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The attenuation of spatial and spatial-temporal echoes in a weakly turbulent plasma as a result of 
nonlinear processes is analyzed. The nonlinear processes considered are decay interactions of 
plasma waves and ion acoustic waves. These interactions are of a diffusive nature. It is possible to 
determine the plasmon diffusion coefficient in wave-number space either from the Fourier 
spectrum of the envelope of the spatial-echo signal or from the way the amplitude of the spatial- 
temporal echo at a fixed point depends on the distance and on the time interval between the pulses 
of external perturbations which excite the echo. 

The existence of an echo in a weakly turbulent plasma 
was first demonstrated by Nemtsov and ETdman' in the par- 
ticular case of Langmuir turbulence. Underlying this effect 
is the retention of a memory of external perturbations in the 
form of undamped oscillations of the spectral density of 
Langmuir plasmons. These oscillations are of the same na- 
ture as Van Kampen modes in a quiescent plasma. They 
consist of a set of modulated electron streams. External per- 
turbations, given as low-frequency ion acoustic waves, un- 
dergo resonant damping in the gas of Langmuir plasmons. 
Damping of this sort, which was described by Vedenov and 
Rudakov,' stems from the coincidence of the phase velocity 
of the sound waves with the group velocity of the plasmons. 
Like Landau damping, it is not accompanied by irreversible 
dissipation of the energy of the ion acoustic wave. 

It was suggested in Ref. 1 and in some later studies3-' of 
echo effects in weakly turbulent plasmas that the perturba- 
tion of the plasmon spectral density is undamped. Mathema- 
tically, this assumption corresponds to a zero right side of 
the kinetic equation for the waves. We know from the theory 
of echos in a quiescent plasma8-lo that this phenomenon is 
exceedingly sensitive to any effect which disrupts the phase 
memory. Falling in the latter category, in particular, are 
Coulomb collisions which are accompanied by deflections of 
the charged particles through small angles. Microturbulence 
would also fall in this category. This circumstance was uti- 
lized in Refs. 11-1 3 for an experimental determination of the 
electron mean free path or the diffusion coefficient in velo- 
city space. This quantity appears in the Fokker-Planck colli- 
sion integral. 

In the case of a weakly turbulent plasma, effects which 
disrupt the phase memory are nonlinear interactions of 
waves and particles, which are described by the right-hand 
side of the wave kinetic equation. In the present paper we 
examine the effect of decay interactions of Langmuir waves 
(or plasma waves) and ion acoustic waves on the spatial and 
spatial-temporal echos in weakly turbulent plasmas. Since 
the ratio of the frequencies of the acoustic and plasma waves 
is small, these decay interactions are of a diffusive nature,14 
like Coulomb collisions in a quiescent plasma. We show be- 
low that in this case echo effects can be utilized to determine 
the diffusion coefficient for Langmuir plasmons in wave- 
number space. The results derived on the spatial-echo effect 
were reported briefly in Ref. 15. 

2. FORMULATION OFTHE PROBLEM; LINEAR 
APPROXIMATION 

We consider a homogeneous, weakly turbulent plasma 
in the particular case of a Langmuir turbulence. We write 
the kinetic equation for plasma waves in the form 

The left side of ( 1 ) is the Liouville operator d /dt, which acts 
on the spectral-density function of the Langmuir plasmons, 
N,, in the phase space of coordinates and wave vectors. The 
right side of this equation, which describes nonlinear inter- 
actions of waves and particles which lead to a relaxation of 
the perturbations of N,, is written in the form of a plasmon 
diffusion operator in wave-vector space.14 This representa- 
tion is justified for a homogeneous and isotropic plasma, in 
which the most important linear processes are decay interac- 
tions of plasma waves and ion acoustic waves. For them the 
diffusion tensor DG becomes 

dk' ~,, ( t )= - k i f k , ' n k r  ~ k , k * , k - k . ~  

( 2 ~ ) ~  

where n ,  is a Fourier component of a low-frequency pertur- 
bation of the plasma density caused by ion acoustic waves, 
and W,,,,,, - ,, is the matrix element representing the iher- 
action of the waves k, k', and k - k'. 

Under the assumption that the ion acoustic waves are 
excited by plane grids (Refs. 16 and 17, for example), we 
specify the external perturbations to be monochromatic 
waves with frequencies o, and w,, which are applied to the 
plasma in the z = 0 and z = I planes, respectively: 

Herep, and p, are the amplitudes of the external perturba- 
tions, and the constant z, has the dimensionality of a length. 

Choosing the external perturbations in the form (2) 
corresponds to an analysis of the spatial echo. This choice 
allows us to restrict the discussion to a spatially one-dimen- 
sional problem, by virtue of the presence of the preferred 
direction 2. In this case the Liouville operator d /dt becomes 

d a a@, a a ~ ,  a -=-+ ----- 
dt d t  dk, d z  d z  r3k, ' 

and we are left with only a single term on the right side of 
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( 1 ). That term contains D,, . In ( 3 ) we have used the nota- Nil'  by the equation 

where n is the perturbation of the equilibrium plasma den- 
sity no by the ion acoustic waves. The latter waves are de- 
scribed by the equation for the density perturbation: 

where c, is the isothermal sound velocity, and m and Mare 
the masses of an electron and an ion, respectively. 

We solve Eqs. (1)  and (4)  by successive approxima- 
tions, writing the perturbation of the plasma density and the 
spectral density of the plasmons in series: 

where NiO' is the unperturbed three-dimensional spectrum 
of the Langmuir turbulence, and the superscripts 1 and 2 
specify the deviations of the corresponding quantities from 
their equilibrium values which are respectively linear and 
quadratic in the external perturbations. To determine the 
effect of the right side of ( 1 ) on the perturbation of the spec- 
tral density of the plasmons, we use O'Neil's approximate 
method'' for solving a kinetic equation with a diffusive colli- 
sion integral. We start from the assumption that the diffu- 
sion coefficient D, is small. Near the planes in which the 
external perturbations are applied (for definiteness, we will 
discuss the z = 0 plane), we can then ignore the right side of 
the equation for the linear perturbation of the plasmon spec- 
tral den~ i ty ,~  

8 ~ : ' )  amp 8 ~ : "  a. an(' )  a ~ : ' )  a ~ N : I )  + - - - - - - - - -- (D.. -) at a k ,  a z  2no az  ak ,  a k ,  . a k ,  

( 5 )  

in comparison with the last term on the left side. From (5)  
and (4)  we have the following result for the first of the per- 
turbations in (2),  in the linear approximation: 

where Q ( x )  is the unit step function, v, =dw,/dk, is a com- 
ponent of the group velocity of the Langmuir plasmons, and 

In solving Eqs. (4) and (5)  we used Fourier transforms in 
space and time: 

A ( x .  a ) =  j dz e x p ( - i x z )  dt e x p ( i o t ) ~  ( I ,  t ) .  

With distance from the z = 0 plane, the ion acoustic 
density perturbation n"' undergoes resonant damping in the 
gas of Langmuir plasmons. This damping is analogous to 
collisionless Landau damping. At distances greater than the 
length scale for this resonant damping we can ignore the last 
term on the left side in (5),  and we can describe the function 

supplemented with a boundary condition. This condition 
states that the solution of ( 8 ) becomes (6) at small values of 
z. Using the assumption (made above) that the diffusion 
coefficient D,, is small, we can replace the derivatives d /dk, 
on the right side of (8)  by their approximations found by 
differentiating the most rapidly varying factor: 

a ,,, 3ovTe2z ( I )  

N k  ( z , w ) .  +-Nk (z,w)=-i------  
d k ,  O u V g z  

Under the assumption that D,, is independent of the coor- 
dinate z in the homogeneous plasma, we then finally find 

( 1 )  ~ I ~ O O O W I  8 ~ : ~ )  w I 
Nk ( z ,  t)=-i 0 (vgz)- E - I (  - -, - w l  

2n0ugZ2 a k ,  V K Z  

The linear perturbation of the plasma density is 

In ( 10) we have ignored the contribution from the right side 
of Eq. (5)  to dispersion function (7 )  by virtue of our as- 
sumption that the plasmon diffusion coefficient in wave- 
number space is small. This condition is equivalent to the 
condition that the length scale for the resonant damping of 
the sound in the gas of Langmuir plasmons be much smaller 
than the length scale for diffusive damping. 

3. SPATIAL ECHO 

Working in second-order perturbation theory, we find 
the following expression for the function N i2', which is qua- 
dratic in the external perturbations [this expression is valid 
near the point z = 1, where we can ignore the right side of Eq. 
(111: 

The second term on the right side of ( 1 1 ) describes the non- 
linear perturbation of the plasmon spectral density at the 
frequency w,  = w, - w ,  caused by the sources (2) .  The 
evolution of this perturbation results in the excitation of a 
spatial-echo signal. This echo results from modulation of the 
linear perturbation of the spectral density (9),  from the first 
source, as a result of a linear perturbation of the density of 
the form ( lo) ,  caused by the second source. 

We describe the effect of the plasmon diffusion on the 
function ( 11) in basically the same way as in the preceding 
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section of this paper for the linear perturbation N:". There 
is the difference that in the present case the derivatives on the 
right side of Eq. ( 1 ) in the region z > I are given approxima- 
tely by the following expression, as can be seen from ( 1 1 ) : 

Ignoring the effect of plasmon diffusion on the dispersion 
properties of the plasma, we find 

0 ( 2 - 1 ) - 0 1 1  301~v~,'Dzzl~ 
x exp ( i  - 

"gz mozvgls 

The second term in the exponential factor in the last term in 
( 12) describes diffusive damping of the linear perturbation 
Nkl' in the region 0 <z  < I. The third term describes damp- 
ing of the nonlinear perturbation N ?' at z > 1. The step func- 
tions B(v,,) and B(z - I) reflect the circumstance that in 
this formulation of the problem an echo can arise only in the 
regionz > I, and the only plasmons which contribute to it are 
those whose z projections of the group velocity zre positive. 

Substituting ( 12) into (4) ,  and taking inverse Fourier 
transforms in space and time, we find the echo perturbation 
of the plasma density, which is the nonlinear response to 
external perturbation (2)  : 

where I ' = la, /a, . The integral in ( 13 ) is zero except near 
the point z = I ', because of the rapidly oscillating exponen- 
tial function in the integrand. When the function (12) is 
substituted into the expression for n'2', the upper limit on 
the integration overz of the exponential factor describing the 
diffusive damping of the echo in the region z > 1 is therefore 
replaced by the value z = 1 '. 

Since there is a preferred direction, the z direction, in 
this problem, it is convenient to switch to cylindrical coordi- 
nates (k,, k,, p) in wave-vector space, with the new 
volume element 

In the case of an isotropic Langmuir-turbulence spectrum 
N c ' ,  the integrand in ( 13) is independent of the azimuthal 
angle p, and only the function Ni0' depends on k,. In the 
new variables we have7 

dk,k, a ~ f "  / a k , = - k z ~ f '  (k . ) ,  
0 

and expression ( 13 ) becomes - 
pipzz,Zmom1m2ms31 

n(" (z, t ) = i 
8n;M (2n )' -'(+ ) 'J o $ N Y )  ( k z )  

The integration in ( 15) can be carried out with the help of 
Cauchy's theorem, if we go over to the complex k, plane. 
The integration contour is closed in the upper or lower half- 
plane, depending on the sign of the difference z - 1 '. The 
integral is dominated by the poles of the dispersion functions 
E, which are conveniently written in the form3 

Here y is the dimensionless damping rate of an ion acoustic 
wave in the gas of Langmuir plasmons, given by 

We finally find a result for the spatial-echo signal: 

Comparison of ( 17) with the results of Refs. 3 and 7, 
which were derived without the right side of Eq. ( 1 ), shows 
that, under our assumption that the plasmon diffusion coef- 
ficient in wave-number space is small, the influence of this 
coefficient on the spatial echo reduces to an exponential de- 
crease in the amplitude, with an argument proportional to 
D, and 1 3. 

4. SPACE-TIME ECHO 

In the study of the spatial echo in a weakly turbulent 
plasma above, we considered sources of external perturba- 
tions which were point sources spatially. Strictly speaking, 
such external perturbations would contradict the condition 
for the applicability of the adiabatic approximation-a con- 
dition which was used in the derivation of Eqs. ( 1 ) and (4).  
However, it was shown in Ref. 7 that in the case of a spatial 
echo whose signal is an integral over the entire wave-number 
spectrum the results for point sources differ in no fundamen- 
tal way from the results for spatially extended sources. The 
situation is different in the case of a space-time echo excited 
by external perturbations which are localized in both space 
and time. In this case it is a matter of fundamental impor- 
tance to take the finite spatial size of the sources into ac- 
count.' We accordingly consider the space-time echo excit- 
ed in a weakly turbulent plasma by external perturbations 
which are wave packets in space and time: 
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+ p, exp ( - io , t )  [O ( t -T )  -0 ( t - T - t )  I 

In time, according to ( 18 ) , the sources are packets of high- 
frequency waves with rectangular envelopes with a length 
7-4 T, which are excited at the times t = 0 and t = T. In 
space, the external perturbations are wave packets with 
spectral functions A,, ,  ( k ) ,  which are localized at the points 
z = 0 and z = I, respectively. We restrict the discussion be- 
low to packets of Lorentzian shape: 

The linear response of the spectral density of the plas- 
mons to the first of the perturbations in ( 18) is 

( 0, ~O,'VT,'D.~' 
x exp io,t-i - z - 

Us2 002ugps 

Solving Eqs. ( 1 ) and (4)  by the same method as was used for 
the spatial echo, but now for the external perturbations 
( 18) ,  we find the following result for the nonlinear perturba- 
tion of the plasma density, in place of ( 15): 

where v, and k,  are related by v, = k,  (3v2,/w0 ). 
The integration over k,  in (21 ) can be carried out with 

the help of the mean value theorem, after we have made use 
of the circumstance that the integrand contains the differ- 
ence between step functions with approximately equal argu- 
ments. As a result we find the following expression for the 
echo signal at the point of its spatial maximum, z = I ': 

n"' (l', t )  = i . ~ P ~ P Z ~ O ~ ~ T ~ ~ O ~ V O  

8 n o Z M ~ z ~ , z  (Zn)" .,N?)(%) A~(-2 )  

Here v, = I/T, and for the dispersion functions E we have 
used the representation ( 1 6 ) .  The quantity E ( t )  is the tem- 
poral envelope of the echo signal: 

We wish to stress that expression ( 2 2 )  is valid under the 
condition that no poles of the dispersion functions are pre- 
sent in the integration interval in ( 2  1 ); i.e., this expression is 
valid under the condition v, #c,  . The value of the velocity v, 
is determined by the distance and by the time interval 
between the two pulses of external perturbations which ex- 
cite the spatial-temporal echo. It can serve as an adjustable 
parameter. In the case v, ~ c ,  the amplitude of the echo sig- 
nal has a resonant peak, which stems from the poles of the 
dispersion functions and which is described by an expression 
like ( 1 7 ) .  

5. DETERMINATION OFTHE PLASMON DIFFUSION 
COEFFICIENT 

The results found above for the spatial and spatial-tem- 
poral echos as a function of the diffusion coefficient for 
Langmuir plasmons in wave-number space can be utilized 
for an experimental determination of this diffusion coeffi- 
cient. Specifically, it follows from ( 17) that one can use the 
slope of a log plot of the spatial-echo amplitude versus the 
cube of the distance I between the sources of the external 
perturbations to find D,, . That method is acceptable if the 
diffusion coefficient D,, is constant or a very weak function 
of v,, because we are dealing with D,, ( cSwd3v& ) after the 
integration over the poles of the dispersion functions in 
( 1 7 ) .  

By using the space-time echo effect, we can avoid this 
limitation. If no poles of the dispersion functions E or the 
spectral distributions A,, ,  of the external perturbations ap- 
pear in the integration interval in (21  ), we have the value 
D, (v ,oo/3u&) in expression ( 2 2 ) ,  where the velocity u, 
can be varied by experimentally varying I or T. Using ( 2 2 ) ,  
we can thus find the functional dependence D, ( v )  and also 
the value of c, from the characteristic resonant peak on the 
curve of the echo-signal amplitude versus u,. The unper- 
turbed plasmon spectral-density function N p '  in ( 2 2 )  can 
be determined either by means of the space-time echo effect 
or from the Fourier spectrum of the spatial envelope of the 
spatial-echo signal.'-' The distance I between the sources of 
the external perturbations must be chosen small enough that 
the attenuation of the echo due to the right side of Eq. ( 1 ) 
can be regarded as negligibly small. 

There is also the possibility of determining the func- 
tional dependence D,, ( k ,  ) by means of the spatial echo. 
This possibility is based on a method proposed by Dryakhlu- 
shin and Romanov18 for reconstructing the electron distri- 
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bution function of a quiescent plasma from the spatial spec- 
trum of an echo signal. For this purpose, one needs to know 
the experimental profile of the echo signal as a function of 
the coordinate z. We use this information to find the Fourier 
spectrum of the echo, n"' (x ) .  On the other hand, if we ig- 
nore the time dependence we find from ( 15) 

where D, = D,, (0, w , , /3vkx) .  The plasmon diffusion coef- 
ficient in wave-number space can be calculated by taking the 
logarithm of ( 2 4 ) ,  into which we substitute the experimental 
values of n ' 2 ' ( x )  and N p ' ,  the known plasma parameter 
values, and the expressions for the dispersion functions. 

These echo effects can evidently occur if the damping of 
external perturbations in a gas of Langmuir plasmons, with a 
linear damping rate y, = KC, y, is faster than the nonlinear 
damping of plasma waves which destroys the memory in the 
system and which occurs at a rate y N L .  We take the latter 
rate to be the reciprocal of the time scale of the decay interac- 
tion of plasma waves and ion acoustic waves:14 

n k ,  o,W 
~ Y N L  = --- 4 Ak nomu,/ ' 

where Ak is the initial width of the spectrum of plasma 
waves. In the case at hand, of a decay interaction of a diffu- 
sion type, this width is far larger than k,. In addition, W is 
the energy of the plasma waves, given by 

Since the condition for the applicability of this theory 
( yL > yNL ) must hold for all resonant plasmons, i.e., for all 
k>k,, we assume 

iVk=Nk'O' ( k , )  (k /k , ) -" ,  s>3. 

The condition y ,  > yNL then becomes 

On the other hand, the gas of Languir pIasmons remains 
homogeneous as long as the wave energy satisfies the condi- 
tion 

Since these interactions are of a diffusive nature, the effect of 
the decay processes can be represented as a diffusion of 
Langmuir plasmons in wave-number space. 

The results of this analysis show that the echo effect 
which arises in a weakly turbulent plasma because the plas- 
mon spectral density retains a memory of external perturba- 
tions is exceedingly sensitive to diffusion of plasmons, which 
leads to a loss of the phase memory of the system. It follows 
that it is possible to utilize the echo effect to determine the 
plasmon diffusion coefficient in wave-number space. Two 
possible measurement techniques have been discussed. In 
one of them, which is based on the spatial-echo effect, the 
velocity-dependent diffusion coefficient D, ( k ,  ) can be de- 
termined from the Fourier spectrum of the spatial envelope 
of the echo signal with the help of expression ( 2 4 ) .  In the 
other technique, the spatial-temporal echo, of a pulsed na- 
ture, would be utilized. Since the echo signal is generated in 
this case by only those plasmons whose group-velocity pro- 
jections v,, fall in a narrow interval 1r /T2  near a given value 
v,, one can determine D,, ( k ,  ) by simply measuring the u, 
dependence of the amplitude of the echo signal at a certain 
fixed point, e.g., at the point at which this signal is at a maxi- 
mum, z = 1 '. Recall that expression ( 2 2 )  for the spatial-tem- 
poral echo is not valid at vo zc , ,  in which case its amplitude 
is determined by the poles of the dispersion functions. A plot 
of the echo amplitude versus v, near the point v, = c, will 
have a resonant peak. One can work from the position of this 
peak to determine the nonisothermal-sound velocity. The 
width of this peak will be determined by the dimensionless 
damping rate y  for an ion acoustic wave in the gas of Lang- 
muir plasmons. This damping rate is related to the plasmon 
spectral density function. 
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