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Certain features of the diagram technique for a polarized 2 0  system of interacting particles in a 
magnetic field are analyzed. It is assumed that the interaction does not cause electron transitions 
from one Landau level to another. In a given order of perturbation theory, topologically different 
diagrams fall into groups within which all diagrams are equal. A principle governing the 
combining of equivalent diagrams is formulated. The number of such diagrams is found. A class 
of diagrams equivalent to an electron-hole interaction is identified. The summation of these 
diagrams leads to a singularity in the scattering amplitude, which is in turn responsible for an 
instability with respect to the excitation of charge density waves. 

1. INTRODUCTION 

A two-dimensional ( 2 0 )  system in a magnetic field B 
perpendicular to the plane of motion of the particles has an 
exceedingly important property: The energy of the particles 
depends only on the index of the Landau level and is degen- 
erate in terms of the position of the center of the orbit (in the 
Landau gauge). This degeneracy leads to major difficulties 
in efforts to study the interaction between particles in such a 
system. The first attempt to determine the nature of the in- 
teraction of electrons in a 2 0  system in a strong magnetic 
field was undertaken in Ref. 1. The problem attracted a flur- 
ry of interest after the discovery of the fractional quantum 
Hall effect and the very important paper by Laughlin which 
f~ l lowed.~  Among the extremely long list of papers which 
have been devoted to this problem, the studies by Lerner and 
Lozovik stand out (see Ref. 3 and the bibliography there). 
Those authors were apparently the first to use quantum 
field-theory methods to solve the problem. In the model 
which they used, they succeeded to a large extent in over- 
coming the difficulties stemming from the degeneracy of the 
seed spectrum of particles for the case of a neutral 2 0  sys- 
tem. 

In the present paper we continue the study of the gen- 
eral properties of a diagram technique for a 2 0  system in a 
strong magnetic field which was begun by one of the present 
authors in Ref. 4. The model we will be using is based on the 
widely accepted condition that the Coulomb energy of the 
particles, E,  = e2/xl, [ x  is the dielectric constant, and 
I, = (&/eB) 'I2 is the magnetic length] is much smaller 
than the distance between Landau levels; i.e., the interaction 
conserves the number of particles in a given Landau level. 
The system is assumed to be polarized, so we will be omitting 
the spin indices. 

The analysis below shows that in a given order of per- 
turbation theory all the diagrams fall into certain groups of 
topologically different diagrams. Within each group, the 
diagrams are equal. We formulate a general principle for 
determining a class of equivalent diagrams and for finding 
their number. We show that a summation of diagrams which 
are equivalent to the incorporation of polarization loops 
(which in turn corresponds to a summation of "zero-sound" 
loops) leads to a singularity in the scattering amplitude. This 
singularity is associated with an instability with respect to 
the formation of charge density waves.5 

2. INTERACTION HAMlLTONlAN AND ITS PROPERTIES 

In the Landau gauge with the vector potential A = (0, 
Bx, O), the wave function of a particle in a magnetic field B is 

$,, (p) =L-'i3e'kucpn(x-k), (1 

where distances are expressed in units of I,, L is the size of 
the system, p, (x)  is a normalized simple-harmonic-oscilla- 
tor wave function, and n is the index of the Landau level. 
Using ( 1 ), we can write the interaction Hamiltonian of the 
system as6 

where the operator 2, (2: ) annihilates (creates) a particle 
with a momentum k. Here V(q) is the Fourier component of 
the interaction potential, 

w , , ( x )  =e -514Ln( x /2 ) ,  

and L, (x)  is the Laguerre polynomial. 
The Hamiltonian (2)  allows a very important transfor- 

mation. We first write the obvious identity 

where 

is a new effective potential. This identity makes it possible to 
identify the dependence on the momen_tum q explicitly. Sub- 
stituting the last expression in (3)  for V, (q)  into the Hamil- 
tonian (2 ) ,  we can carry out the integration over the variable 
q, (which is not included among the indices of the particle 
creation and annihilation operators). After some very sim- 
ple transformations and changes in notation, our initial 
Hamiltonian (2  ) becomes 
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The transformations which have been carried out have 
changed the potential and have interchanged the indices on 
the particle annihilation operators. Taking half the sum of 
expressions (2 )  and ( 5 ) ,  we find that the effective interac- 
tion potential is determined by the potential 

Using the definition (4), we see that the following condition 
holds: 

The physical meaning of the potential e,, (p) is extremely 
~ i m p l e . ~  Examining a two-particle problem,' we easily see 
that the only energy levels which enter the potential (6)  are 
those which correspond to an antisymmetric function of two 
electrons. 

The effective Hamiltonian is therefore 

and relation (7)  holds. As a result of that relation, we can 
interchange the indices on the annihilation operators in (8 )  
without interchanging the operators themselves; in the pro- 
cess we of course change the sign of the expression. A subse- 
quent interchange of the annihilation operators restores the 
sign of the Hamiltonian. We turn now to some consequences 
of this symmetry of the Hamiltonian (8) .  

3. PROPERTIES OF DIAGRAMS FOR A TWO-PARTICLE 
GREEN'S FUNCTION 

In this section of the paper we make use of tlie well- 
known diagram-technique methods from the theory of inter- 
acting particles.' We wish to stress that the temperature 
technique must be used because the system is degenerate in 
the absence of an interaction. 

The most important quantities are the one-particle and 
two-particle Green's functions 

The angle brackets denote a thermodynamic average, and T, 
indicates the "chronological" ordering. 

The most interesting results which follow from the 
properties of Hamiltonian (8)  can be seen through a study of 
the diagrams beginning in second-order perturbation theory 
for the function ( 10). Corresponding diagrams are shown in 
Fig. 1. We first use the example of diagram b in Fig. 1 to 
explain the method for constructing the corresponding ana- 
lytic expression. For this diagram the corresponding analyt- 
ic expression is 

FIG. 1. Diagrams of second-order perturbation theory for two-particle 
Green's function ( 10). In addition to the diagrams shown here, there are 
five more like diagrams a-e, which differ from the ones shown by an 
interchange of the momentap;, p; and a change in sign. All the momenta 
are specified for diagram b. 

expression for an arbitrary diagram is as follows. With each 
line we associate a one-particle Green's function with the 
initial and final momenta (in the direction of the arrow). 
With each dashed line we associate a potential fin (q) and a 
factor exp [iq, (k ,  - k, - qy ) 1. The momentum k, corre- 
sponds to the base of a dashed line (which specifies the direc- 
tion), and k, corresponds to a vertex. From conservation of 
they component of the momentum we have the conditions 
k ; = k, - qy , k ; = k, + qy . A summation must be carried 
out over all the internal variables. 

As we established above, the transformation (7)  alters 
the sign of the potential and interchanges the corresponding 
momenta ( k  ; w k  ) for a given (9). For the case of dia- 
gram b in Fig. l ,  this transformation can be carried out either 
in terms of each variable q, q' independently or in terms of 
the two variables simultaneously. A transformation of 
expression ( 11) in terms of the variable q leads to a new 
sequence of indices in the Green's function. The correspond- 
ing part of expression ( 1 1 ) becomes 

This arrangement of Green's functions, however, corre- 
sponds to diagram d in Fig. 1; taking the signs into account, 
we can say that diagrams b and d are equal. Carrying out a 
transformation in terms of the momentum q' alone, and then 
carrying out the corresponding transformation in terms of q 
and q' simultaneously, we find that diagrams b, c, d, and e' 
(see the Fig. 1 caption) are equal. 

It is completely clear that for an arbitrary diagram of 
mth order the total number of all possible transformations is 

The general scheme for constructing the corresponding where the C are the binomial coefficients. We cannot in 
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FIG. 2. Skeletal diagrams obtained from Fig. 1 by reducing the dashed 
lines to a single point. 

general assert that all these transformations lead to topologi- 
cally different diagrams. In particular, the simple example of 
diagram a shows that its topological structure does not 
change at all in the course of any of the transformations 
(however, some of the transformations do change the posi- 
tions of the momenta p; and p; ) . 

To explain the result obtained in second-order pertur- 
bation theory, we redraw the diagrams in Fig. 1 in a slightly 
different way. We introduce "skeletal" diagrams, reducing 
the corresponding vertex (containing the given dashed line) 
to a point. As a result we find the skeletal diagrams in Fig. 2. 
There is a very important point to note here: All the dia- 
grams which go into each other under transformation (7 ) ,  
i.e., which are equivalent, correspond to the same skeletal 
diagram. If we now wish to go back from diagram b in Fig. 2 
to find the corresponding diagrams in Fig. 1, the rule is ob- 
vious: The number of ways in which we can do this is 4 (2", 
where m is the order of the perturbation theory ), since there 
are two ways to insert a dashed line in each vertex. A very 
important difference between diagrams a and b is that the 
loop in diagram b is a "zero-sound" loop, by which we mean 
that the electron lines in it are oppositely directed. 

Figure 3 shows the skeletal diagrams of third-order per- 
turbation theory. Corresponding to diagram a there is only 
one diagram, which is analogous to diagram a in Fig. 1. Four 
topologically different diagrams correspond to each of dia- 
grams b and c. Diagrams d-f are equivalent to 8 (2", m = 3) 
different diagrams. Diagrams g and h contain a "Cooper" 
loop, by which we mean a loop in which the electron lines are 
parallel. Each is equivalent to 4 (2" - I ,  m = 3) different 
diagrams. As an example, we show in Fig. 4A diagrams 
which are equal to each other and equivalent to skeletal dia- 
gram d in Fig. 3, while in Fig. 4B we show diagrams which 
are equivalent to the skeletal diagram g in Fig. 3. Here it is 
particularly obvious that diagrams which are completely dif- 
ferent in topological structure are equal to each other. In 
particular, diagrams which contain polarization loops and 
those which do not are equivalent. 

We can now put the rule for finding the number of 
equivalent diagrams in a given order of perturbation theory 
in its final form. First, we have to find all the different skel- 
etal diagrams. Diagrams which belong to different skeletal 

FIG. 3. Skeletal diagrams in third-order perturbation theory. Diagrams 
which differ from those shown by an interchange of the final momenta p i ,  
p; are not shown. 

FIG. 4. A-Diagrams which are equivalent to skeletal diagram d in Fig. 3; 
B-diagrams which are equivalent to diagram g in Fig. 3. 
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diagrams are not equivalent. For a given skeletal diagram 
the number of equivalent diagrams is 2m-k, where m is the 
order of the perturbation theory, and k is the number of 
Cooper loops. Thi3 rule applies to diagrams which are not 
reducible in terms of initial and final momenta, i.e., dia- 
grams which cannot be cut along two parallel lines and 
thereby broken up into two parts, which contain only incom- 
ing momenta (p, ,p2 ) and only outgoing momenta (pi ,pi ). 
Diagrams a-c in Fig. 3 are examples of reducible diagrams of 
this type. The number of reducible equivalent diagrams is 
determined by the number of nontrivial irreducible inser- 
tions. 

4. ANALYSIS OF THE DIAGRAMS 

As we know, diagrams of the type in Fig. 3 are "par- 
quet" diagrarn~.~ Beginning in fourth-order perturbation 
theory, we find diagrams which are structurally more com- 
plex. However, there is also definite interest in analyzing 
simple loops, one of which is a Cooper loop which describes 
the scattering of two electrons against the background of the 
other particles. A loop of this sort is shown in Fig. 2a. Ac- 
cording to the well-known rules,' the contribution of this 
diagram is proportional to the sum 

where 

w = aT(2n + 11, 6 is the energy of the particle, reckoned 
from the chemical potential, and w,,, are the frequencies of 
incoming lines. Elementary calculations put expression 
( 13) in the final form 

where f({) = [ l  + exp(l /T)  I ' is a Fermi distribution 
function. On the other hand, f = v = 2al i n ,  is the dimen- 
sionless degree of filling of the Landau level (n, is the density 
of electrons). It follows that for v = f the scattering of elec- 
trons by one another can be significantly suppressed. An- 
other interesting fact is that with 11 = + there is no singular- 
ity of the form ( 14) in terms of the sum frequency w, + w, 
and { even for the very simple "envelope" diagram (see Ref. 
8 for definitions of parquet diagrams and more-complex dia- 
grams). 

We turn now to diagram b in Fig. 2. We recall that it 
describes some very different processes which correspond to 
diagrams b-e in Fig. 1. The latter diagrams correspond to 
both scattering of an electron by a hole and renormalization 
of the interaction potential for the polarization loop. The 
contribution of this loop is proportional to the sum 

This result is a consequence of the degeneracy of the spec- 
trum of particles. A summation of all such loops leads to the 

An explicit expression for the denominator of the expression 
in (16) [see (6) ]  is 

where q = (q,,p, - p ;  1. 
As the temperature is lowered, expression (17) may 

vanish; beginning at a certain temperature, it may vanish 
over an entire interval of the momentum q. This is a very 
important result. It is directly related to the instability with 
respect to the excitation of charge density waves, which was 
observed in Ref. 5 but which was found there on the basis of 
entirely different considerations. We regard this result as 
unexpected. The reason is that the series which was summed 
is equivalent to the incorporation of polarization loops, 
which usually leads to screening of the potential. Instead of 
screening in this case we find instability against excitation of 
charge density waves. In other words, expression ( 16) rep- 
resents the amplitude for the scattering of an electron by a 
hole. The contributions of the Cooper loops in (14) and the 
electron-hole interaction in ( 15) are in general comparable 
in magnitude (each is inversely proportional to the tempera- 
ture). The two processes must be taken into account simul- 
taneously in all orders of perturbation theory and in the 
more complex diagrams. However, the suppression of the 
scattering of particles by each other in the case v = + is still 
evidence for the excitation of charge density waves at this 
density. Finding a definitive answer to this question will re- 
quire a more detailed analysis of the perturbation-theory se- 
ries. Such an analysis goes beyond the scope of the present 
paper. 

Finally, there is another, extremely important circum- 
stance to be noted. A simultaneous diagonalization of the 
Cooper and zero-sound loops (Fig. 2) can be carried out by 
going over to exciton  variable^.^ The eigenfunctions are 

6(pl ' - -p t -k , )exp [ ' l 2 i k z ( p l ' + p ~ ) 1 ,  

6  (p2-p2'-k,)  exp  [ t l z i k z ( p 2 f  P Z ' )  I , 

where the momentum k = (k,,k, ) corresponds to the mo- 
mentum of the exciton (in the case at hand, it corresponds to 
a charge density wave). 

' Yu. A. Bychkov, S. V. Iordanskii, and G. M. ~ l i a shber~ ,  Pis'ma Zh. 
Eksp. Teor. Fiz. 33, 152 (1981) [JETP Lett. 33, 143 ( 1981 ) 1. 
'R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983). 
'I. V. Lerner and Yu. E. Lozovik, Zh. Eksp. Teor. Fiz. 82, 1188 (1982) 

[Sov. Phys. JETP 55,691 (1982) 1. 
4 Y ~ .  A. Bychkov, Fiz. Tverd. Tela (Leningrad) 31(7),  56 ( 1989) [Sov. 

Phys. Solid State 31(7),  1130 (1989)l. 
5H. Fukuyama, P. M. Platzman, and P. W. Anderson, Phys. Rev. B 19, 

5211 (1979). 
'Yu. A. Bychkov and E. I. Rashba, Zh. Eksp. Teor. Fiz. 85, 1826 (1983) 

[Sov. Phys. JETP 58, 1062 ( 1983) 1 .  
'A. A. Abrikosov, L. P. Gor'kov, and 1. E. Dzyaloshinskii, Quantum 
Field-Theoretical Methods in Statistical Physics, Fizmatgiz, Moscow, 
1962 (Pergamon, New York, 1965). 

%. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase 
Transitions, Nauka, Moscow, 1982, Chap. X (a previous edition of this 
book has been published in English translation by Pergamon, Oxford, 
1979). 

following renormalized interaction potential: - Translated by D. Parsons 
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