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In the method of second quantization, by means of a standard decoupling procedure, a closed 
system of equations is derived that describes the time evolution of the nonequilibrium electron 
density and polarization (macroscopic dipole moment) that are induced in a semiconductor by a 
resonance optical pulse in direct interband transitions, with allowance for the interaction with the 
phonon subsystem. For ultrashort light pulses, when relaxation processes can be neglected, a 
coherent solution equivalent to the solution of the Bloch equations in two-level systems is 
obtained. An analytical method is developed for taking into account the influence of electron- 
phonon scattering processes on the coherent regime of interaction of a semiconductor with an 
intense optical field. It has been found that in this case the characteristic decay time of a coherent 
state of the electron subsystem depends in an essential way on the intensity of the external optical 
radiation, and this, in the final analysis, can lead to suppression of relaxation processes in a 
semiconductor by a strong external field. 

1. INTRODUCTION 

The appearance in recent years of powerful sources of 
ultrashort optical pulses (with lengths down to a few femto- 
seconds) makes it possible to place experimental studies in 
the area of the interaction of light with matter on a qualita- 
tively new plane. Such short-duration and powerful in- 
fluences rapidly bring the electron subsystem of a solid into a 
strongly nonequilibrium state, and subsequent probing of 
the relaxation of the electron-hole plasma by a series of less 
powerful ultrashort optical pulses gives direct information 
on the kinetic processes of decay or thermalization. Experi- 
mental investigation of coherent interactions of radiation 
with semiconductors and insulators, in which the relaxation 
times due to electron-electron and electron-phonon scatter- 
ing lie in the sub-picosecond range, is now becoming entirely 
realistic. In support of this we may point to a number of 
recent experiments: 1 ) the observation of a quantum-size 
optical Stark effect in GaAs  structure^;'-^ 2) spectral hole 
burning in semicond~ctors ;~~ 3 )  transition oscillations in 
the transmission spectrum, which have been investigated in 
thin samples of CdSe and G~As.~-'O 

The well known coherent optical phenomenon of pho- 
ton echo, '' which had been investigated previously in gases 
and metal vapors and at impurities in crystals, can be rea- 
lized in a bulk intrinsic semiconductor. This was first pre- 
dicted theoretically as long ago as 1973 (Ref. 12), and has 
recently been demonstrated experimentally with the use of 
femtosecond optical pulses that have induced direct inter- 
band transitions in a GaAs film.I3 

These experimental results prove convincingly that it is 
possible to generate a coherent electron state in semiconduc- 
tors and insulators on a time scale shorter than or compara- 
ble to the characteristic times of the electron-electron and 
electron-phonon interactions. After the end of the action of 
the pulse on the medium, the nonequilibrium state of the 
electrons and holes that is induced by the field is rapidly 
thermalized, relaxing to a Fermi-Dirac distribution with its 
own Fermi quasilevels. For ultrashort pulses the coherence- 
destruction time (phase-memory time) is assumed in this 

case to be independent of the intensity of the previously ac- 
ting external field. However, if the duration of the optical 
radiation acting on the semiconductor becomes comparable 
to the characteristic times of the relaxation processes, the 
optical field can have a direct influence on the collisions of 
electrons (holes) with each other and with phonons. 

The dependence of the time of destruction of a coherent 
state created in a semiconductor by direct optical transitions 
of electrons from the valence band to the conduction band on 
the intensity of a strong external field has been investigated 
theoretically in a number of previous  paper^.'"'^ In these 
papers and in the present article, by a strong field we mean 
optical electromagnetic radiation for which the inequality 
R r >  1 is satisfied, where !I is the Rabi frequency 
(!I= p8'/fi, where 8 is the amplitude of the wave and p is 
the matrix element of the dipole-moment operator for the 
direct interband transition) and r is the characteristic relax- 
ation time of the nonequilibrium current carriers. When this 
condition is fulfilled, the interband transitions induced by 
the field occur more rapidly than an individual act of elec- 
tron collision or holes with each other or with phonons, and 
therefore we should expect the relaxation processes to have 
an appreciable dependence on the intensity of the external 
radiation. 

Usually, either the electric-field intensity is assumed to 
be a monochromatic wave with constant amplitude, or the 
time-dependent amplitude of the field satisfies the slowness 
condition at,,, & 1, where t,,, is the pulse length. Because of 
this, it is possible to introduce a quasiparticle representation 
and to obtain for the quasiparticles a corresponding renor- 
malized system of equations.'' Subsequently, this system 
was analyzed numerically with allowance for electron- 
phonon interaction processes, from the results of which it 
followed that the coherence time increased with the intensity 
of the external field.15 On the basis of this, the anomalous 
transparency that had been observed when a powerful pico- 
second light pulse passed through a semiconductor in exper- 
iments performed by Dneprovskii and c o - w ~ r k e r s ' ~ * ~ ~  was 
explained as a coherence effect of the self-induced transpar- 
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ency type. The phenomenon of the suppression of relaxation 
processes in a strong field was attributed to the presence in 
the quasiparticle-energy spectrum of a gap of magnitude 
proportional to the value of a. For example, this ought to 
affect the electron-phonon scattering when the amplitude of 
the external field reaches values at which the inequality 
Sl> a,, is satisfied, where w,, is the characteristic fre- 
quency of the phonons in the semicond~ctor.'~ However, it 
then remains unclear why the strong-field condition in the 
form f l ~  > 1 should be fulfilled. We note that in the analysis 
offered below this requirement arises in a natural manner. 

The cause of the renewal of interest in the above-de- 
scribed problem of the suppression of relaxation processes in 
a semiconductor by a strong field has been the recent experi- 
ments of Belenov and Vasil'ev on the generation of a power- 
ful picosecond light pulse by a semiconductor in 
which the condition 1 was certainly achieved. The 
authors proposed that the effect observed-the breaking up 
of the generated pulse into subpulses with an increase in the 
intensity of the radiation-is a consequence of the well 
known coherent generation12 that develops over times 
shorter than the characteristic relaxation times. This implies 
that relaxation processes in a semiconductor should be sup- 
pressed by a strong field, as only in this case is a coherent 
regime of generation possible in the picosecond range. Our 
paper is devoted to an analysis of the physical mechanisms 
responsible for such coherent interactions. 

The aim of the present paper is to develop a theory of the 
interaction of a resonance optical pulse in a semiconductor 
for direct interband transitions with allowance for electron- 
phonon scattering processes. The main problem consists in 
extracting in explicit form the dependence of the character- 
istic time of the loss of coherence on the intensity of the 
external field. We consider the case of an optical pulse of 
rectangular shape, for which the strong-field condition is 
fulfilled and the pulse length exceeds the characteristic re- 
laxation time: t,,, > T. 

We shall show that the solution describing the coherent 
interaction of the field with the semiconductor is a superpo- 
sition of two harmonics-the "zeroth" and the "oscillator" 
harmonic (the frequency of the oscillations is determined by 
the value of the Rabi frequency and by the magnitude of the 
detuning from resonance). This result is analogous to the 
well known coherent solution for the two-level model of an 
atom situated in a constant external field. The difference is 
that the resonance spectrum undergoes specific inhomogen- 
eous broadening, determined by the dispersion law in the 
bands. Allowance for the electron-phonon interaction leads 
to decay of the coherent state induced by the external field. It 
is found that in this case the amplitudes of the coherent har- 
monics become time-dependent, and for the oscillator com- 
ponent of the solution the amplitude of the field appears 
explicitly in the characteristic time (T  a 1flI2). Therefore, as 
the intensity of the external field increases the process of the 
loss of coherence may be suppressed. 

In Sec. 2 we give the Hamiltonian, and, by the method 
of second quantization, give a direct derivation of the equa- 
tions of motion, for current carriers in a semiconductor that 
are interacting with a resonance external field and with 
phonons (in contrast to Ref. 15, in which a renormalized 
system of equations for the quasiparticles is used). In Sec. 3 
we obtain a coherent solution, when relaxation processes can 

be neglected (the range of ultrashort times), and also de- 
velop an analytical method for taking into account the in- 
fluence of electron-phonon scattering on the coherent re- 
gime of interaction of a semiconductor with a strong exter- 
nal field. 

2. THE HAMlLTONlAN AND EQUATIONS OF MOTION 

The Hamiltonian describing the interaction of electrons 
in a semiconductor with an optical field and with phonons 
has the form 

where 

Ho= x E. (k)ak+ ak+Eh (k) b-r'b-r, (23) 
k 

Here, Ec (k)  and E, (k)  are the dispersion laws for the elec- 
trons and holes; a,.? (a, ) and b ? , (b - , ) are the creation 
(annihilation) operators for nonequilibrium electrons and 
holes with wave vector k; p, is the matrix element of the 
dipole-moment operator for interband transitions; g(q)  is 
the electron-phonon coupling constant; c: (c ,  ) is the crea- 
tion (annihilation) operator for a phonon with wave vector 
q, and w, is the phonon frequency. 

Let the intensity of the electric field of the optical wave 
be given by the expression 

where w, is the frequency, 2? ( t )  is the slowly varying ampli- 
tude, and e, is the unit polarization vector. We consider the 
case of a linearly polarized field, and therefore we replace 
yk  .E(t) by y; [ g  (t)  exp( - io, + C.C.], where p",s the 
projection of the vector y, on to the direction of e,. In addi- 
tion, henceforth we assume the external field (3)  to be fixed, 
i.e., we neglect its changes resulting from the response of the 
medium. 

The macroscopic characteristics of the system can be 
determined starting from the following quantum mechani- 
cal expectation values: 

n, (k) =(ak+ak), 
nh(k) =(b-k'b-k), 

p * ( k )  exp ( h o t )  = (ar+b-r+), 
N ( q )  =<c,+c,>. 

The first two expressions in (4)  are the numbers of nonequi- 
librium electrons and holes in the k state; the third describes 
the field-induced transitions from the valence band to the 
conduction band and makes it possible to calculate the 
macroscopic polarization induced in the medium by the ex- 
ternal radiation; N(q) is the number of phonons with wave 
vector q. 

The time evolution of these quantum mechanical expec- 
tation values follows from the general equation of motion 
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a 
ih- (AY=([AH]), a t 

where A is an arbitrary operator. Substituting the operators 
indicated above into (5) and using the Hamiltonian ( 1 ), we 
obtain 

etc. Here, we have noted that q#O and that all operator 
expectation values that contain c,,cq or c,f ,c,f vanish. In 
this approximation, it follows from the equations of motion 
(5)  that 

a 
- fh (k, k-q, q) a-a-'[Eh (k) +haq-Eh (k-q) 1 fh  (k, k-q, q) at a (6) 

(k) =-iA (k)p' (k) +iQ8[ne (k) +nh (k) - l ]  

a - N (q) =-ih-' 
at g(q) [f; (k-q, k, -q)-fe(k, k-q, q) 

k 

-iA-'g(--q)N(q) [P' (k) -P' (k-q) I 

+ia*fe (k, k-q, q) -iQ*fh (k, k-q, q) , 

d - f+ (k-q, k, q) at 

where for the three-operator expectation values appearing 
on the right-hand sides of Eqs. (6) we use the following 
notation: 

+ 
fe (k, k-9, q) =(ak+ak-qcq>, fh(k, k-q, q) =<b-~b--k+~c~) ,  

f- (k, k-q, q) =<ak+b?k+,cq)exp (-ioot), e-ih-l [haO-hop-Eh (k) -EI (k-q)] f+ (k-q, k, q) 

-ih-'g(q)N(q) [PO@-q) -pW(k) I 

+iQafe' (k, k-q, q) -iQbfh' (k, k-q, q) 

f+ (k-q, k, q)=<a~qb-k+cq+)exp (-hot) ,  

and have also introduced the detuning from resonance, given 
by A(k) = w, - 6- ' [E, (k)  + Eh (k)  1, and the Rabi fre- 
quency = pE; Z9 ( t ) / f i ,  for which we neglect the depen- 
dence on the wave vector k. 

Equations for the expectation values appearing in Eqs. 
(6) can be obtained analogously. In this case, four-operator 
expectation values arise, the time evolution of which is de- 
scribed, in turn, by the general equation of motion (5). How- 
ever, this also leads to an unclosed system of equations, since 
in the calculation of the commutation relations with the 
term in the Hamiltonian corresponding to the electron- 
phonon interaction expectation values of higher order ap- 
pear in every case. The important point is that this contribu- 
tion (which causes the system to be nonclosed) is 
proportional to the electron-phonon coupling constant g(q) 
that appears in the expression (2c). Thus, if collision pro- 
cesses can be neglected [g ( q ) = 0 ], the system for the expec- 
tation values (4) becomes closed. Therefore, assuming hen- 
ceforth that the electron-phonon interaction is weak, we 
replace the four-operator expectation values that arise by a 
product of the two-operator expectation values (4) intro- 
duced previously, and thus obtain, in second order, a closed 
system of equations. As will be seen below, these terms do 
indeed give a contribution proportional to lg(q) l 2  to the 
final system. According to the standard decoupling proce- 
dure described, the following relations should be fulfilled: 

In deriving (8)  we have assumed that the condition 
N( q) ) 1 is sufficient to satisfy an inequality of the form 

and analogous relations with the functions nh (k)  andp* (k)  
in place of n, (k). This requirement will be considered in 
more detail below. On the basis of ( 9 ) ,  in the right-hand 
sides of Eqs. (8) we have discarded free terms that do not 
include the factor N(q) . In addition, henceforth we consider 
an optical pulse of rectangular shape, for which we have 
a c t )  = for O~t(t,,, and R( t )  = 0 otherwise. Then, after 
the introduction of the notation 

the system (6) can be brought to the form 

a 
- n. (k)=-2o(k) + ~ L F ! "  (k, L - ~ ,  q) -~?(k+q, k, q)l , d t  

'I 

a 
-nh(k)=-2o(k)- 2[FL2' (k, k-q, q) -~:":(k+~, k, q)], d  t 

q 

(lob) 
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-Fi2' (k+q, k, q) +FJ2' (k, k+q, q) 1, ( 1 0 ~ )  

a 
-o(k)=-A(k)P(k)+ lQ12[n,(k)+nh(k)-I] 
at  

-F:" (k-q, k, q)-FI'' (k+q, k, q) +F:" (k, k+q, q) 1, 

(10d) 
a 

-iV(q)=- 2[F:" (k, k-q, q)+F:" (k, k-q,q)l a t k 

( 10e) 

with scattering amplitudes satisfying the equations 

a - Fj" =A, (k, q)Fj2' -F?' -F?) , 
a t  

X [ n. (k) -n, (k-q) ] +F? -F:', 

d - F:') = A ~  (k, q) F~(') SF:) +F:), 
at 

d - F;') =-Ah (k, q) F:') +k2 I g (q) I 'N(q) 
at 

where, for brevity, we have also used 

A.(k, q) =h-'[Ee(k-q)+fia,-Ee(k)l, 
Ah(k, q) =a-'[Eh(k) f fi~~,-Eh(k-q)], 

A- (k, q) =A-'[fia0+fioq-E, (k) -Eh (k-q) 1, 
A+(k, q) =A-'[A~~O-hoq-Eh(k)-E,(k-q)]. 

Equations ( 11 ) correspond to F-amplitudes whose argu- 
ments include the values of the wave vectors k and k - q. 
Analogous equations for the F-amplitudes that depend on 
the k + q and k states are obtained by replacing k by k + qin 
the arguments of all functions. 

The resulting system of equations makes it possible to 

investigate the evolution of the nonequilibrium population 
and polarization induced by an external field in direct inter- 
band transitions in a semiconductor. Unlike the renor- 
malized system for the quasiparticles that was used for these 
purposes in Ref. 15, Eqs. ( 10) and ( 1 1 ) are written directly 
for the nonequilibrium electrons and holes. We note that the 
approach based on the introduction of quasiparticles, when 
the problem of the interaction with an external field is solved 
rigorously by means of a unitary transformation, is equiva- 
lent to the analysis performed here. As will be shown below, 
this is because the present system of equations is solved ex- 
actly with neglect of electron-phonon scattering processes, 
which can be taken into account subsequently as a perturba- 
tion. However, a treatment in the framework of the usual 
electron-hole representation is, in our view, more convenient 
for physical analysis, and, as will be seen below, makes it 
possible, with the aid of a number of simplifying assump- 
tions, to obtain analytical results. 

3. INFLUENCE OF THE ELECTRON-PHONON INTERACTION 
ON THE COHERENT REGIME 

If the times under consideration are shorter than the 
characteristic times of the electron-phonon interaction, in 
Eqs. ( 10) we can neglect the contribution of the scattering 
amplitudes and obtain a solution in the absence of collision 
processes. For this we introduce the population difference 
n(k,t) = n,(k,t) + n, (k,t) - 1, and also assume that the 
dispersion law in the bands is quadratic, with m: z m t  = m 
(m: and mX are the effective masses of an electron and a 
hole). Then for the system ( 10a)-( lOd), after the terms de- 
scribing scattering have been discarded, the following solu- 
tion holds: 

n (k, t )  =n (k, t )  = 
1 

{ l+ [ (k2--ko2) la2] ') 
[l-cos(~kt)]-l, 

(12a) 

la l ~(k , t )=o (k , t )  = -- 
1 

sin (ert), 
2 {l+[  (k2-ko2)/az]2)'" 

where 

and k, is determined from the condition that the detuning 
from resonance is equal to zero: 

A (k) =Ako2/m-hk2/m. 

The result obtained is fully analogous to the well known 
coherent solution for the two-level model of an atom situated 
in a constant external field. The difference is that the reson- 
ance spectrum undergoes a specific inhomogeneous broa- 
dening, determined by the dispersion law in the bands. A 
solution of the type ( 12) was given in Ref. 12 with allowance 
for the mechanism responsible for the Franz-Keldysh effect. 
Henceforth we assume that the condition k,  > a  is fulfilled. 
We then define the characteristic width of the coherent spec- 
trum in ( 12) as Ak = k,,, - kmi,, where k,,, and kmin are 
the positive roots of the equation 
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whence it follows that 

Thus, if k, )a holds, then we have A k ~ a / k , ,  i.e., k, $Ak. 
But for k, -a (but with k, > a ) ,  then, as can be seen from 
( 14), Ak and k, are also of the same order. 

We now turn to investigate the question of the influence 
of electron-phonon scattering processes on the coherent re- 
gime described by the solution ( 12). For this we consider the 
initial system ( lo) ,  ( 1 1 ). In the right-hand sides of Eqs. 
( 11) we have omitted the nonlinear terms with no factor 
N(q), since it is assumed that N(q) ) 1. For the final lineari- 
zation we neglect also the change of the number of phonons, 
i.e., we assume that N(q) is constant in time (the presence of 
a so-called heat reservoir). This implies that Eq. ( 10e) is 
eliminated from the system, and in the remaining equations 
it is necessary to substitute the equilibrium distribution: 

where T is the temperature of the phonons in energy units. 
As a result of the approximations made, the system be- 

comes linear, and, generally speaking, can be solved by 
. means of a Fourier transformation. However, because of the 
presence in ( 10a)-( 10d) of sums over q it does not appear to 
be possible to solve the algebraic system of equations that 
follows for the Fourier amplitudes. Therefore, we first sim- 
plify the right-hand sides in ( 1 I ) ,  by imposing restrictions 
on the electron-phonon interaction process. 

For this we consider the elementary scattering event, 
which satisfies the energy-conservation law (ECL): 
A, (k,q) = 0. The latter can be represented in the form 

2mc 
(k-q)2 + - q=k2, 

f i  
(16) 

where q = lql, c is the velocity of sound in the semiconduc- 
tor, and it is assumed also that only acoustic phonons take 
part in the scattering: w (q)  zcq. It follows from ( 16) that if 
the condition k)mc/fi is fulfilled, the magnitude k of the 
electron wave vector changes little in each elementary scat- 
tering event. We then replace ( 16) by the approximate rela- 
tion 

or, taking the next order into account, 
mc 

Ik-qI=k----q, 
fik (17b) 

Suppose now that, in analogy with the case of the coher- 
ent solution, the unknown functions n(k,t), P(k,t),  and 
a(k,t) depend on the magnitude k of the wave vector. Then 
the differences of the form R (k,t) - R ( 1 k - ql ,t) appearing 
in the right-hand sides of Eqs. ( 1 1 ), where R is any of the 
functions n (k,t), P(k,t), and c ~ (  k,t), can be replaced by the 
derivatives of these functions: aR(k,t)/ak. Thus, taking 
(17b) into account, in first order we obtain 

Here it has also been assumed that the function R(k,t) 

changes little even in the case of scattering in which the wave 
vector q is the maximum possible allowed by the ECL 
(q,,, -k). This implies that the condition Ak> mc/fi 
should be fulfilled, where Ak is the characteristic scale of the 
variation of the function R (k,t) and can be estimated with 
the aid of ( 14). Further analysis shows that under the in- 
fluence of the electron-phonon interaction the value of Ak 
increases in comparison with that in the coherent case, and 
therefore this requirement is not violated. We note that when 
A, (k,q) = 0 holds analogous results follow, and in the 
right-hand sides of ( l7b) and (18) q should be replaced by 
- 4. 

These approximations enable us to simplify substantial- 
ly the system ( 10a)-( lOd), ( 11 ). It should be considered in 
two different cases: A, (k,q) = 0 and A, (k,q) = 0. In the 
analogous system for the F-amplitudes in which k + q ap- 
pears in place of k in the arguments, the corresponding ECL 
have the form A, (k  + q,q) = 0 and A, (k  + q,q) = 0. Fi- 
nally, after differentiation of Eqs. ( 10a) and ( 10d) with re- 
spect to the time, we can eliminate the F-amplitudes from the 
system and obtain 

d 
+2AP(k ,  t )  +6 - u ( k ,  t )  =0, 

d t  

a a 
+4x - P ( k ,  t )  -2A -a ( k ,  t )  =0, 

dk  at  

In the derivation we have used the notation 

mc q 
x= h-' lg(q)  12N(q)  [8qqi-6m1, (20) 

9 

where 

q,=2k cos fi--2mc/h, q2=-2k cos Of 2mclA. 

We have denoted the angle between the vectors k and q by 9. 
The expressions for q, and 9, are consequences of the corre- 
sponding ECL: A, (k,q) = 0 and A, (k  + q,q) = 0. Hence- 
forth, for definiteness, we assume x < 0 (the final result does 
not depend on the sign of x) .  We have also used the fact that, 
if m: =:mX, the ECL A, (k  + q,q) = 0 after the replacement 
of q by - q is equivalent to the ECL A, (k,q) = 0, and, 
analogously, the ECL A, (k,q) = 0 after the replacement of 
q by - q coincides with the ECL A, ( k  + q,q) = 0. In addi- 
tion, in A (k)  = A (k)  for brevity we have omitted the depen- 
dence on k, and, in accordance with ( 17a), in the derivation 
of the system ( 19) we have neglected the difference between 
A(k) and A(lk - ql). 

In the resulting homogeneous linear system (19) the 
coefficients A and x are functions of k. Suppose that this 
dependence is slow in comparison with the dependence on k 
for the functions sought. This implies that the inequalities 
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should be fulfilled, where the functions R (k,A,x,t) are the 
exact solution of the system ( 19), if the quantities A and x do 
not depend on k. The conditions (21) and (22) impose re- 
strictions on the region of applicability of the final solution, 
and can be satisfied for sufficiently small values of x and t. 
This is in accord with the assumption that the perturbation 
of the coherent regime by the electron-phonon interaction is 
weak. We note that the inequalities (21) and (22) are also 
violated in the limit k-0. With the restrictions indicated 
above, henceforth we shall assume the dependence on k in 
A(k) and x (k )  to be parametric and solve the system (19) 
with the aid of a Fourier transformation: 

R (k, t) = J do  [ j dr exp (-iot+ikr)R+ (r, o )  

+ j dr exp (-iot-ikr)R- (r, o )  , I 
0 

where 
m m 

R+ (r, 0 )  = (2n)-' J dt' Jdk' exp (iwtt-ik'r)~ (kt, t l ) ,  (24a) 

R- (r, 0) = (2n)-' 5 at1 dkf eap (iwt'+iklr)R(k', t'). (24b) 
-m 0 

After substitution of (23) into (19) we obtain two lin- 
ear homogeneous algebraic systems for the Fourier ampli- 
tudesn, , P +  , a +  andn- , P -  , a -  [in (23),forbrevity, 
they are denoted by R + (r,w) and R - (r,w) 1. In the case of 
the " + " amplitudes [the Fourier amplitudes of outgoing 
spherical waves exp( - iwt + ikr) 1, from the condition for 
the existence of a nontrivial solution of the given system it 
follows that 

06+ [-2 (A2+319)2)-5/26] okf  [ek2 (A2+21912) 
+6 (A2+21 9 1 ') 1-26'] ~ ~ + ( - ' / , 6 ~ +  ek26'-2~26) =0, (25) 

where S = 4ixr and E,  = E ~ .  The analogous equation in the 
case of the " - " amplitudes [the Fourier amplitudes of in- 
coming spherical waves exp( - iwt - ikr) ] are obtained 
from (25) by replacing r by - r]  . 

Equation (25) determines the frequency as a function 
of r: w2 = w2(r). If we neglect the scattering (x  = 0),  from 
(25) with S = 0 we can obtain the frequencies correspond- 
ing to the coherent solution: w2 = 0 and w2 = E: . In order to 
take the electron-phonon interaction into account we as- 
sume that 6 is small ( (61 < &: ) and seek the roots of Eq. (25) 
in the form 

where la ( r )  1, I/?(r) I 4.5:. Keeping only terms linear in the 
small corrections, we can obtain 

Here, the subscript + indicates that this value of the fre- 
quency corresponds to the " + " amplitudes (24a), while 
the superscripts indicate to which frequency of the coherent 
solution the given correction applies [(O)+w=O, 
( k ) -w = -f E, 1. The analogous expressions correspond- 
ing to the " - " amplitudes (24b) can be obtained from (26) 
by replacing r by - r. 

Henceforth, when substituting the values obtained for 
w(r) into (23), we shall keep only those eigenfrequencies 
that lead to integrals that are convergent in r. We recall that 
the solutions (26) have been found in the approximation 
ISI/Jf212 4 1. On the other hand, since S = 4ixr, for r- w 

this condition is violated, i.e., the extra terms cease to be 
small. However, the integral (23) also contains the Fourier 
amplitude R ( r , ~ ) ,  which is bounded in r and decays away as 
r- w . In order to estimate the characteristic region in which 
this function is nonzero, we shall make use of the coherent 
solution with the quantity Ak specified by (14). Then the 
characteristic width of the function R (r,w) can be defined as 
Ar- Ak - '. Thus, the condition that makes it possible to 
assume that the influence of the electron-phonon interaction 
on the coherent regime is small has the form 

In this approximation the expressions obtained for w(r) can 
be used over the entire range of the integration, since for 
large values of r, for which the true form of w ( r )  is unknown, 
the integrand function R (r,w ) vanishes and does not make a 
contribution to the integral. Below it will be shown that the 
restriction (27) imposed on the magnitude of the electron- 
phonon interaction is the strong-field condition. 

In order to obtain the solution of the system ( 19) in the 
form ( 23 ) , the Fourier amplitudes corresponding to the ei- 
genfrequencies w ( r )  should be found. For this it is possible 
to make use of the known coherent solution ( 12), to which 
the desired expression (23) should go over as x - 0 (absence 
of scattering). This implies that it is necessary to substitute 
our eigenfrequencies (26) into the Fourier integral (23) and 
equate the latter to the corresponding functions of the coher- 
ent solution in the limit x +O. From the relations obtained, 
expressions for the Fourier amplitudes (24) follow unique- 
ly. Then, finally, we find the solution of the system ( 19) in 
the form 

+R(-) (k, t) exp ( i ~ ~ t ) .  (28) 

where 

R(" (k, t) = j dk'~!: (kT)n-' dr exp[- (bar)'] 
0 0 

OD m 

B(*) (k, t)= +ldklR:i) (kr)n-' dr exp(-br)cos[ (k-kr)r], 
0 0 

in which all the functions in the coherent solution ( 12) are 
represented in the form 
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Rcoh (k, t) =R;:i (k) +RE:) (k)exp (-iekt) +~;,h)'(k) exp (ie,t) . 
(30) 

In addition, we have introduced the notation 

Calculating the integrals over r, we can rewrite the expres- 
sions (29) in the form 

where x, = (bo/2k) "' and x + = x - = k /b.  
The result (28) has a general form similar to the coher- 

ent solution (30). However, now the amplitudes of the zer- 
oth harmonic and oscillator harmonics depend on the time, 
this being determined by the presence of the corresponding 
parameters x,, x + , and x - in the integrals (3 1 ). This de- 
pendence is characterized by the strength of the electron- 
phonon interaction, which is specified by the magnitude of 
the coefficient x. If x -0 (x, -0, x + , x - + co ), then 
R(k,t) +\R,,, (k,t), i.e., we obtain the coherent solution in 
the form ( 12). It is important to note that in the case of the 
oscillator components of the solution (28) the influence of 
the electron-phonon interaction on the coherent regime de- 
pends in an essential way on the intensity of the external 
field, since x + , x - a I f l  I. This implies that the change of 
the coherent solution is smaller at a given time, the greater 
the Rabi frequency. 

In order to obtain the characteristic time responsible for 
this effect, we substitute the coherent population difference 
( 12a) into the expressions (3 1 ) for R ' * ' and find the form 
of the functions R ' * ) (k,t) = n' * ' (k,?). If the condition 
b < k, is fulfilled, the lower limit in the expression (3 1 ) for 
R ( * ) can be replaced by - co . After this, the integral can 
be evaluated analytically, and the result for n' * '(k,t) has 
the form 

n(*' (k, t) = - I 

2 (14-2qbla)' 

where 

q= {'/,[(k,/a)'+ (I+ (ko/a)4)'h])"a. 

We consider ( 32) in two cases: ko %a and ko -a (but 
k, > a) .  In the first approximation we have 

where 

From comparison of (33) with the expression for 
n62 ' (k) ,  which, according to ( 12a), has the form 

it follows that T is the characteristic time over which, under 
the influence of the electron-phonon interaction, the broa- 
dening of the coherent distribution (35) occurs, and, in ad- 
dition, the magnitude of its maximum decreases. 

If the condition k, -a is fulfilled, (32) can be repre- 
sented in the form 

where now the characteristic time T is defined by the expres- 
sion 

and 

It can be seen that in this case T coincides in order of magni- 
tude with the previously obtained value (34). Now, how- 
ever, under the influence of the electron-phonon interaction, 
the maximum of the distribution (36) is also shifted to a 
lower energy. We emphasize that the time characterizing the 
decay of the oscillator components of the coherent solution 
depends on the amplitude of the external field (T a Ifl12). 
This means that as the intensity of the field increases the 
relaxation processes may turn out to be suppressed to a con- 
siderable extent. 

Now, using the expression (37) for 7, we show that our 
previously obtained restriction (27) on the magnitude of the 
electron-phonon interaction is the strong-field condition. 
Since we are considering the case k, -a, it follows from ( 14) 
that Ak-k,, a, and, in turn, that k,, -k,, a, i.e., 
T - -4( IxI/IfllAk), where we have taken into account the 
relation 2 10 1 ( Wm ) - ' = a, and have also discarded the re- 
gion corresponding to considerable detunings from reso- 
nance: A(k)/2(fll% 1. Then the inequality (27) can be 
transformed as follows: 
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The requirement (38) is the strong-field condition, and de- 
scribes the approximation in which the solution (36), (37) 
was obtained. The case ko )a can be treated analogously, 
when (27) is also the strong-field condition with the corre- 
sponding characteristic time 7. 

To conclude this section, we note that the applicability 
of this solution is limited by the inequalities (21) and (22). 
In addition, there is the extra condition (9) ,  related to the 
possibility of linearizing the initial system of equations for 
N(q) ) 1. It follows from (18) that for this the requirement 

should be satisfied, from which it can be seen that this ap- 
proximation also imposes a restriction on the times under 
consideration, since under the influence of the electron- 
phonon interaction the characteristic width A k  of the distri- 
bution increases and the condition (39) can be violated. 

4. CONCLUSION 

The results obtained in this paper point to the influence 
of a strong external field on the processes of relaxation of 
nonequilibrium carriers in a semiconductor. The analysis is 
performed by the method of second quantization and takes 
into account the electron-phonon interaction. The external 
radiation is assumed to be fixed and satisfies the strong-field 
condition ( f i r )  1 ). In deriving the equations describing the 
time evolution of the nonequilibrium population and polari- 
zation in a semiconductor we have used the standard proce- 
dure of decoupling four-operator expectation values in order 
to obtain a closed system. In addition, the number of pho- 
nons taking part in the scattering is assumed to vary little in 
time, and also to be sufficiently large to permit linearization 
of the system of equations obtained. 

The principal limitation imposed on the collision inte- 
grals is the assumption that the magnitude of the electron 
wave vector changes little when the electron is scattered by a 
phonon. In the case of the acoustic-phonon branch this im- 
plies that the conditions k)mc/fi and Ak) mc/fi are neces- 
sary. Since mc/fi- 10 - ' m - ' (c- lo3 m/sec), for values of 
ko - (0.5-1) X 10' m-  ' it is necessary to consider fields that 
ensure fl- 101'-10'2 sec - '. For lower values of the Rabi 
frequency the width of the distribution becomes too small 
and the condition A k )  mc/fi is violated. If we also take into 
account the interaction of the nonequilibrium carriers with 
the optical phonons, the corresponding requirements be- 
come more stringent: k, A k )  (mwopt/fi)'/2, where wopt is 
the characteristic optical-phonon frequency in the semicon- 
ductor. In this case, for values ko - (0.5-1 ) X lo9 m-  ' the 
Rabi frequency should take values of the order of (1- 
5) X 1013 sec - '. For lower magnitudes of the external field it 
is not possible to satisfy the condition Ak) (moop,/fi) 'I2 

x [mop, - (0.5-1 ) x 1013 sec - '1. In addition now, in order 
to satisfy the condition (39), the temperature should be con- 
siderably higher than room temperature. 

Using these results we can perform quantitative esti- 
mates for the characteristic times of the electron-phonon in- 
teraction in the presence of a strong external field. For a bulk 
crystal ( V-L 3, where Vis the volume and L is the charac- 

teristic linear dimension of the sample) with a simple cubic 
lattice, and for values k, - 5 x 10 - ' m - I, f i  - 10" sec - ', 
L - 10 - m and room temperatures, it is possible to obtain 
r- 10 - sec, i.e., the relaxation processes due to scattering 
by acoustic phonons are suppressed to a considerable extent. 
1f these conditions for the &tical phonons are satisfied, the 
results obtained in this paper can be generalized to the case 
of interaction with optical phonons. For the sample de- 
scribed above, and for values ko -- 5 x lo8 m - I, f i  - lOI3 
sec-', and T- lo" K, we can obtain r- 10W8 sec on the 
assumption that the characteristic optical-phonon fre- 
quency has a magnitude wopt -- 5 X 10" sec - '. 

The estimates given show that in the approximations 
considered the decay of a coherent nonequilibrium state in a 
semiconductor under the influence of the electron-phonon 
interaction is substantially suppressed by a strong external 
field. It is shown that when the restrictions imposed are ful- 
filled the time characterizing the decay of the coherent po- 
larization in a semiconductor should increase algebraically 
with the amplitude of the external field: T a 1 a\*. We note 
that in this paper we have neglected the influence of elec- 
tron-electron scattering. In view of the complexity of this 
problem, allowance for the e-e interaction should be consi- 
dered separately. The point is that, as the amplitude of the 
external field increases, the number of carriers excited into 
the band increases, and, consequently, so too does the 
strength of the Coulomb interaction. Therefore, in our opin- - 
ion, the question of the character of the dependence of the 
relaxation processes on the intensity of the external field in 
the case of electron-electron scattering remains to a consi- 
derable degree open and requires further investigation. 

In conclusion, the authors express their thanks to P. P. 
Vasil'ev, I. S. Mukhin, and N. A. Chernyshev for useful dis- 
cussions and assistance in the work. 
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