, in our opinion, to understand 
phases of 3He also include a 2 ~ - ~ h ~ ~ ~ , ~  known as planar and the importance of investigating the ~ l a n a r  2D-~hase, and 
having an order parameter particularly the spectrum of its collective excitations. We 

calculate this spectrum below by the path-integration 
c!:' (p) =c(gV)''16,h(6, ,6.,+6,,fia2). method. 

Here C is a constant, p = T I ,  V is the system volume, 
p = (k,o) is the Cmomentum, and i and a are the vector 
and isotopic indices. This phase has not yet been observed in 
experiment, but its existence under various conditions was 
deduced by many researchers. In particular, Alonso and Po- 
pov4 predicted a phase transition from the B- to the 2D- 
phase at H = H, and proved the stability of the 2D-phase to 
small perturbations for H > H, . Fujita et by considering 
the B-phase in a semibounded space, have shown that a 2D- 
phase is realized on the boundary: in this situation it is ener- 
getically more favored than the A-phase. (Collective excita- 
tions for this case were investigated by Brusov and 
B u k ~ h ~ u n . ~  ) One of the possible explanations of the double 
splitting of the sq (squashing) mode in the B-phase, recently 
observed in experiment by Ketterson's group,' is an as- 
sumed existence on the cell boundary of a 2 0  phase one of 

1. HYDRODYNAMIC-ACTION FUNCTIONAL FOR THE 
PLANAR 2 0  PHASE OF 3He 

All the properties of the model 3He system obtained by 
successive path integration over the "fast" and "slow" 
Fermi fields are determined by the functional S, of the hy- 
drodynamic action, given by 

Here c, (p) is the Fourier transform of the Bose field 
cia (x ,T)  describing the Cooper pgrs of the quasifermions on 
the Fermi surface, the operator M is given by 

where 6 = c,(k - k,), ni = k,/k,, H is the magnetic field 
and p is the magnetic moment of the quasiparticle, ua 
(a=1,2,3) are two-by-two Pauli matrices, and 
o = (2n + 1 )PT are the Fermi frequencies. The negative 
constant g in ( 1.1 ) is proportional to the scattering ampli- 
tude of two quasifermions near the Fermi sphere under the 
assumption that the amplitude is equal to g(k,  - k,, 
k, - k, ), where kl  and k, are the momenta of the incident 
fermions, and k, and k, are those of the outgoing ones. 

Expanding the functional ( 1.1 ) in the Ginzburg-Lan- 
dau region T, - T< T, in powers of the fields c and c +we 

I 
obtain' 

where 

II=-tr AA++v tr A+AP+ (tr A+A)'+ tr AA+AA+ 

Here 
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The equation for the gap in the 2D-phase is 

P is the projector on the third axis along which the field is 
directed. Minimizing II, we obtain the matrix A that deter- 
mines the condensate density. The equation ST = 0 or 

-A+vAP+2 (tr A+A)A+2AA+A+2A*ATA 

has several nontrivial solutions corresponding to the super- 
fluid phases. One of them has an order parameter 

This is in fact the planar 2D-phase. Calculation of the second 
variation yields 

Here 

&=Re Aia, vi.=Im A,.. 

For Y < 1/2 the S2n  variation is of alternating sign, while for 
Y > 1/2 it is non-negative. This means that the 2D-phase is 
stable in a magnetic field H >  H, = [rp2TCAT/7f (3) ] 'I2. 

As indicated in the introduction, Alonso and Popov4 have 
shown that at H = H, a phase transition takes place from the 
B- to the 2D-phase. 

As T-  0 ,  the functional ( 1.1 ) must be expanded in 
terms of the fluctuations of the fields c,, (p) above their con- 
densate values e,, ''' (p). In this temperature region the Dose 
spectrum of the system is determined in first-order approxi- 
mation by the quadratic part of the functional S, ( 1.1 ), a 
part obtained via the shift el, ( p )  -cia (p) + c,hO' ( p ) ,  where 
c!:'(p) = c(PV) 1/2S, (S,, Gal + S,2Sa2 ) and is obtained 
from the equation det Q = 0, where Q is the matrix of a qua- 
dratic form. The quadratic part of S,, is given by 

where the coefficients are given by 

A=A,=M-' [-- (io-8) (02+g2+p2H2+A"+2~p2H2],  
B= -B,=M-'pH[ (02+E2+$HZ+A2) -2E ( i o + E ) ] ,  

C=C,=M-'Ao [n ,  (02+gZ+pZH2+A2) -2igpHn21, 
(1.4) 

D=B,=M-1AoZ[n2(02+~2+p2H2+A2) +2iEpHni], 
M= (02+~2+p2HZ+,A2)2-4E2p2H2, 

A=Ao sin 0. 

2. SPECTRUM OF COLLECTIVE MODES 

After calculating the quadratic-form coefficients ( 1.2) 
by taking the trace and replacing g with the aid of Eq. ( 1.4), 
we obtain from the equation det Q = 0 the following equa- 
tions for the collective-mode spectrum 

j d x ( l - x 2 )  ( l+4c ) l ( c )=0;  U , - U ~ ~  (2. 
0 

j d x ( L - x 2 )  ( 1 + 2 c ) l ( c ) = O ;  a , , + ~ ~ ~ * ~ u , ~ + u ~ ~ ) .  
0 

v,,+vzz* (u,2+u2,), (2.2) 

( 4 - x Z ) ( ) = ;  v - v  u - u  (2.3) 
0 

~dxx2[(1+4c+)l(c+)+(~+4c~)J(c~)-21=0; u,,, 

Here 

A,,' ( I -  .x') Ao2 (1-x2)  
C* = -- c =  

0 2 f  [c , (nk)+2pHJ2 ' 02+cp2 (n ,  k)' ' 

Let us examine Eqs. (2.1 )-(2.8) at zero momenta 
( k  = 0 )  of the collective excitations. In this case Eqs. (2.1)- 
(2.3) coincide with those obtained earlier by Brusov and 
Popov for the A phase without a magnetic field,2 while Eqs. 
(2.6)-(2.8) go over into the aforementioned Brusov-Popov 
equation for an A-phase without a magnetic field following 
the substitution w2 + 4,u2H 2-+ w2. These equations can thus 
be solved by using the results of Ref. 2. Finding also the roots 
of Eqs. (2.4) and (2.5), we obtain the following result of the 
spectrum of the collective modes at k = 0 ,  as listed in Table 
I. 

Thus, the spectrum of a planar 2 0  phase in a magnetic 
field contains modes similar to those in the A phase without a 
magnetic field, as well as a number of new modes. The 
former consist of six gd modes, four cl modes, and two pb 
modes. Two quasigoldstone (qgd) modes and two quasi- 
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TABLE I. 

Notation: N-number of modes of a given type; the types as designated as follows: gd-gold. 
stone, cl--clapping, pb--pairbreaking, qgd--quasigoldstone, qpb-quasipairbreaking. Aster- 
isks mark modes whose frequencies depend on the magnetic field. 

No. 

6 

4 

2 

2 

2 

1 

1 

pairbreaking (qpb) modes are obtained from the gd and pb 
modes respectively by substituting E - E - 4p2H 2. The 
gap in the qgd-mode spectrum is - 2 pH. Finally, we ob- 
tained two new modes having no analogs in the A-phase. 
They correspond to the variables u,, and v,, , are not degen- 
erate, and the difference between their frequencies is small. 
Interestingly, whereas for the cl and pb modes there exists in 
the A phase a linear Zeeman effect9 (threefold splitting in a 
magnetic field), the frequencies of these modes in the 2 0  
phase are independent of the magnetic field, while the ener- 
gies of the qpb modes and of the two "new" modes are qua- 
dratic in the field. Note also that the energies of all the non- 
phonon modes, except the two "new" ones, have imaginary 
parts due, just as in the A-phase, to the vanishing of a Fermi- 
spectrum gap in a special direction (that of the magnetic 
field). The frequencies of all the nonphonon modes of the 
spectrum turn out to be complex, in view of the possible 
decay of the collective excitations into the initial fermion 
(owing to the vanishing of the Fermi-spectrum gap along the 
field direction). Just as in the A and B phases, collective 
modes can be excited in the 2 0  phase in ultrasound and 
NMR experiments. 

Note that notwithstanding some similarity between the 
spectra of the A and 2 0  phases, they also have substantial 
differences that can possibly help identify the 2 0  phase. Just 
as in the latter, there exist some nonphonon modes absent 
from the A phase (and also from the B phase), and the be- 
havior of the spectrum (and even of the analog modes) in the 
2 0  phase and in the A phase is quite different: In the A phase 
we have a linear splitting of the pb and cl modes, while in the 
2 0  phase one part of the spectrum is independent of the field, 
whereas the other part has a quadratic field dependence. 

After completing the spectrum calculation the authors 
have learned that the excitation spectrum in the 2D-phase 
was studied by Hirashima eta/.,* who, however, considered 
a 2 0  phase without a magnetic field. Since the 2 0  phase is 
stable only for H >  H,, the meaning of their calculations is 
not clear. Obviously, they could not obtain six collective 
modes with frequencies dependent on the magnetic field. 
Comparing nonetheless our results with those of Ref. 9 we 
note the following: 

1.  The main conclusions of both studies, that the 2D- 
phase spectrum coincides in part with the A-phase spectrum, 
but modes typical of the 2 0  phase are present and are close to 
one another. 

Type 

gd 

el 

Pb 

qgd 

qpb 
* 
* 

2. The correspondence between that fraction of the 
modes which is the same in both phases as in the A-phase 
spectrum investigations by the kinetic-equation1' and path- 
integration" methods. A frequency w,, = 1.23A0 (T)  was 
thus obtained in Ref. 9 for the cl-mode, as against 
w,, = 1.17A0 ( T) in the present paper, in much better agree- 
ment with the experiments in the A-phase (see Ref. 12 and 
the citations therein). The reason is that we have taken into 
account the collective-mode damping due to decay of 
Cooper pairs in view of the vanishing of the Fermi-spectrum 
gap (see Ref. 12 for details). 

3. In Ref. 9 one mode was obtained, typical only of the 
2 0  phase and having an energy somewhat lower than that of 
the super-flapping (sfl) mode at all temperatures. This new 
mode is due to spin waves with a coupling coefficient O(k '). 
It is neither resonant nor diffuse. Note that in our A-phase 
model1' we obtain not sfl modes but additional Goldstone 
modes whose appearance is due to the presence of latent 
symmetry. As noted above, we have obtained in the present 
paper, in a magnetic field, two modes that are indicative only 
of the 2 0  phase. Their frequencies are close to one another 
and depend on the field. 

The authors are grateful to M. 0. Nasten'ko, T. V. Fila- 
tova-Novoselova, V. N. Popov, D. V. Ketterson, Z. Zao, I. 
Fomin, Yu. I. Bun'kov, E. Chervonko, and M. Krusius for a 
discussion of the results. 
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Translated by J. G. Adashko 

Frequency I Variables 
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E=O 
E = (1,17-0,13i) A, 

E = (1,96-0,311) A, 

E = 2pH 

Ez = (1 ,96-0,31i)~AO~+4p~H~ 
Ez = (0,518)zAo2+4$HZ 
Ez = (0,495)aAoa+wHB 

vll-fvzrf (u~z+uzl), unf vaz, uszf vsi 

ull+uzzf (VIZ+~ZI). 
uli-vzzf (~r~a-uz i )  

u11-uzzf ( ~ I z - V a l )  

Ula, uza 

VIS, Vzs 

us3 

V.38 


