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The question of radiation emission by relativistic particles in an external field is studied in the 
quasiclassical approximation. In describing this process special attention is devoted to the 
problem ofboundary conditions. It is shown that the cross section for emission taking into 
account recoil is determined by the classical trajectories, of which there can be several for 
prescribed boundary conditions, of particles in the external field. The possibility of the existence 
of several trajectories leads to a unique radiation interference pattern which is analogous to the 
interference pattern arising in the case of rainbow scattering of particles. 

1. INTRODUCTION that in finding the effective radiation we are actually dealing 
with not one particle, but a flux of particles). 

Radiation emission from a charged relativistic particle Thus in studying emission of radiation we must take 
(electron or positron) has been studied on the basis of classi- into account the possibility that the particle moves along 
cal and quantum electrodynamics in a large number of pa- several trajectories. This can be done if the quasiclassical 
pers (see Refs. 1-9 and the work cited there). In classical approximation in quantum mechanics is employed. The par- 
electrodynamics the trajectory of a particle was prescribed ticle in this case, natnrally, is assumed to be fast. The quasi- 
through the initial values of the coordinates and the momen- classical approximation implies that if several classical tra- 
tum, and the intensity of the radiation was determined. In jectories exist corresponding to one and the same boundary 
the quantum theory the momentum of a particle is usually conditions, radiation interference is possible. The present 
prescribed before and after emission of radiation. But, in paper is devoted to this problem. 
principle, this can also be done in the classical formulation of We first note that the radiation process for relativistic 
the problem. In this case, however, we can obtain not one but particles has been studied in the quasiclassical approxima- 
several classical trajectories corresponding to the same val- tion in a number of papers (see Ref. 9 and the work cited 
ues of the initial and final momenta. Such a situation occurs, there), but the formulation of the initial and boundary con- 
for example, in the process of rainbow scattering of parti- ditions for the trajectory was not actually studied there. For 
~ l e s . ' ~ ~ ' '  In this case two trajectories correspond to the same this reason, how the particle trajectory in an external field 
boundary conditions and the scattering cross section in the should be determined and the procedure that should be used 
classical theory is assumed to be equal to the sum of the for averaging the emission probability over these trajectories 
scattering cross sections corresponding to these two trajec- remain unclear. Naturally, in this case there is no possibility 
tories. From the viewpoint of quantum mechanics, however, of the existence of several trajectories with the same bound- 
this result is not always correct, since the scattering ampli- ary conditions and therefore there is no interference of radi- 
tudes associated with both trajectories can interfere. This ation accompanying the motion of a particle simultaneously 
becomes obvious when the scattering problem is studied in along several trajectories. 
the quasiclassical approximation. Reference 12 is also devoted to the application of the 

Indeed, in this approximation we employ both the quasiclassical approximation to the problem of radiation 
quantum-mechanical description and the concept of a classi- emission. In Ref. 12 the role of higher-order approximations 
cal trajectory. As a result the scattering cross section is de- in the Planck constant f i  in radiation emission at low fre- 
termined by the squared modulus of the sum of the quantum quencies was studied using coherent-trajectory states. In 
scattering amplitudes, each of which is determined by the this work, a narrow wave packet of the radiating particle was 
corresponding classical trajectory. 10811 taken as the initial state. This eliminated the possibility of 

An analogous situation can also occur in the study of the existence of several trajectories corresponding to one and 
the process of radiation emission from a relativistic particle the same boundary conditions. 
in an external field in the case if the final state of the radiating Our work in Refs. 13 and 14 is also devoted to this prob- 
particle is fixed. We can obtain, in this case, several trajec- lem. In these papers, however, the effect of recoil accompa- 
tories corresponding to the same boundary conditions (the nying emission is neglected. 
momenta of the particle before and after emission are pre- In the present paper we study the effect of recoil and 
scribed). In the classical description we can find the intensi- give a more rigorous analysis of the problem. We study in 
ty of the radiation corresponding to each trajectory, and if detail the case of the eikonal approximation and clarify how 
the effective radiation is studied (radiation from a flux of the laws of conservation of energy and momentum in the 
particles), then these intensities will add. In so doing, how- radiation process arise in the problem. 
ever, as in the case of rainbow scattering, the most important Our approach is conceptually close to the method used 
property of the radiation-the possibility of interference of by FocklS in studying the relation between the unitary trans- 
radiation from different trajectories-is lost. We cannot de- formations in quantum mechanics and canonical transfor- 
scribe this phenomenon on the basis of classical electrody- mations in classical mechanics. We relate the emission cross 
namics, since it presupposes the possibility that the particle section to the classical trajectories of a particle in an external 
moves simultaneously along two trajectories (we emphasize field which satisfy prescribed boundary conditions. We spe- 
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cially investigate the case when the emission cross section 
factors and the elastic scattering cross section is separated 
out; in addition, the latter takes into account the possibility 
of the existence of rainbow scattering. It is shown that the 
interference pattern accompanying emission is related with 
the interference pattern arising in the case of elastic rainbow 
scattering. 

2. EMISSION PROBABILITY IN THE QUASICLASSICAL 
APPROXIMATION 

The probability of the emission of a photon by a charged 
particle in an external field in a transition of the particle from 
the initial state with momentum pi into the final state with 
momentum pf is determined in quantum electrodynamics by 
the following f ~ r m u l a : ~ , ~  

where w and k are the frequency and wave vector of the 
emitted photon and Mf; is the matrix element of the transi- 
tion, 

Here e is the polarization vector of the photon, P is the gen- 
eralized momentum operator, and pi and pf are the wave 
functions of the particle in the external field under study. 

For simplicity we shall neglect the spin of the particle, 
since the essence of the problem is not related to the exis- 
tence of spin. 

In the quasiclassical approximation, which we shall em- 
ploy, the wave function of the particle in an external field is 
related, as is well known,16~" to the classical action of the 
particle in this field S(r,p,t) by 

where p is the momentum of the particle before or after scat- 
tering (see Sec. 3) and Id 'S/&a p/ is the determinant of the 
matrix (a 'S /art & ) . 

We shall show below (Secs. 3 and 4) that in the quasi- 
classical approximation the emission probability (2.1 ) can 
be expressed with the help of the following formula in terms 
of the scattering matrix S,,, of the particle in an external 
field: 

where = ci - h is the energy of the particle after emis- 
sion, 

r ( t )  = r(t,x,pl) is the trajectory of the particle in an external 
field and is determined by the final value of the momentum 
p' = pf + fik and the coordinates x. 

If in the final state only the direction of motion of the 
charged particle and the photon momentum fik are fixed, 
then the formula (2.4) must be integrated over the momen- 
tum (p, =pf + W c ) ,  (the z-axis is oriented along the mo- 
mentum pi 1. We do not present here the result of such inte- 

gration (see Sec. 3 ), and we confine our attention only to the 
result pertaining to the eikonal approximation. In this ap- 
proximation, which is valid for fast particles, the scattering 
matrix with accuracy up to terms proportional t op -  ' has 
the form 

where p is the impact parameter, 

and U( p,z) is the potential of the external field (it is assumed 
that the vector potential of the external field is equal to 
zero). Starting from the formula (2.4) we can arrive at the 
following expression for the differential cross section for 
emission (the relation between the differential cross section 
and the emission probability is given in Ref. 3) : 

where q = pi - p, q, are the components of q that are or- 
thogonal to pi, and 

is the emission amplitude. 
In the quasiclassical approximation Ix0I ) fi, so that the 

integral over p in Eq. (2.8) can be calculated by the station- 
ary-phase method. The stationary point p* is determined 
from the condition 

There can be several stationary points, so that in the 
general case for Ix0l ) f i  the emission cross section (2.8 ) has 
the form 

e2 d3k e, 
do,, = ----- - 

4n%o E ,  n 

where F,, = qp; + xO(p,*) is the phase of scattering, corre- 
sponding to the stationary point p:, and the summation over 
n is performed over different stationary points. 

If there is only one stationary point, then we arrive at 
the formula 

We can see that in the quasiclassical approximation the 
emission cross section is determined by the classical trajec- 
tory of the particle in the external field neglecting recoil. The 
trajectory is determined, in this case, by the boundary condi- 
tions, i.e., the values of the particle momenta before and after 
interaction. With given boundary conditions there can be 
more than one trajectory. This situation is manifested in the 
fact that the matrix element of the emission probability con- 
tains summation over different trajectories with the same 
boundary conditions. The existence of different trajectories 
is manifested in turn in the fact that the scattering phase 
qp +xo(p )  has several stationary points [they are deter- 
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mined from the condition (2.9)]. The summation in Eq. 
(2.10) is performed over these stationary points. 

If in the expression for the emission amplitude (2.8) the 
function @ is replaced by unity, then we obtain the elastic 
scattering amplitude in the eikonal approximation 

In the quasiclassical approximation this amplitude is ex- 
pressed in terms of the same classical trajectories which were 
discussed above. The summation over different trajectories, 
i.e., different stationary points of the phase qp +x0(p ) ,  
leads to the well-known phenomenon of rainbow scatter- 
ing. 'Osl ' This phenomenon consists of the fact that when a 
particle is elastically scattered in a field U(r) the scattering 
amplitudes corresponding to different stationary points of 
the integral (2.12) interfere. 

On transferring from elastic scattering to radiation 
emission, i.e., when @ #  1, there arises a more complicated 
interference pattern than in the case of rainbow scattering. 
As before the emission amplitudes interfere analogously to 
the scattering amplitudes in the case of elastic rainbcw scat- 
tering. But, there also arises interference between electro- 
magnetic waves emitted by a particle moving along classical 
trajectories. This interference is caused both by emission 
from the particle from different sections of one and the same 
trajectory and by emission from different sections of differ- 
ent trajectories. 

We note that the formulas obtained take into account 
recoil accompanying emission ( E ~  # E ~ ) .  

In the formulas presented above the final state of the 
emitting particle is fixed. If the formula (2.7) is integrated 
over the transferred momentum q, then we arrive at the for- 
mula 

This differs from the corresponding formula of Ref. 9 in 
that it takes into account the boundary conditions that deter- 
mine the trajectory of the particle and it contains a proce- 
dure for averaging over them (the presence of the integral 
over p ) . 

3. RELATION BETWEEN THE EMISSION MATRIX ELEMENT 
AND THE CLASSICAL TRAJECTORIES 

Our problem now is to derive the formula (2.4) for the 
probability of emission from a fast charged particle in an 
external field in the quasiclassical approximation. For this it 
is first necessary to calculate the emission matrix element 
with quasiclassical wave functions. These wave functions, 
however, have different asymptotic forms. The wave func- 
tion pi (r,t) corresponding to the initial state is a plane wave 
with momentum pi in the limit t- - 03 and the wave func- 
tion pf (r,t) corresponding to the final state of the emitting 
particle is a plane wave with momentum pf in the limit 
t- + co. Similarly to the wave functions, the actions of the 
particle Si and Sf, appearing in the quasiclassical wave func- 
tions of the initial and final states, also have different asymp- 
totic behavior in the limits t-. cu . As a result when the 
quasiclassical wave functions are substituted directly into 
the matrix element it will contain an exponential that oscil- 

lates rapidly as fi+ 0: 

It becomes very difficult to calculate exactly the matrix ele- 
ment in this case, so that there arises the question of how to 
avoid this difficulty. We shall show that this can be achieved 
if the wave function of the initial state is expanded in the 
wave functions which have the asymptotic form of the wave 
function of the final state and after this expansion is substi- 
tuted into the matrix element only the terms corresponding 
to momenta close to the momentum of the final state remain. 

This expansion has the form 

where p, (r,t) is the wave function of the particle in the ex- 
ternal field, and in the limit t- + cu it has the asymptotic 
form 

andSpp, is the scattering matrix of the particle in the external 
field. In a stationary field U(7)  the scattering matrix has the 
form'' 

Substituting the expansion (3.1) into Eq. (2.2) gives 
the following expression for the matrix element in the quasi- 
classical approximation 

wherev(r) = (VS, - A)/ (& U). [Weemployed here the 
fact that as fi-0 the operator P acts only on the exponential 
part of the wave function pi (r,t) .] 

We note that the integration over p in this expression is 
performed under the condition that E, = E ~ .  This is because 
the scattering matrix S is proportional to the 8-function 
S ( E ~  - E~ ) expressing the law of conservation of energy in 
the scattering process. 

The matrix element (3.3) contains the factor 

and in addition S, and Sf have the same asymptotic form in 
the limit t+ + co . It is clear that if p differs strongly from pf, 
then this factor will oscillate rapidly, so that such values of p 
will make a small contribution to the matrix element. 

There now arises the question of how to determine the 
region of values of p making the main contribution to the 
matrix element. The situation is simplest in the case when 
recoil can be neglected, i.e., when E~ ZE,, = E ~ .  In this case 
the values of p close to pf will make the main contribution to 
the matrix element, so that the quantity (S, - Sf) can be 
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expanded in a series in powers (p - pf ). Retaining in the 
expansion the first nonvanishing term we obtain 

where 

The quantity x is, according to Hamiltonian theo- 
ry,~7.~9 the final point of the particle trajectory in the exter- 

nal field. The relation (3.6) determines the trajectory of the 
particle r ( t )  = r (t,x,pf ) . 

Since p is close to pf, in the preexponential factor 
the determinant la 'S/&a p( can be assumed to be equal to 
16' 'Sf /&a pf I. Using the relation 

we arrive at the following expression for the matrix element: 

The procedure employed here is analogous to the meth- 
od used by Fock15 to establish the relation between unitary 
transformations in quantum mechanics and canonical trans- 
formations in classical mechanics. For this reason, our 
method for calculating the matrix element of the emission 
probability can be called the method of canonical transfor- 
mations in the quantum theory of radiation. 

Introducing the function determined by the formula 
(2.5) and setting E~ = cf in (neglecting recoil), we write 
the radiation matrix element in the form 

The integral over x appearing here is a S-function S (p - pf ), 
expressing the law of conservation of momentum in the 
emission process neglecting recoil, so that 

Next, transferring the action of the operator 
( - M/&),  appearing in a, from the &function to the S- 
matrix with the help of integration by parts, we obtain 

Since the operator is determined by the trajectory of the 
particle in the external field, this formula relates the emis- 
sion matrix element to the trajectory and the scattering ma- 
trix S. This is the basic formula of the theory being devel- 
oped. 

We shall now determine the action of the operator on 
the scattering matrix (3.2). Since the operator iM/b'p acts 
only on the functions exp(i&r/fi) and exp(ipr/fi) in the 
expression for S, we obtain 

where the z' axis is oriented along p and p' denotes two co- 
ordinates orthogonal to p. 

In what follows we shall be interested in the emission 
probability integrated over pfz , where the z-axis is oriented 
along the direction of the initial momentum. It is deter- 
mined, neglecting recoil, by the following formula 

where q is the component of the momentum pf that is or- 
thogonal to pi and pzpf .  

We now transform the emission probability so that it 
contains the S-function expressing the law of conservation of 
energy. To this end, performing in the emission probability 
(3.13) the integration by parts overpfz , we transfer the oper- 
ator iM /apfz appearing in a from the factor Sppi to the func- 
tion (@*S:p, ). Using the relation (3.12), we obtain finally 

where 

We note that if the function in the integrand for A ,  is 
replaced by unity, then we obtain the amplitude of elastic 
scattering of a particle in an external field. For a# 1 the 
quantity A,  can be called the emission amplitude. 

The general formula (3.15) for the emission amplitude, 
obtained in the quasiclassical approximation, greatly simpli- 
fies in the eikonal approximation. In this case the formula 
( 3.15 ) transforms into the previously derived formula 
(2.8). 

4. TAKING RECOIL INTO ACCOUNT 

The formula (3.14) for tiit emission probability ne- 
glects recoil. In order to take recoil into account we shall 
turn to the general formula (3.3) for the matrix element. 
The action Sf appearing in this formula refers to an energy 
E ~ ,  which is not equal to the initial energy of the particle 
( E ~  = E~ - h). In calculating the matrix element neglect- 
ing recoil, we took into account the fact that values of p close 
to pf make the main contribution to the integral over p. The 
value of the energy E, = E~ was equal to the value of the final 
energy of the particle E ~ .  When recoil is taken into account 
this relation is not satisfied, but the relation E~ = E~ - h is 
satisfied. For this reason, it makes no sense to expand direct- 
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ly the difference of the actions Sp - Sf in powers of p - pf, 
and obviously the action Sf must be transformed so that the 
energy E' = of the transformed action Sp, would 
be equal to E, . In this case we shall also expand the action Sp 
in powers of p - p', but now p' is not the final momentum of 
the particle pf but rather the momentum pf + fik. 

Thus we transform from the action Sf to the action S 
according to the formula 

S,=S+fi(ot-kr). (4.1) 

Then S satisfies the equation 

( a , S + U + f i ~ ) ~ = ( V S - A - h k ) ~ + m ~  (4.2) 

and in the limit t+  + w has the asymptotic form 

S + - : ( E ~ + ~ O )  t+(pj+fik) r .  (4.3) 

We shall seek the solution of Eq. (4.2) in the form 

S=S,- ( r )  - e P t + x ( t ) ,  (4.4) 

where the function Sp. ( r )  satisfies the equation 

( E , ~ - U ) ~ = ( V S , ~ - A ) ~ + ~ ~  (4.5) 

and the asymptotic condition, in the limit t- + cu , 
Spr-+(pt+tik) r .  

Then we arrive at the following equation for the func- 
tionx(t1: 

Dropping the term proportional to (E' - fim) - ' in Eq. 
(4.6), we arrive at the equation 

whose solution has the form 

e' x ( t )  =li --- [ o t - k r  ( t ) ] .  
e'-?Lo 

Thus the emission matrix element will now contain the 
exponential factor 

We shall expand this expression in a series in powers of 
p - p': 

after which we shall proceed in the same manner as in the 
derivation of the formula (3.14) for the emission probability 
neglecting recoil. But first we must transform in addition the 
preexponential factor of the quasiclassical wave function 

The function g in the quasiclassical approximation sat- 
isfies the equation 

Using the relations (4.1) and (4.4) we arrive at the follow- 

ing equation for the function g: 

We shall seek the solution of the last equation in the 
form 

where f is determined by the equation 

and c is a normalization factor. 
Then we obtain the following equation for u: 

(e , . -u)a ,u+(  V S , - - A )  vu 
=ti ~ a r g + k V g + d t  ( a t ~ g )  I .  (4.12) 

It follows from Eq. (4.11 ) that 

1 azspp f = - 1 - 1 .  e p , - u  ar  ap' 

Using this relation it is easy to verify that the function u 
is close to unity: 

u= 1+0 ( 8 3 .  

Thus the function g with accuracy up to terms of the 
order of E -  is determined by the relation 

This relation differs from the corresponding preexpon- 
ential factor of the wave function pf neglecting recoil only in 
the fact that in Eq. (4.14) the momentum p' = pf + fik ap- 
pears instead of the final momentum of the particle pf. From 
the normalization condition for pf ( r )  we find that 
C = E1/2Ef. 

We note that with the same accuracy 

Taking these facts into account and proceeding just as 
in the derivation of the formula for the emission probability 
neglecting recoil we arrive at the formula (2.4) for the emis- 
sion probability taking recoil into account. 

As is well known, in spinor electrodynamics the process 
of pair production by a photon in a fixed external field is 
closely related to the process of emission from an electron in 
this field taking recoil into account. Namely, having an 
expression for the emission probability, it is easy to obtain an 
expression for the probability of pair production by a photon 
in an external field, if the following substitutions are made in 
the matrix element of the emission process: 

where E - ,p - and E + ,p + are the energies and momenta of 
the electron and positron of the produced pair. In addition, 
in the emission probability the phase volume d 'kd 3pf must 
be replaced by d 'p + d 'p - . An analogous situation also oc- 
curs in scalar electrodynamics. For this reason, if the emis- 
sion probability for a spinless particle neglecting the recoil is 
known, then it is easy to obtain the probability of production 
of a pair of spinless particles in a prescribed external field by 
a photon with momentum fik and energy fim: 
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2ne' d3p+ d 3 p -  d W  - - ----- ------ 
t i  - 1 M* 1 '. 

fio ( 2 5 ~ 5 ) ~  (2ntl)" 

where M ,  is the matrix element of the pair production pro- 
cess. 

In the quasiclassical approximation this general formu- 
la assumes the form 

where S , ,  is the scattering matrix S of a positron scattered 
by an external field and 

Here r + ( t )  = r + ( t ,x ,p  + is the trajectory of the positron 
in the external field and is determined by the final momen- 
tum p + = fik - p - and the coordinates x.  

In the eikonal approximation the formula (4.18 ) leads 
to the following expression for the pair-production cross sec- 
tion 

where q, = ( p  + + p .- ), are the components of the mo- 
mentum transferred to the pair which are orthogonal to the 
momentum of the photon fik and 

is the pair-production amplitude. 
As is the case of the emission process, the integration 

over p in Eq. ( 4 . 21 )  can be performed by the stationary- 
phase method. If there are several points of stationary phase, 
then 

eL d3p+ E+ 
do, = I- d Z y ,  I @; (p..) 1% 1 "LXp ($ F.+)  I ' , 4n fio E- 8'4 

where F z  = qpz  + x + ( p z )  is the scattering phase of the 
positron, corresponding to the stationary point p*. 

This formula, as also the corresponding formula ( 2 . 10 )  
for the emission cross section, describes the interference ef- 
fect in pair production. 

We can see that the cross section for pair production by 
a photon in an external field is determined by the classical 
trajectory of the positron. This cross section can also be ex- 
pressed in terms of the classical trajectory of the electron. 
We call attention to the fact that in the formulas derived the 
trajectory of the positron or electron corresponds to the 
problem of scattering of a particle in an external field. In 
addition, it is implicitly assumed that no bound states are 
formed during scattering. 

5. EMISSION PROBABILITY IN THE CASE OF RAINBOW 
SCATTERING 

If the emission process occurs in a region whose length 
is much greater than the longitudinal dimensions of the 
range of the external forces acting on the particle, then, as is 

well known,3s4 the cross section for elastic scattering of the 
particle can be removed from the emission cross section as a 
separate factor. This is also true in the quasiclassical approx- 
imation. In this case, the elastic-scattering cross section also 
takes into account the rainbow scattering effect. 

Indeed, we now turn to the general formula ( 2 . 10 )  de- 
termining the emission cross section in the quasiclassical ap- 
proximation. In the expression for the integral Q appearing 
in this formula we perform the integration over time by 
parts: 

rn 

The time interval At in which the particle is exposed to the 
external field makes the main contribution to this integral. If 
in this time interval the exponent in the exponential in Eq. 
( 5 . 1 )  is small compared with unity, i.e., if 

then the exponential in Eq. ( 5.1 ) can be replaced by unity 
and the function assumes the form 

where v and v' are the velocity of the particle before and after 
scattering. 

Substituting this expression for into Eq. ( 2 . 9 )  we ob- 
tain the following expression for the emission cross section 

where duel is the differential cross section for elastic scatter- 
ing 

and dw is a factor that determines the emission probability 
when the velocity of the particle changes discontinuously 
from v to v', 

Thus we can see that if the condition ( 5 . 2 )  is satisfied, 
then the scattering cross section factors. As regards the elas- 
tic scattering entering here, it in principle can take into ac- 
count also the rainbow scattering of the particle. This hap- 
pens if the deflection function of the particle in the external 
field is a two-valued function of the impact parameter.10911 
As a result, rainbow scattering of the particle arises in the 
emission process. In other words, in the emission there arises 
an interference pattern owing to the existence of two classi- 
cal trajectories with the same boundary conditions. This in- 
terference in the case of a long radiation formation length 
studied here is determined completely by the interference 
effect in elastic scattering. 

The situation changes significantly if the radiation for- 
mation length is comparable to the longitudinal range of the 
external force acting on the particle. The interference pat- 
tern arising in this case in emission does not reduce only to 
the interference effect in elastic scattering; it is also deter- 
mined by the interference effect in the radiation itself. The 
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latter effect is caused both by interference for emission from 
different trajectories and by interference for emission from 
different sections of the same trajectory. 

The interference pattern can become much more com- 
plicated, if there are more than two trajectories correspond- 
ing to the same boundary conditions. This situation can oc- 
cur, for example, when relativistic particles pass through a 
crystal (see, in this connection, Refs. 13 and 20). This ques- 
tion, of course, requires a special investigation, since in this 
case, when a particle passes through a crystal, bound states, 
which are neglected in the present work, can arise. 
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